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Abiotic stresses adversely affect plant growth and agricultural productivity. According

to the current climate prediction models, crop plants will face a greater number of

environmental stresses, which are likely to occur simultaneously in the future. So it is very

urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand

for food productivity due to global population increase. As one of the largest families of

transcription factors (TFs) in plants, NAC TFs play vital roles in regulating plant growth

and development processes including abiotic stress responses. Lots of studies indicated

that many stress-responsive NAC TFs had been used to improve stress tolerance in

crop plants by genetic engineering. In this review, the recent progress in NAC TFs was

summarized, and the potential utilization of NAC TFs in breeding abiotic stress tolerant

transgenic crops was also be discussed. In view of the complexity of field conditions

and the specificity in multiple stress responses, we suggest that the NAC TFs commonly

induced by multiple stresses should be promising candidates to produce plants with

enhanced multiple stress tolerance. Furthermore, the field evaluation of transgenic crops

harboring NAC genes, as well as the suitable promoters for minimizing the negative

effects caused by over-expressing some NAC genes, should be considered.

Keywords: abiotic stress, multiple stresses, NAC, transcription factors, transgenic plant

INTRODUCTION

As sessile organisms, plants continuously suffer from a broad range of environmental stresses
including abiotic and biotic stresses. Abiotic stresses such as drought, salinity, heat and cold,
adversely affect plant growth and agriculture productivity, and cause more than 50% of worldwide
yield loss for major crops every year (Boyer, 1982; Bray et al., 2000; Shao et al., 2009; Ahuja
et al., 2010; Lobell et al., 2011). Further to this, plants are also attacked by a vast range of
pests and pathogens, including fungi, bacteria, viruses, nematodes, and herbivorous insects
(Hammond-Kosack and Jones, 2000). In addition, current climate prediction models indicate the
deterioration of climate including an increasing average temperature, a changing distribution of
annual precipitation, a rise of sea level, and so on. This will be concurrent with an increased
frequency of drought, flood, heat wave, and salinization (Easterling et al., 2000; IPCC, 2007, 2008;
Mittler and Blumwald, 2010). Climate change will also affect the spread of pests and pathogens. For
example, the increasing temperature can facilitate pathogen spread (Bale et al., 2002; Luck et al.,
2011; Nicol et al., 2011), and many abiotic stress can weaken the defense mechanism of plants and
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increase their susceptibility to pathogen infection (Amtmann
et al., 2008; Goel et al., 2008; Mittler and Blumwald, 2010;
Atkinson and Urwin, 2012). Taken together, crop plants will face
a greater range and number of environmental stresses, which
are likely to occur simultaneously. So it is very urgent to breed
stress-tolerant crop varieties to satisfy an increasing demand for
food productivity due to global population increase (Takeda and
Matsuoka, 2008; Newton et al., 2011).

To cope with these recurrent environmental stresses, plants
can activate a number of defense mechanisms which include
signal perception, signal transduction through either ABA-
dependent or ABA-independent pathways, stress-responsive
gene expression, in turn the activation of physiological and
metabolic responses (Xiong et al., 2002; Chaves et al., 2003;
Yamaguchi-Shinozaki and Shinozaki, 2006; Perez-Clemente et al.,
2013). To date, a large array of stress responsive genes have
been identified in many plants, including Arabidopsis and rice.
These genes are generally classified into two types (Shinozaki
et al., 2003). One is functional genes encoding important
enzymes and metabolic proteins (functional proteins), such
as detoxification enzyme, water channel, late embryogenesis
abundant (LEA) protein, which directly function to protect cells
from stresses. The other is regulatory genes encoding various
regulatory proteins including transcription factors (TFs) and
protein kinases, which regulate signal transduction and gene
expression in the stress response. In the signal transduction
processes, TFs play pivotal roles in the conversion of stress
signal perception to stress-responsive gene expression. TFs and
their interacting cis-elements function in the promoter region
of different stress-related genes acting as molecular switches
for gene expression. In plants ∼7% of the genome encodes for
putative TFs, which often belong to large gene families, such
as WRKY, bZIP, MYB, AP2/EREBP, and NAC families (Udvardi
et al., 2007; Golldack et al., 2011). In light of the key importance
of TFs in controlling a wide range of downstream events, lots
of studies have aimed to identify and characterize various TFs
involved in stress responses. However, these studies have mostly
focused on understanding the responses of model plants and
crops to a single stress such as drought, salinity, heat or cold,
pathogen infection, and so on (Hirayama and Shinozaki, 2010;
Chew and Halliday, 2011). Unlike the controlled conditions in
the laboratory, crops and other plants are often simultaneously
subjected to multiple stresses in the field conditions (Ahuja
et al., 2010). Recent studies have showed that plant response
to a combination of drought and heat is not a simple additive
effect of the individual stress, and the combination of multiple
stresses produces a unique pattern of gene expression, which
is distinct from the study of either stress individually (Rizhsky
et al., 2002, 2004; Prasch and Sonnewald, 2013; Rasmussen
et al., 2013). Therefore, the results of studies performed under
individual stress factors are not suitable for the complex field
conditions, and it is crucial to characterize the response of plants
to multiple stresses and identify multiple stress responsive genes
by imposing multiple stresses simultaneously as an entirely new
stress (Mittler, 2006). Maybe, manipulation of these multiple
stress responsive genes, especially multifunctional TFs, will
provide the opportunity to breed the broad-spectrum tolerant

crops with high yields. Based on these considerations above,
this paper reviews the progress of NAC TFs involved in plant
abiotic stress responses, and also prospects the future study
direction for the challenge of multiple environmental stresses in
agriculture, particularly concerning their potential utilization for
plant multiple stress tolerance in the field conditions.

NAC TRANSCRIPTION FACTORS IN
PLANTS

As one of the largest family of TFs in plants, the NAC TFs
comprise a complex plant-specific superfamily and are present in
a wide range of species. The NAC acronym is derived from three
earliest characterized proteins with a particular domain (NAC
domain) from petunia NAM (no apical meristem), Arabidopsis
ATAF1/2 and CUC2 (cup-shaped cotyledon; Souer et al., 1996;
Aida et al., 1997). By the availability of an ever-increasing number
of complete plant genomes and EST sequences, large numbers
of putative NAC genes have been identified in many sequenced
species at genome-wide scale (As shown in Table 1), such as 117
in Arabidopsis, 151 in rice, 74 in grape, 152 in soybean, 204 in
Chinese cabbage, 152 in maize, and so on. The large size of NAC
family inevitably complicates the unraveling of their regulatory
process.

The NAC family has been found to function in various
processes including shoot apical meristem (Takada et al., 2001),
flower development (Sablowski and Meyerowitz, 1998), cell
division (Kim et al., 2006), leaf senescence (Breeze et al., 2011),
formation of secondary walls (Zhong et al., 2010), and biotic and
abiotic stress responses (Olsen et al., 2005; Christianson et al.,
2010; Tran et al., 2010; Nakashima et al., 2012). Nonetheless, only

TABLE 1 | NAC family in various plant species.

Species Number of References

NAC family

Arabidopsis thaliana 117 Nuruzzaman et al., 2010

Rice (Oryza sativa) 151 Nuruzzaman et al., 2010

Grape (Vitis vinifera) 74 Wang et al., 2013

Soybean (Glycine max) 152 Le et al., 2011

Pigeonpea (Cajanus cajan) 88 Satheesh et al., 2014

Foxtail millet (Setaria italica L.) 147 Puranik et al., 2013

Chinese cabbage (Brassica rapa) 204 Liu et al., 2014

Brachypodium distachyon 101 You et al., 2015

Physic Nut (Jatropha curcas L.) 100 Wu et al., 2015

Maize (Zea mays) 152 Shiriga et al., 2014

Apple (Malus domestica) 180 Su et al., 2013

Chickpea (Cicer arietinum L.) 71 Ha et al., 2014

Potato (Solanum tuberosum) 110 Singh et al., 2013

Poplar (Populus trichocarpa) 163 Hu et al., 2010

Banana (Musa acuminata) 167 Cenci et al., 2014

Tobacco (Nicotiana tabacum) 152 Rushton et al., 2008

Tomato (Solanum lycopersicum) 104 Su et al., 2015

Cassava (Manihot esculenta Crantz) 96 Hu et al., 2015

Gossypium raimondii 145 Shang et al., 2013

Frontiers in Plant Science | www.frontiersin.org 2 October 2015 | Volume 6 | Article 902

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Shao et al. NAC transcription factors in plants

a few of these genes have been characterized to date and most of
the NAC family members have not yet been studied, even though
these genes are likely to play important roles in plants, and a great
deal of work will be required to determine the specific biological
function of each NAC gene. The intensive study on model plants
including Arabidopsis and rice reveals that a typical NAC protein
contains a highly conserved N-terminal DNA-binding NAC
domain and a variable transcriptional regulatory region in the C-
terminal region. The NAC domain with ∼150–160 amino acids
is divided into five sub-domains (A to E; Ooka et al., 2003). The
function of the NAC domain has been associated with nuclear
localization, DNA binding, and the formation of homodimers
or heterodimers with other NAC domain-containing proteins
(Olsen et al., 2005). In contrast, the highly diverged C-terminal
region functions as a transcription regulatory region, acting
as a transcriptional activator or repressor, but it has frequent
occurrence of simple amino acid repeats and regions rich in
serine and threonine, proline and glutamine, or acidic residues
(Olsen et al., 2005; Puranik et al., 2012). Some NAC TFs
also contain transmembrane motifs in the C-terminal region
which are responsible for anchoring to plasma membrane or
endoplasmic reticulum, and these NAC TFs are membrane-
associated and designated as NTLs (Seo et al., 2008; Seo and Park,
2010).

The expression of NAC genes can firstly be regulated at the
level of transcription because there are some stress-responsive
cis-acting elements contained in the promoter region such
as ABREs (ABA-responsive elements), DREs (Dehydration-
responsive elements), jasmonic acid responsive element
and salicylic acid responsive element. Then the complex post-
transcriptional regulation involves microRNA-mediated cleavage
of genes or alternative splicing. NAC TFs also undergo intensive
post-translational regulation including ubiquitinization,
dimerization, phosphorylation or proteolysis (Nakashima et al.,
2012; Puranik et al., 2012). These regulatory steps help NAC
TFs playing multiple roles in the majority of plant processes as
mentioned above. The NAC TFs regulate the transcription of
downstream target genes by binding to a consensus sequence
in their promoters. The NAC recognition sequence (NACRS)
containing the CACG core-DNA binding motif has been
identified in the promoter of the drought inducible EARLY
RESPONSE TO DEHYDRATION1 (ERD1) gene in Arabidopsis
(Simpson et al., 2003; Tran et al., 2004). The rice drought-
inducible ONAC TFs also can bind to a similar NACRS,
demonstrating that the NACRSmight be conserved across plants
at least for stress-inducible NAC TFs (Hu et al., 2006; Fang et al.,
2008). In addition, other sequences have also been reported as
NAC binding sites (NACBS), such as an Arabidopsis calmodulin-
binding NAC with GCTT as core-binding motif (Kim et al.,
2007), the iron deficiency-responsive IDE2 motif containing the
core sequence CA(A/C)G(T/C) (T/C/A) (T/C/A) (Ogo et al.,
2008) and the secondary wall NAC binding element (SNBE)
with (T/A)NN(C/T) (T/C/G)TNNNNNNNA(A/C)GN(A/C/T)
(A/T) as consensus sequence (Zhong et al., 2010). The sequences
flanking the core site in promoter of target genes may define
the binding specificity of different NAC TFs. Thus, the NAC TF
family can recognize a vast array of DNA-Binding sequences

and regulate multiple downstream target genes. These target
genes regulated by NAC TFs comprise regulatory genes encoding
regulatory proteins which function in signal transduction and
regulation of gene expression and functional genes encoding
proteins which are involved in osmolyte production, reactive
oxygen species scavenging and detoxification, macromolecule
protection and ubiquitination (Puranik et al., 2012). Taken
together, the existence of NACRS in promoter of some of these
genes makes them to be the potential direct targets, whereas
those that do not have this motif may not be direct targets. In
future more other novel NACRS remain to be elucidated by
microarrays combined with chromatin immunoprecipitation
(Taverner et al., 2004).

NAC TRANSCRIPTION FACTORS
FUNCTION IN ABIOTIC STRESS

The NAC TFs play a vital role in the complex signaling networks
during plant stress responses. Because of the large number of
NAC TFs from different plants and their unknown roles, it is still
a great challenge to uncover their roles in abiotic stress. Recently,
whole-genome expression profiling and transcriptome studies
have enabled researchers to identify a number of putative NAC
TFs involved in abiotic stress responses. For example, 33 NAC
genes changed significantly in Arabdopsis under salt treatment
(Jiang and Deyholos, 2006), 38 NAC genes were involved in
response to drought in soybean (Le et al., 2011), 40 NAC genes
responded to drought or salt stress in rice (Fang et al., 2008),
32 NAC genes responded to at least two kinds of treatments in
Chrysanthemum lavandulifolium (Huang et al., 2012). It appears
that a significant proportion of NAC genes function in stress
response according to the expression data from genome-wide
transcriptome analyses in many plants. Phylogenetic analyses
of NAC TFs showed that most of the stress responsive NAC
TFs appeared to contain a closely homologous NAC domain
(Ernst et al., 2004; Fang et al., 2008). Moreover, the stress-
responsive NAC genes exhibit a large diversity in expression
patterns, indicating their involvement in the regulation of a wide
spectrum of responses to different abiotic stresses. The precise
regulations of NAC genes during plant abiotic stress responses
contribute to the establishment of complex signaling networks,
and the important roles of NAC genes in plant abiotic stress
responses make them promising candidates for the generation
of stress tolerant transgenic plants. The functional studies of
NAC TFs by over-expression techniques will directly improve
our understanding of the regulatory functions of NAC members
to abiotic stresses. Transgenic constructs over-expressing the
selectedNAC genes have beenmade inArabidopsis, rice and other
plants. Some successful examples are summarized in Table 2.

CONCLUSIONS AND PERSPECTIVES

Considerable information has been gained about NAC TFs since
the discovery of NAC TFs, but the research in this area is
still in its infancy. Genome-wide identification and expression
profiling will undoubtedly open new avenues for describing the
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TABLE 2 | Abiotic stress tolerance of transgenic plant over-expressing NAC genes.

Transgenic plant Genotype Enhanced tolerance References

A. thaliana ANAC019 overexpression Drought, high-salinity, ABA signaling Tran et al., 2004

ANAC055 overexpression Drought, high-salinity, ABA signaling Tran et al., 2004

ANAC72 overexpression Drought, high-salinity, ABA signaling Tran et al., 2004

RD26 overexpression Drought, salt, ABA signaling Fujita et al., 2004

ANAC019 overexpression Cold, ABA signaling Jensen et al., 2010

ATAF1 overexpression Positive regulator of drought tolerance Wu et al., 2009

ONAC063 overexpression Higher seed germination under high salinity and osmotic stress Yokotani et al., 2009

GmNAC20 overexpression Salt and freezing tolerance Hao et al., 2011

ZmSNAC1 overexpression Low temperature, high-salinity, drought, and ABA signaling Lu et al., 2012

TaNAC2 overexpression Drought, salt, and freezing stresses Mao et al., 2012

ANAC042 overexpression Heat stress Shahnejat-Bushehri et al., 2012

O. sativa SNAC1 overexpression Increased stomatal closure and drought resistance in dry field conditions,

salt toleranc

Hu et al., 2006

SNAC2 overexpression Salt, drought, disease resistance drought, salinity, cold, wounding, and ABA

treatment

Sindhu et al., 2008

OsNAC4 overexpression Drought, salt, cold tolerance Zheng et al., 2009

OsNAC5 overexpression ABA, salt, cold tolerance, grain filling Sperotto et al., 2009

OsNAC6 overexpression Drought and salt tolerance Nakashima et al., 2007

ONAC10 overexpression Drought, high salinity, low temperature toleranc Jeong et al., 2010

ONAC045 overexpression Drought and salt tolerance Song et al., 2011

N. tabacum TaNAC2a overexpression Drought tolerance Tang et al., 2012

DgNAC1 overexpression ABA, NaCl, drought, and cold Liu et al., 2011a

EcNAC1 overexpression Water-deficit and salt stress Ramegowda et al., 2012

T. aestivum TaNAC69 overexpression PEG-induced dehydration and mild salt tolerance Xue et al., 2011

G. max GmNAC11 overexpression Salt tolerance in soybean transgenic hairy roots Hao et al., 2011

key features of NAC TFs. As a result, our current understandings
of the regulatory functions of the NAC TFs in various plant
species will be definitely accelerated. In particular, the stress-
responsive NAC TFs can be used as promising candidates
for generation of stress tolerant transgenic plants possessing
high productivity under adverse conditions. As a matter of
fact, many transgenic studies have been proved successful by
gene manipulation of NAC TFs for conferring different stresses
tolerance to plants (As shown in Table 2), but there are still some
problems to be solved. Firstly, the constitutive overexpression of
NAC genes occasionally may lead to negative effects in transgenic
plants such as dwarfing, late flowering and lower yields (Fujita
et al., 2004; Nakashima et al., 2007; Hao et al., 2011; Liu
et al., 2011b). Secondly, the transgenic plants overexpressing
NAC genes may occasionally have antagonistic responses to
different stresses. For example, drought tolerant Arabidopsis
plants overexpressing ATAF1 were highly sensitive to ABA,
high-salt, oxidative stress and necrotrophic fungus (B. cinerea;
Wu et al., 2009). Overexpressing ANAC019 and ANAC055 not
only increased drought tolerance but also decreased resistance
to B. cinerea (Fujita et al., 2004; Bu et al., 2008). Thirdly,
only a few of transgenic plants overexpressing NAC genes
were evaluated in the field trials so far, and most of them

were tested in greenhouse conditions and focused on plant
vegetative stages rather than reproductive stages (Valliyodan and
Nguyen, 2006). Lastly, most of the studies on NAC TFs only
investigated the molecular mechanisms of individual occurring
stress situations. Although recent studies have conducted multi-
parallel stress experiments and identified different NAC TFs
responding to single stress situations (Huang et al., 2012), the
knowledge concerning responses to combinations of several
stress factors is scarce, especially interactions among stress
factors.

As everyone knows, one of the most important aims for plant
stress research is to provide targets for the improvement of stress
tolerance in crop plants. With the forecast changes in climatic
conditions leading to a more complex stress environment in
the fields, we will face new challenges in creating the multiple
stress-tolerant crops. Breeding such plants will depend on
understanding the crucial stress-regulatory networks and the
potential effects of different combinations of adverse conditions.
Studies of multiple stress responses in Arabidopsis have provided
us with several possible avenues. Master regulatory genes such
as members of the MYC, MYB, and NAC TF families that
act in multiple abiotic stress responses are excellent candidates
for manipulating multiple stress tolerance. So in the future,
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it is crucial to impose multiple stresses simultaneously that
simulate natural field conditions and regard each set of stress
combinations as an entirely new stress in order to identify
the corresponding NAC TFs commonly induced by multiple
stresses. Manipulation of these genes should be the major
target of attempts to produce plants with enhanced multiple
stress tolerance. Furthermore, the potential NAC genes which
confer multiple abiotic stress tolerance in model plant species
must be tested in crop plants and greater emphasis should be
placed on the field evaluation of the transgenic crops harboring
NAC genes, especially focusing on their reproductive success.

Another lesson is the selection and/or improvement of suitable
promoters (such as a stress-inducible promoter) which can
maximize the positive effects and minimize the negative effects
caused by over-expressing some NAC genes. In summary, NAC
TFs are the key components of the signaling pathway in stress
response which carry out their function by interacting with both
downstream and upstream partners (Figure 1). Understanding
the molecular mechanisms of NAC TFs networks integrating
multiple stress responses will be essential for the development of
broad-spectrum stress tolerant crop plants that can better cope
with environmental challenges in future climates.

FIGURE 1 | Schematic diagram of NAC TFs as key components in transcriptional regulatory networks during abiotic stress. NACRS is NAC recognition

sequence.
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