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The ICK/KRP cyclin-dependent kinase (CDK) inhibitors are important plant cell cycle
regulators sharing only limited similarity with the metazoan CIP/KIP family of CDK
inhibitors. Information is still limited regarding the specific functions of different ICK/KRP
genes in planta. We have shown previously that down-regulation of multiple CDK
inhibitor ICK/KRP genes up-regulates the E2F pathway and increases cell proliferation,
and organ and seed sizes in Arabidopsis. In this study, we observed that the quintuple
ick1/2/5/6/7 mutant had more cells in the cortical layer of the root apical meristem (RAM)
than the wild type (Wt) while its RAM length was similar to that of the Wt, suggesting
a faster cell cycle rate in the quintuple mutant. We further investigated the effects of
down-regulating ICK genes on tissue culture responses. The cotyledon explants of
ick1/2/5/6/7 could form callus efficiently in the absence of cytokinin and also required a
lower concentration of 2,4-D for callus induction compared to the Wt plants, suggesting
increased competence for callus induction in the mutant. In addition, the quintuple ick
mutant showed enhanced abilities to regenerate shoots and roots, suggesting that
increased competence to enter the cell cycle in the quintuple mutant might make it
possible for more cells to become proliferative and be utilized to form shoots or roots.
These findings indicate that CDK activity is a major factor underlying callus induction
and increased cell proliferation can enhance in vitro organogenesis.

Keywords: Arabidopsis thanliana, cell cycle, cyclin-dependent kinase, CDK inhibitor, ICK/KRP, cell proliferation,
callus induction, plant regeneration

Introduction

Cell division is fundamental to plant growth, development, and reproduction. In eukaryotes,
cyclin-dependent kinases (CDKs) control cell division cycle, and their activities are in turn
modulated by different factors (Morgan, 1997). Among them, CDK inhibitors are crucial negative
regulators which inhibit CDK activity through direct protein binding. CDK inhibitor genes were
initially identified inmammalian and yeast (Sherr and Roberts, 1995). The first plant CDK inhibitor
gene ICK1 (Inhibitor of CDK) was discovered inArabidopsis (Wang et al., 1997) and there are seven
ICK genes (also refered to as KRPs) in Arabidopsis (De Veylder et al., 2001). To date, ICK/KRP
genes have been identified from different plant species such as tobacco (Jasinski et al., 2003), maize
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(Coelho et al., 2005), rice (Barrôco et al., 2006), tomato (Bisbis
et al., 2006), apple (Malladi and Johnson, 2011), and avocado
(Sabag et al., 2013).

Tissue culture and plant regeneration from explants have
many different applications. When proper stimuli are given,
somatic plant cells may form adventitious embryos, root,
or shoots (De Klerk et al., 1997). Plant regeneration usually
takes one of the two pathways: somatic embryogenesis
and organogenesis (Davey and Anthony, 2010). The plant
regeneration process can be divided conceptually into the
following three phases: (1) dedifferentiation, during which the
cells acquire competence to respond to the induction stimuli;
(2) induction, during which the competent cells are induced
to enter particular morphologic pathways; and (3) realization,
during which the calli undergo morphological differentiation
and development (see review by Duclercq et al., 2011). The
organogenesis pathway is more often the route encountered in
micropropagation, haploid production and plant transformation
(Duclercq et al., 2011). During in vitro organogenesis, callus
induction is followed by shoot and root regeneration. It has been
demonstrated in a wide range of plant species that generally a
high cytokinin (CK) to auxin ratio induces shoot organogenesis,
whereas a low ratio results in root development (Sangwan
and Sangwan-Norreel, 1990; De Klerk et al., 1997; Davey and
Anthony, 2010). In addition to the exogenous plant hormones,
other conditions such as nutrient concentrations, sugar sources,
and induction time on culture media can also affect the frequency
of plant regeneration (Christianson and Warnick, 1983).

In recent years, considerable progress has been made
in understanding the developmental events during de novo
organogenesis and its underlying molecular mechanisms. Certain
genes involved in shoot and root organogenesis processes have
been identified (see reviews: Duclercq et al., 2011; Motte et al.,
2014). Most of these genes are involved in auxin and CK
pathways or shoot meristem maintenance. In addition, ESR1
and ESR2 encoding transcriptional factors of the AP2/ERF
family, are identified as enhancers of shoot regeneration in
Arabidopsis (Banno et al., 2001; Ikeda et al., 2006), and
CUP-SHAPED COTYLEDON1 (CUC1), CLAVATA3/EMBRYO
SURROUNDING REGION-RELATED PEPTIDE (CLE2) and
GCN5-related N-acetyltransferase 1 (GNAT1) were identified as
ESR1 up-regulated genes (Matsuo et al., 2009), while CUC1,
Cyclin D1;1 and ARABIDOPSIS PHOSPHOTRANSMITTER 6
(AHP6) were identified as ESR2 up-regulated genes (Ikeda et al.,
2006), which might also be involved in shoot regeneration.

Cell division is a prerequisite to both callus induction and
shoot/root regeneration during organogenesis. Although there
is considerable amount of knowledge on the functions of
cell cycle regulators in the cell cycle, relative little is known
about their involvement in vitro plant regeneration. Several
previous studies showed that cell cycle regulators can affect callus
induction. Overexpression of a D-type cyclin has been shown
to increase callus induction frequency and callus growth rate in
Arabidopsis (Riou-Khamlichi et al., 1999; Cockcroft et al., 2000).
In rice, inducible expression of a rice CDK-activating kinase also
increases callus induction of tobacco leaf explants (Yamaguchi
et al., 2003).

In a previous study, we have reported the effects of down-
regulating ICK/KRP CDK inhibitors on plant growth and
development using a series of ick mutants (Cheng et al., 2013a).
The multiple ick mutants particularly the quintuple mutant
had increased CDK activity, up-regulated E2F-RB pathway and
enhanced cell proliferation. In this study, we investigated the
effects of ICK down-regulation on root cell proliferation and
further on callus induction and plant regeneration.

Materials and Methods

Plant Materials and Growth Conditions
The T-DNA insertion lines for the five Arabidopsis ICK/KRP
genes used in this study have been described previously (Cheng
et al., 2013a). For plants in soil, Arabidopsis plants were grown
at 21◦C under 16 h/8 h day/night photoperiod in a plant growth
room. For seedlings in plates, seeds were sterilized as described
(Valvekens et al., 1988) and sowed on 1/2-strength solid MS
medium (1/2 MS, 1% sucrose, 0.7% agar, pH 5.8). The plates were
placed vertically in the tissue culture room with the temperature
of 22◦C and photoperiod of 16 h/8 h day/night.

Root Length and Root Meristem Size Analysis
The seeds of wild type (Wt) and ick1/2/5/6/7 quintuple mutant
were sterilized and sowed on square plates containing 1/2-strength
solid MS medium. The plates were placed vertically in the plant
tissue culture room. Everyday from 2 to 6 days after germination
(DAG), 16–25 seedlings from each line were removed from
the plates for root length and meristem size analyses. The root
length was measured with a ruler. To measure root meristem
size, the root was removed and immersed in Hoyer’s solution
chloral hydrate/water/glycerol (3:0.8:0.4) on a glass slide. After
30 min treatment, the slide was covered with a coverslip. The
root meristem was observed with DIC (differential interference
contrast) under a microscope (Nikon ECLIPSE 80i). The root
meristem size was represented by the number of meristematic
cortex cells, which was counted as described (Casamitjana-
Martíneznez et al., 2003; Ioio et al., 2007). The length of cortex
cells in the mature zone was determined at 6 DAG. For each root,
an image was taken and cell length measured for 6–10 cortex cells
along the mature zone using Image J (http://rsb.info.nih.gov/ij).

Callus Induction and Growth Analyses
Sterilized Wt and mutant Arabidopsis seeds were sowed on
square plates containing solid 1/2 MS medium. Seven days
after sowing, cotyledons were cut into explants of approximately
4 mm × 4 mm in size. The explants were placed onto 1/2
MS medium containing 0.2 mg/ml 2,4-D (2,4-dichlorophenoxy-
acetic acid) or containing both 0.2 mg/ml 2,4-D and 0.2 mg/ml
6-BA (6-benzylaminopurine) solidified with 0.7% agarose. Ten
plates for each treatment (about 15 explants in each plate) were
used for callus induction and growth analyses. Every the seventh
day, the explants were examined to obtain the frequency of
explants with callus. Then, the explants were transferred to a fresh
plate containing the samemedium. The weight of the plate before
and after the transfer wasmeasured and the averageweight of calli
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was obtained [=(weight of plate after transfer – weight of plate
before transfer)/number of the calli].

To determine the minimal 2,4-D concentration for callus
induction, root segments, and excised cotyledons were incubated
on 1/2-strength solid MS medium supplemented with different
concentrations of 2,4-D. (for the first batch: 0 mg/L, 0.1mg/L,
0.15 mg/L, and 0.2 mg/L; for the second batch: 0.005 mg/L,
0.01 mg/L, 0.02mg/L, 0.03 mg/L, 0.04 mg/L, 0.05 mg/L). Callus
induction frequency was obtained after 10 and 20 days of culture
for root explants and after 20 days for cotyledon explants. Fresh
weigh was obtained after 20 days of culture. For each treatment,
5–6 plates with 32 root or cotyledon explants in each plate were
used.

Root and Shoot Regeneration Analysis
Sterilized Wt and mutant seeds were sowed on square plates
containing 1/2-strength MS solid medium, with the plates placed
vertically in the tissue culture room. Seven days after sowing,
excised roots were cut into 3–5 mm segments and transferred
onto callus induction medium (CIM) containing Gamborg’s B5
salt and vitamins (Gamborg et al., 1968), 2% sucrose, 0.5 g/LMES,
0.48 mg/L 2,4-D, 0.043 mg/L kinetin (KT), and 0.7% agarose.
After 7 days of culture on CIM, the root explants with callus
were transferred either onto shoot induction medium (SIM)
containing Gamborg’s B5 and vitamins, 2% sucrose, 0.5 g/L
MES, 1 mg/L isopentenyladenine (2-ip), 0.15 mg/L indole-3-
acetic acid (IAA), and 0.7% agarose for regenerating shoots, or
onto root induction medium (RIM) containing Gamborg’s B5
and vitamins, 2% sucrose, 0.5 g/L MES, 0.87 mg/L IAA and 0.7%
agarose for regenerating roots (Yasutani et al., 1994). For shoot
regeneration analysis, each line had 9–10 SIM plates with each
plate having ∼50 explants. After 30 days of culture, the calli were
surveyed to obtain the frequency of shoot regeneration for each
plate.

To determine shoot and root regeneration in different ick
mutant lines, calli were first induced from root explants as
described above. The explants with callus were then transferred
onto SIM for shoot induction or RIM for root induction, with
9–10 plates for each treatment. For shoot induction each plate
had ∼40 cultured root explants (root explants with callus), while
for root induction each plate about 50 cultured root explants
transferred from the CIM. After 20 days of culture on SIM or
RIM, the number of calli with regenerating shoots was counted
and shoot regeneration frequency obtained for each plate. For
root regeneration, we determined the frequency of explants with
root induction (=number of calli with regenerating roots/total
number of calli). Since the number of roots on each callus varied
greatly, we grouped the explants into four categories: (1) no root,
(2) 1–5 roots, (3) 6–10 roots and (4) more than 10 roots. The
percentages of the four categories were calculated for each line.

RNA Extractions and Real-time PCR
Arabidopsis total RNA was isolated using TRIzol reagent
(Invitrogen) according to manufacturer’s instructions. First-
strand cDNA synthesis and real-time PCR analysis were
performed as described previously (Zhang et al., 2015). The
primers for real-time PCR are listed in Supplementary Table S1.

Statistical Analysis
The Mann–Whitney two-tailed U test was used for analyzing the
differences in callus induction rates from cotyledon explants and
root induction rates from root explants. Fisher’s least significant
difference (LSD) method was used for multiple comparisons
of shoot regeneration rates of the Wt and mutants. For the
other differences between the mutant and Wt, The Student’s
t-test (T-test) method was used and the analysis was performed.

Results

Cell Division was Accelerated in Root Cortex
Meristematic Cells of ick1/2/5/6/7 Mutant
In our previous study, we established a series of T-DNA insertion
lines in which one to five ICK genes were knocked out, and
observed phenotypical changes in triple, quadruple and quintuple
mutants. Notably the quintuple mutant ick1 ick2 ick5 ick6 ick7
(referred to as ick1/2/5/6/7 for shoot) has larger leaves, petals,
and seeds than the Wt (Cheng et al., 2013a), suggesting that cell
proliferation is promoted in the ick1/2/5/6/7 quintuple mutant,
as a result of down-regulating ICK genes.

To determine more specifically how cell proliferation is
affected in the mutant, we examined cell production in the
root. First, we analyzed the root growth of the ick1/2/5/6/7
mutant and Wt plants from 2 to 6 days after seed plating. As
shown in Figure 1A, the primary root length for ick1/2/5/6/7
quintuple mutant was very similar to that of the Wt. We
then investigated the cortex cells in the mature zone of the
roots at 6-day stage after germination (DAG). The length of
cortex cells in different positions along each root was measured,
and the total cortex cell number estimated based on the root
length and average cortex cell length. The results showed that
the average length of the cortex cells in the mature zone
of ick1/2/5/6/7 quintuple mutant was reduced compared with
that of Wt (137.7 ± 3.6 um compared to 168.9 ± 4.1 um
in Wt). Since the mutant and the Wt lines had a similar
root length (36.3 ± 3.9 mm and 36.3 ± 3.2 mm at 6 DAG,
respectively), the total cell number in a cortex cell file along
the mature zone of ick1/2/5/6/7 quintuple mutant (264.0 ± 8.8)
was significantly higher than that of the Wt (229.1 ± 8.2;
Figures 1B,C; Figure 1B shows the relative ratio of the mutant
to Wt).

To determine whether the quintuple mutant has a larger
root meristem, we performed a time-course analysis on root
meristem size following Ioio’s method (Ioio et al., 2007). In this
assay, the root-meristem size was expressed as the number of
cortex cells in a file extending from the quiescent center (QC)
to the first elongated cell (Figure 1D). We found that the roots
of ick1/2/5/6//7 quintuple mutant and Wt had a similar final
root meristem size. However, the ick1/2/5/6/7 quintuple mutant
reached the final size 4 DAG, while the Wt reached this final
size 5 DAG (Figure 1E), suggesting an accelerated rate of cell
division and reduced cell elongation in the mutant. These results
imply that more cells in the cortex of the quintuple mutant are
likely due to a faster cell production rate, instead of a larger root
meristem.
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FIGURE 1 | Cell length, cell number, and root apical meristem size of wild type (Wt) and ick1/2/5/6/7 mutant Arabidopsis plants. (A) Primary root length
of the Wt and ick1/2/5/6/7 quintuple mutant at 2–6 days after germination (DAG). Each datum point represents the average of 16–25 seedlings. (B) Relative root
length, cortex cell length and cortex cell number of the mature zone of the Wt and ick1/2/5/6/7 mutant plants at 6 DAG (relative ratio = value of mutant/value of Wt).
For root length and cell length analyses, 20–22 seedlings were used. For cell length analysis, at least six cells in the mature zone were measured for each root tip.
(C) Differential interference contrast (DIC) images showing the cortex cells of the Wt (upper) and ick1/2/5/6/7 quintuple mutant (lower) roots. Two cortex cells of each
line are marked in red. (D) Longitudinal view of root tips of 6-day-old Wt and ick1/2/5/6/7 quintuple (right) plants. The root tips were placed on a glass slide, covered
with a coverslip, and viewed under a DIC microscope. The cortex cells around the transition zone are marked in red, and black arrowheads indicate the boundary
between meristem and elongation zone. (E) Meristem size of Wt and ick1/2/5/6/7 quintuple mutant plants at 2-6 DAG. The root meristem is expressed as the
number of cortex cells in a file extending from the quiescent center (QC) to the first elongated cell. The Student’s t-test was used for analyzing the difference between
the Wt and mutant [error bar = SE (standard error); ∗P < 0.05, ∗∗P < 0.01]. Each datum point represents the average of 16–25 seedlings. Bars = 100 um.

Down-regulation of Five ICKs Increased Callus
Induction
To further understand the impact of ICK down-regulation,
we examined tissue culture responses since cell proliferation is
critical for callus and plant regeneration. Cotyledon explants
of both Wt and ick1/2/5/6/7 mutant produced calli efficiently
on 1/2 MS medium containing both 0.2 mg/ml 2,4-D and
0.2 mg/ml 6-BA. On 1/2 MS medium containing 0.2 mg/ml 2,4-
D, however, there was a higher frequency of callus induction
for the mutant explants (Figures 2A,B). For instance, 98.4%
of the ick1/2/5/6/7 mutant explants produced calli, compared
69.1% for the Wt (Figure 2C). In addition, the calli of quintuple
mutants were much larger with lightly greenish color, while

those of the Wt yellower and smaller (Figure 2B). These
results indicate that down-regulation of the five ICK genes
enhances callus formation and reduces CK requirement for callus
induction.

To determine callus growth rate, the explants were transferred
to fresh callus induction plates every week, and the callus
growth was obtained by weighing the plate immediately after
the transfer and on the seventh day of culture. As shown
in Figure 2D and Supplementary Figure S1, the calli of
ick1/2/5/6/7 grew faster than those of Wt in the presence of
6-BA and 2,4-D or 2,4-D only. Those results indicate that
down-regulation of the five ICK genes also enhances callus
growth.
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FIGURE 2 | Callus induction from cotyledon explants and callus growth of Wt and ick1/2/5/6/7 plants. (A,B) Representative plates showing callus
induction from cotyledon explants of Wt (left) and ick1/2/5/6/7 mutant (right) in the presence of 2,4-D and 6-BA (A) or 2,4-D alone (B). Similar results were obtained
in three independent experiments. In each experiment, 10 plates were used for each treatment, with each plate having around 15 explants. The data from one
experiment are shown here. (C) Callus induction frequency of the Wt and ick1/2/5/6/7 mutant explants on culture medium containing 2,4-D alone. The difference in
the induction rate between the Wt and mutant at each time point was compared by Mann–Whitney U test. (D) Fresh weight of calli from the Wt and ick1/2/5/6/7
mutant cotyledon explants after 3–7 weeks of culture on culture medium containing both 2,4-D and 6-BA. The differences between the Wt and mutant were
analyzed by Student’s t-test (error bar = SE; ∗P < 0.05, ∗∗P < 0.01).

Auxin Dependency for Callus Induction was
Decreased in the ick1/2/5/6/7 Mutant
To further confirm that ICK down-regulation reduces auxin
requirement for callus induction, we determined the minimal
2,4-D concentration for callus induction from root explants of
both Wt and mutant plants. In this assay, the root segments
(about 5 mm in length) were incubated on the 1/2 MS
medium supplemented with different concentrations of 2,4-
D. We first used 2,4-D concentrations of 0, 0.05, 0.1, 0.15,
and 0.2 mg/L. Neither the Wt nor the quintuple mutant
showed callus induction on 1/2 MS medium without 2,4-D after
20 days of culture; whereas, on the culture plates containing
0.05, 0.1, 0.15, or 0.2 mg/L 2,4-D, almost all segments of
both lines generated calli (Supplementary Figures S2A,B). We
then used a series of lower 2,4-D concentrations of 0.005,
0.01, 0.02, 0.03, 0.04, and 0.05 mg/L. The root explants of
both lines produced no callus at 0 and 0.005 mg/L 2,4-D,
and almost all root explants of both lines produced calli at
0.02, 0.03, 0.04, and 0.05 mg/L 2,4-D after 20 days of culture
(Figure 3A). At 0.01 mg/ml 2,4-D, the callus induction frequency
of ick1/2/5/6/7 mutant (61.1%) was significantly higher than
that of the Wt (19.9%; Figure 3B). This observation suggests
that the ick1/2/5/6/7 mutant needs a lower concentration
of auxin for callus induction compared to Wt. Moreover,
for the 2,4-D concentrations at which the callus induction
frequencies of the two lines were comparable, the fresh weights

of calli from the mutant root explants were significantly
higher than those of Wt (Figure 3C and Supplementary Figure
S2C), consistent with observation made with the cotyledon
explants.

We also determined the minimal 2,4-D concentration
required for callus induction from cotyledonary petiole of
both lines. When the 2,4-D concentration was higher than
0.05 mg/ml, almost all of the cotyledonary petiole explants
of ick1/2/5/6/7 produced calli (Supplementary Figures S3A,B).
When the 2,4-D concentration was lower than 0.1 mg/ml,
the callus induction frequency of the ick1/2/5/6/7 mutant was
significantly higher than that of the Wt (Figures 4A,B and
Supplementary Figures S3A,B). At 0.005 mg/ml 2,4-D, 33% of
ick1/2/5/6/7 cotyledonary petioles showed callus induction, while
no cotyledonary petioles of the Wt did (Figures 4A,B). Also,
at various concentrations of 2,4-D the calli of the ick1/2/5/6/7
mutant were significantly larger than those of Wt (Figure 4C
and Supplementary Figure S3C), further confirming that the
callus of ick1/2/5/6/7 mutant was growing faster than the Wt
callus.

Shoot and Root Regeneration was Enhanced
in ick1/2/5/6/7 Mutant
In addition to callus induction, shoot and root regeneration
is another important aspects of plant tissue culture. Thus,
we investigated the ability of the root explants to regenerate
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FIGURE 3 | Callus induction from root explants of the Wt and ick1/2/5/6/7 mutant at different 2,4-D concentrations. Root segments were cultured on 1/2
MS medium containing the indicated concentrations of 2,4-D for 20 days. (A) Representative plates showing the root explants of Wt (the upper row) and
ick1/2/5/6/7 mutant (the lower row) on 1/2 MS medium containing 0.05, 0.01, and 0.05 mg/L (the first–third column, respectively) 2,4-D. (B) Callus induction rate of
root explants of Wt and ick1/2/5/6/7 mutant after 20 days of culture. (C) Fresh weight of root explants with callus of Wt and ick1/2/5/6/7 after 20 days of culture.
The bars show the mean values of 4–5 plates. Student’s t-test was used for analyzing the differences in induction rate and fresh weight between the Wt and mutant
(error bar = SE; ∗∗P < 0.01).

shoots. Root explants (about 5 mm segments) were first
cultured on CIM. After 7 days, explants with callus were
transferred to SIM. As shown in Supplementary Figure S4, the
shoot regeneration frequency of ick1/2/5/6/7 quintuple mutant

was significantly higher than that of Wt after 30 days of
culture. Also, each of the explants of ick1/2/5/6/7 quintuple
mutant on average regenerated more roots than that of
Wt. Those results indicate that the ick1/2/5/6/7 quintuple
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FIGURE 4 | Callus induction from cotyledon explants of the Wt and ick1/2/5/6/7 mutant at different 2,4-D concentrations. The cotyledons were excised
form 7-day-old seedlings and cultured on 1/2 MS medium for 20 days. (A) Representative plates showing the cotyledon explants of Wt (the upper row) and
ick1/2/5/6/7 mutant (the lower row) on 1/2 MS medium containing 0.005 mg/L, 0.02g/L, 0.04 mg/L (the first–third column) 2,4-D. (B) Callus induction rate of the
cotyledon explants of ick1/2/5/6/7 and Wt on the indicated media. (C) Fresh weight of the cotyledon explants with callus of ick1/2/5/6/7 and Wt on the indicated
media. The bars show the mean induction rates of 4–5 plates. Student’s t-test was used for analyzing the differences in induction rate and fresh weight between the
Wt and mutant (error bar = SE; ∗∗P < 0.01).

mutant has a stronger ability to regenerate shoots and
roots.

Disruption of ICK Genes Additively Promoted
Shoot and Root Regeneration
Our previous results on a series T-DNAmutants showed that the
effects from down-regulating ICK genes become more evident as
more ICK genes are disrupted (Cheng et al., 2013a). Therefore,
we selected a series of single, double, triple, quadruple, and
quintuple mutants to determine whether such an additive effect
of multiple loci also exists for shoot and root regeneration.
For this analysis, root explants with callus were transferred
onto SIM or RIM (RIM) for shoot or root regeneration. After
culturing on SIM for 20 days, the single ick1 mutant had a
similar frequency of calli with regenerating shoots to the Wt,
and there was a trend of increasing regeneration frequency from
the single to the quintuple mutant (Figure 5A). Although the
differences among Wt, ick1/2, ick1/2/7, ick1/2/6/7 did not reach

a significant level, the quintuple ick1/2/5/6/7 mutant with the
highest frequency showed significant differences from the other
lines (Figure 5B).

Calli were also cultured on RIM for 20 days, although most
calli of all the lines produced roots, the calli of ick1/2/6/7 and
ick1/2/5/6/7 mutants had visibly more roots than Wt and ick1,
ick1/2 and ick1/2/7 mutants (Supplementary Figure S5A). We
first compared the root regeneration rate of the six lines. The
root regeneration frequencies of ick1/2/6/7 and ick1/2/5/6/7 were
significantly higher than those of other lines (Supplementary
Figure S5B). To better characterize the number of roots per
callus, the calli were grouped into four categories, with 0, 1–
5, 6–10, and more than 10 roots per callus, respectively. The
calli of ick1/2/6/7 and ick1/2/5/6/7 mutants had significant
more roots than the calli of other lines (Supplementary Figure
S5C). Those results indicate that down-regulation of ICK
genes additively enhances both the abilities for shoot and root
regeneration.
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FIGURE 5 | Shoot regeneration from root-derived calli of Wt and various ick mutant plants. Root explants were cultured on callus induction medium (CIM)
first. After 7 days, root explants with callus were transferred onto shoot induction medium (SIM) and cultured for 30 days. For each line, 9–10 plates were used with
each plate having about 40 explants. (A) Representative plates showing shoot regeneration on SIM. The plates in the first row are: Wt (left), ick1 (middle), ick1/2
(right), and in the second row, ick1/2/7 (left), ick1/2/6/7 (middle), and ick1/2/5/6/7 (right). The red circles mark the calli with regenerating shoots. (B) Frequency of
shoot regeneration in Wt and ick mutants (Mean ± SE). The significant differences among different lines were analyzed by Fisher’s least significant difference (LSD)
method, and are indicated by different lowercase letters (P < 0.05).

E2F-dependent Genes and Shoot
Regeneration Related Genes were Mostly
Up-regulated During Shoot Regeneration of
ick1/2/5/6/7
In our previous studies, we have demonstrated that the E2F-
dependent genes are up-regulated in the ick1/2/5/6/7 seedlings
(Cheng et al., 2013a). The expression levels of the same group
of E2F-dependent genes that function in cell cycle, DNA
synthesis, chromatin structure, metabolism, plant development,
cell structure, and light signaling/photosynthesis (Ramirez-Parra
et al., 2003; de Jager et al., 2009) were analyzed in the SIM
incubated callus of ick1/2/5/6/7 mutant and Wt. Of the 24 genes
analyzed, 20 had a higher level of expression in the mutant, with
17 of them having a relative fold expression higher than 1.19
(equal to the Log2 value of 0.25). The four down-regulated genes

areMCM3, HTH/EDA17, KICP-02, and CCA1 (Figure 6A). This
result suggests that E2F-pathway was also enhanced in the callus
of ick1/2/5/6/7 mutant as observed in the seedlings (Cheng et al.,
2013a).

It has been demonstrated that a number of genes were up-
regulated during de novo shoot regeneration (Duclercq et al.,
2011; Motte et al., 2014). To investigate whether the increased
shoot regeneration ability of ick1/2/5/6/7 mutant is accompanied
by the up-regulation of these de novo regeneration related genes,
a group of 12 genes were selected and their expression levels
analyzed in the calli cultured on SIM for shoot regeneration. Of
the 12 genes, ESR1 and ESR2 are known as the enhancers of shoot
regeneration (Banno et al., 2001; Matsuo et al., 2009), CUC1,
CLE2, andGNAT1 are induced by ESR1 (Matsuo et al., 2009), and
WUS, STM, PIN1, REV, FIL, ATML1, and CLV3 are up-regulated
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FIGURE 6 | Expression of E2F-dependent and shoot regeneration related genes during in vitro shoot regeneration of the Wt and ick1/2/5/6/7 mutant.
Root explants were cultured on CIM for 7 days and then transferred onto SIM. Total RNA was extracted after 7 days of culture on SIM. Each value on the vertical
axes indicates a relative fold expression level calculated by scaling to the Ubq10c transcript level. Data present the average of four biological repeats and error bars
indicated standard errors. Each biological repeat has four technical replicates. (A) E2F-dependent genes. (B) Shoot regeneration related genes.

during de novo shoot formation (Gordon et al., 2007; Duclercq
et al., 2011). Among these 12 genes, 10 were up-regulated in the
calli of ick1/2/5/6/7mutant, while only 2 (GNAT1 andCLV3) were
down-regulated (Figure 6B). Interestingly, the FIL was highly
up-regulated in the callus of ick1/2/5/6/7 with about fourfold of
expression relative to that in the Wt calli.

Discussion

Down-regulation of Five CDK Inhibitor Genes
Promotes Cell Proliferation in Roots
Root growth is determined by the balance between cell division
and cell elongation (Beemster and Baskin, 1998). The defined
cortical layer development in Arabidopsis provides a good
tool to investigate the cell proliferation rate (Ivanov and
Dubrovsky, 1997). Several studies using this approach have
revealed that a reduced root apical meristem (RAM) size is
responsible for the observed inhibition of primary root growth
under different conditions (Westet al., 2004; Ubeda-Tomás
et al., 2009; González-García et al., 2011). In this study, we
observed that the same number of cortex meristematic cells
in ick1/2/5/6/7 quintuple mutant generated more but smaller
cells in the mature zone compared to the Wt, indicating an
accelerated rate of cell division in the mutant. Previously, we
have shown that CDK activity (most likely CDKA) is enhanced
in the ick mutants (Cheng et al., 2013a), which is likely

to be responsible for the increased rate of cell division in
roots.

CDK Kinase Activity is a Major Factor
Underlying Callus Induction
In various plant species, callus induction depends on exogenous
application of both auxin and CK. The factors underlying callus
induction/repression and the genes involved in these processes
have been reviewed recently by Ikeuchi et al. (2013). It has
been observed that the transgenic Arabidopsis overexpressing a
putative CK receptor CKI1 could produce callus efficiently in
the absence of CK (Kakimoto, 1996), indicating the significance
of CK in callus induction. Also, leaf explants of transgenic
Arabidopsis constitutively expressing a cell cycle regulator gene
CYCD3 could also produce calli in the absence of exogenous
CK (Riou-Khamlichi et al., 1999). It has been shown that
CK promotes G1/S and G2/M transitions through regulating
CDK activities (Sieberer et al., 2003; Del Pozo et al., 2005).
Furthermore, overexpression of rice R2, a CDK-activating kinase,
also results in CK-independent callus induction in tobacco
(Yamaguchi et al., 2003). In this study, we showed that callus
could be induced in the ick1/2/5/6/7 quintuple mutant in the
absence of CK. The increased CDK activity in the ick1/2/5/6/7
mutant must have lowered the threshold requirement for CK
as well as auxin for cells in the explants to enter and progress
through the cell cycle. In addition, antisense expression of
Nicto;CYCA3;2 in tobacco has been observed to impairs callus
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formation (Yu et al., 2003). Together, these results suggest
that regulation of CDK activity is a key determinant of callus
induction.

It is well known that auxin along with auxin signaling modules
is required for callus formation (Fan et al., 2012; Perianez-
Rodriguez et al., 2014). Part of the auxin requirement may be
for up-regulating certain cell cycle genes. It has been shown that
Arabidopsis CDKA is induced by auxin (Hemerly et al., 1993).
Our results showing that knockdown of ICK genes also lowers
the threshold requirement for auxin in terms of callus induction
suggests that the effect of auxin on callus induction is at least
partially through CDK.

It has been reported that transgenic Arabidopsis plants
overexpressing two TFs genes, HB52 and CRF3, exhibit
spontaneous callus formation without exogenous phytohormone
in some organs (Xu et al., 2012). It is not known whether CDK
activity is enhanced in those transgenic plants. However, genome-
wide transcriptome profiling during callus initiation has revealed
the up-regulation of many cell-cycle related genes (Xu et al.,
2012). Thus, it is possible that HB52 and CRF3 promote callus
formation in the absence of exogenous hormones through these
cell cycle genes.

Increased Cell Proliferation Enhances In Vitro
Organogenesis
In the classical scheme for plant regeneration, the explants
undergo dedifferentiation to obtain pluripotency during callus
induction. The calli are then transferred to SIM or RIM to
induce shoots and roots, respectively. Sometimes, shoots and
roots can be induced at the same time. During callus induction,
foundermeristem cells arise in the pericycle of root explants (Atta
et al., 2009). Depending on the subsequent culture conditions,
the cell fate of organ primordia is determined to be either
shoot or root identity (Christianson and Warnick, 1983; Atta
et al., 2009). During in vitro organogenesis, auxin is the main
phytohormone for root organogenesis, while CK promotes shoot
organogenesis (Skoog and Miller, 1957; Duclercq et al., 2011;
da Rocha Correa et al., 2012). Thus, the auxin-CK crosstalk
is important for organ formation and identity determination
(Gordon et al., 2009; Besnard et al., 2011; Cheng et al., 2013b;
Zhao et al., 2013). Motte et al. (2014) reviewed the mutants with
altered regeneration phenotypes, and noticed that most of the
genes are related to meristem maintenance, and auxin and CK
signaling.

Our findings that the quintuple ick mutant with increased
CDK activity showed increased shoot/root organogenesis
from both the root and cotyledonary explants indicate
enhanced competence for cell proliferation can also promote
organogenesis. We speculate that under the auxin and CK
conditions favoring organ formation, increased competence to
enter the cell cycle in the quintuple mutant makes it possible
for more cells to become proliferative and capable of forming
shoots or roots, while under conditions favoring unorganized
growth increased competence of cell proliferation makes it easier
to induce callus formation. Consistent with this suggestion,
application of cell cycle inhibitors during SIM incubation was
shown to significantly impair organogenesis in Arabidopsis (Che

et al., 2007). In addition, Arabidopsis ESR1 and ESR2, belonging
to the AP2/EAR family transcription factors, both could enhance
shoot regeneration (Banno et al., 2001; Ikeda et al., 2006).
Overexpression of ESR2 has been shown to up-regulate cell cycle
genes (Ikeda et al., 2006), suggesting that ESRs may promote
shoot regeneration by up-regulating cell cycle machinery and cell
proliferation.

We further observed that E2F-dependent genes and shoot
regeneration related genes generally showed higher levels
of expression in the ick1/2/5/6/7 during shoot regeneration
compared to Wt plants (Figures 6A,B) suggesting that enhanced
shoot regeneration is accompanied by the up-regulation of
a consort of genes involved in the regeneration process.
Interestingly, among them, FIL was highly up-regulated in
ick1/2/5/6/7 (Figure 6B). Although the regulation of FIL
expression in the quintuple mutant during shoot regeneration
is unknown, it is interesting to note that FIL gene encodes
a YABBY (YAB) family putative transcription factor that has
been implicated in specifying abaxial cell identities and thus
being involved in development of leaves and floral organs,
and in meristem activity (Sawa et al., 1999; Lugassi et al.,
2010).

Conclusion

In this study, we have demonstrated that down-regulation of
CDK inhibitor genes results in enhanced shoot/root regeneration.
To date, while efficient plant regeneration system has been
established in a range of plant species, other plant species remain
recalcitrant. Since regulation of the cell cycle by CDK is conserved
through plants and all eukaryotes, it is tempting to speculate
that callus induction can be enhanced through modulating CDK
activity in other plants as well. In vitro plant regeneration has
been optimized most empirically by testing a variety of hormonal
and culture conditions. The realization that CDK regulation
plays a key role provides molecular means to enhance plant
regeneration and possibly plant transformation for applications
in different plants, particularly crop species.
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