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The centromere is a specialized chromosomal region identified as the major constriction,
upon which the kinetochore complex is formed, ensuring accurate chromosome
orientation and segregation during cell division. The rapid evolution of centromere DNA
sequence and the conserved centromere function are two contradictory aspects of
centromere biology. Indeed, the sole presence of genetic sequence is not sufficient
for centromere formation. Various dicentric chromosomes with one inactive centromere
have been recognized. It has also been found that de novo centromere formation
is common on fragments in which centromeric DNA sequences are lost. Epigenetic
factors play important roles in centromeric chromatin assembly and maintenance.
Non-disjunction of the supernumerary B chromosome centromere is independent of
centromere function, but centromere pairing during early prophase of meiosis I requires
an active centromere. This review discusses recent studies in maize about genetic and
epigenetic elements regulating formation and maintenance of centromere chromatin, as
well as centromere behavior in meiosis.

Keywords: centromere inactivation, centromere pairing, non-disjunction, de novo centromere, neocentromere,
epigenetics, maize

INTRODUCTION

The centromeres are the control centers of chromosomes and are essential for correct orientation
and segregation in cell division. The kinetochore complex formation requires a functional
centromere, so that the spindle can attach to the centromere regions for accurate orientation and
segregation of chromosomes (Cleveland et al., 2003; Allshire and Karpen, 2008).

Centromeres can be divided into three types according to their structural organization: the
point centromere with a 125 bp single nucleosome in Saccharomyces cerevisiae, the regional
centromeres with several kilobases to megabases of repeat sequences in most organisms, and
the holocentromeres that are spread throughout the chromosome as in Caenorhabditis elegans
(Allshire and Karpen, 2008) and the genus Luzula (Heckmann et al., 2013). In plants, most
centromeres are regional centromeres; the sizes are larger and the repeat sequences are more
complicated than other species (Zhang and Dawe, 2012; Feng et al., 2015).

In maize (Zea mays), there are mainly two kinds of centromeric repeat sequences, namely
a 156 bp tandem repeat CentC and centromeric retrotransposon of maize (CRM; Ananiev
et al., 1998; Zhong et al., 2002). During evolution, maize centromere sizes and the arrangement
of centromere sequences have experienced insertion, deletion, duplication, and other changes
(Wang and Bennetzen, 2012). The B chromosome centromere in maize has an additional specific
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centromere repeat sequence called the B-repeat (Alfenito and
Birchler, 1993) that surrounds and is interspersed with the CentC
and CRM arrays (Jin et al., 2005; Lamb et al., 2005). The
pericentromere sequence, Cent4, on chromosome 4 in maize has
some sequence similarity to the B-repeat sequence (Page et al.,
2001). In the second pollen mitosis, the functional B centromere
undergoes non-disjunction, leading to both sister-chromatids
segregating to the same pole (Carlson, 2007). Several elements
encoded by various regions on the B chromosome act on the B
centromere to perform non-disjunction (Lin, 1978). Centromere
misdivision of the B centromere of the TB-9Sb translocation
line in maize, which is a reciprocal translocation between the B
chromosome and the short arm of chromosome 9, can produce
derivatives with changed centromere sizes and DNA sequences
(Kaszás and Birchler, 1998).

The functional centromere associates with a specific histone
H3 variant, which is a heritable epigenetic marker of centromere
identity. It was first identified in human and called centromere
protein (CENP)-A in 1985 (Earnshaw and Rothfield, 1985).
In plants, the centromeric H3 variants (CENH3) have also
been identified in maize and other plants including Arabidopsis
(Talbert et al., 2002; Zhong et al., 2002). There are two copies of
CENH3 in barley, wheat, Pisum, and Lathyrus, which may have
functions in polyploidy formation and chromosome evolution
(Ishii et al., 2015; Neumann et al., 2015; Yuan et al., 2015).
Another histone modification marker for functional centromeres
in maize is phosphorylation at Thr133 in histone H2A (Dong
and Han, 2012). The centromeric sequences CentC and CRM in
maize interact with CENH3-nucleosomes (Zhong et al., 2002).

Centromere function is not determined by DNA sequence.
As described below, several examples of inactive centromeres
have been documented in maize as well as several examples
of de novo centromere formation over unique sequences.
Taken together, this evidence suggests an epigenetic basis
of centromere specification in maize. In this review, we
will discuss current studies and potential mechanisms in
centromere formation, centromere activity maintenance and
special centromere behavior in maize.

CENTROMERE INACTIVATION

Dicentric chromosomes can be produced through chromosome
translocation. Chromosomes with two active centromeres are
usually unstable during the cell cycle. Therefore stable dicentric
chromosomes have only one functional centromere with the
other one inactive.

In maize, multiple dicentric chromosomes have been
produced by chromosome translocation involving A and
B centromeres, B and B centromeres as well as A and A
centromeres (Figure 1). The B-A translocation chromosome
B9-Dp9 was produced by the short arm of chromosome 9 (9S)
being translocated to the B centromere, on to which the inverted
duplication of 9S was recombined (Zheng et al., 1999; Kato et al.,
2005). Recombination within B9-Dp9 can generate dicentric
chromosomes with two identical B centromeres, and then this
dicentric chromosome can undergo a Breakage-Fusion-Bridge

FIGURE 1 | Different kinds of dicentric chromosomes in maize.
Dicentric chromosome T1-5 is derived from an A-A translocation with an
active centromere 1. 9Bic-1 is derived from a B-A translocation with active
centromere 9. Dic15, sDic15, and minichromosome #5 are derived from
combining B centromeres using a reverse duplication of 9S on the TB-9Sb
translocation as described in the text. CRM is in green; B-repeat is red.

(BFB) cycle. After several rounds of breakage and fusion,
different kinds of newly formed dicentric mini-chromosomes
are produced (Han et al., 2006; Figure 2). The configurations are
distinct in these dicentric chromosomes: mini-chromosomes 2, 3,
and 13 have two changed B centromere regions with similar sizes
with one active; mini-chromosome 10 has multiple regions with
centromeric DNA sequences while the functional centromere
does not occupy all regions; and in mini-chromosome 5 the
smaller centromere is functional rather than the larger one
(Figure 1; Han et al., 2006). These mini chromosomes show
patterns of centromere cohesion and disjunction during meiosis
different from the normal ten pairs of A centromeres (Han
et al., 2007a). The sister chromatids separate early at meiosis
I in plants containing one copy of the mini chromosome, and
the cohesion-mediating histone phosphorylation of H3S10 as
well as the cohesion protector Shugoshin protein are still located
on the separated mini chromosome in anaphase I (Han et al.,
2007a). Among the dicentric derivatives of B9-Dp9, the B-A
translocation chromosome 9Bic-1 was detected, with the B
centromere transferred to the short arm of chromosome 9. The
centromere 9 is active while the B centromere is inactive; this
B-A translocation is an unexpected product from B-B dicentric
formation that initiates a chromosome type BFB cycle (Han
et al., 2006). In 9Bic-1, the process of non-disjunction of the
B centromere in the presence of a whole B chromosome will
cause chromosome breakage because the chromosome nine
centromeres separate but the terminal B centromere sisters
remain adhered to each other. This releases a fragment with the
inactive B centromere. One such broken B centromere containing
fragment attached to the short arm of chromosome 7 to generate
a new dicentric chromosome 7Bic-1 (Han et al., 2007b; Figure 2).
Apart from these dicentric chromosomes derived from the B
centromere, an A-A translocation between chromosomes 1
and 5 in maize produced a structurally dicentric chromosome
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FIGURE 2 | Centromere inactivation through the process of BFB cycle in maize. Reciprocal translocation between chromosome 9 and the B chromosome
produced chromosome B-9, with an active B centromere and 9S. Duplication of 9S on B-9 generated chromosome B9-Dp9. The arrows indicate the orientation of
the duplicated regions. Intrachromosomal recombination of B9-Dp9 produced dicentric chromosomes with two B centromere regions and a chromosomal fragment
without a centromere region. This dicentric chromosome undergoes a BFB cycle, and produced different kinds of new dicentric chromosomes. Most of these
dicentric chromosomes are with two B centromere regions, while in 9Bic-1, centromere 9 is active and the B centromere is inactive. The inactive B centromere
region on 9Bic-1 remains adhered at the second pollen mitosis, which causes the chromosome to break. The broken piece formed a new A-B translocated
chromosome 7Bic-1 with an inactive B centromere.

T1-5 (8041), which possesses an inactive centromere (Gao
et al., 2011; Figure 1). In wheat, hybridization between wheat
and rye generated a translocation line with two centromere
regions (Fu et al., 2012). The same holds true for wheat-barley
translocations, where one of the two centromeric regions on
the translocated chromosomes became inactive (Nasuda et al.,
2005).

The inactive centromeres have no function during cell
division, and there is no CENH3 loading on the inactive
centromeres (Han et al., 2006; Gao et al., 2011). As the original
centromere sequences are unchanged in inactive centromeres,
there are apparently epigenetic factors regulating CENH3-
nucleosome loading only on active centromere regions (Birchler
and Han, 2009). Epigenetic factors can also operate when
centromere function is regained on a chromosome formerly
with only inactive centromere regions. For example, when
plants with the translocation chromosome B9-Dp9 (with a
big B centromere region) were crossed with another carrying
centromere misdivision derivative T3-5(+) (with a small B
centromere region), dicentric chromosome Dic15 was produced

and transmitted to the next generation with one big active
centromere and one inactive small centromere (Figure 3).
The joining of the two centromeres resulted in inactivation
of the smaller one. Then intrachromosomal recombination of
Dic15 produced new dicentric chromosomes with two small
inactive centromeres or two large active centromeres. On the
chromosome with two small centromeres, one of the originally
inactive small centromeres appeared to be reactivated (Han
et al., 2009; Figure 3). Among these new chromosomes with
two sites of small centromere regions, sDic15 was found to have
de novo centromere sequences as determined by CENH3 ChIP-
seq. It is therefore possible that the regaining of centromere
function on this chromosome is from a de novo centromere
rather than reactivation of the B centromere sequence. There is
no B centromere reference sequence to test whether the formerly
inactive centromere sequences were involved in a reactivation
process. The analysis showed that a 723 kb genome DNA
sequence from the short arm of chromosome 9 was involved
in the de novo centromere formation (Zhang et al., 2013a;
Figure 3).
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FIGURE 3 | Regaining centromere activity in maize. The hybridization between plants with translocation chromosome B9-Dp9 and those with B centromere
misdivision derivative T3-5(+) produced dicentric chromosome Dic15 with one big centromere and one small centromere with the small one inactive.
Intrachromosomal recombination of Dic15 can generate new dicentric chromosomes with two big centromeres or two small centromeres. sDic15 is a dicentric
chromosome with small centromeres that regained centromere activity via a 723 kb genomic DNA sequence de novo centromere.

From study of dicentric chromosomes with one big
centromere and one small centromere as determined by FISH for
centromeric DNA amounts, it can be realized that centromere
size does not determine centromere activity. In Dic15, the
small centromere is inactive, while in mini-chromosome 5
derived from intrachromosomal recombination and BFB cycle of
B9-Dp9, the small centromere is active (Han et al., 2006, 2009;
Figure 1). For these two dicentric chromosomes, all centromeres
have B-repeat containing regions. Minimal centromere size
for function has been studied in maize using the system of
centromere misdivison of the B centromere on chromosome B-9
(the chromosome containing the B centromere in TB-9Sb). It was
revealed that chromosomes with estimated small centromeres
have low transmission rate (Kaszás and Birchler, 1996, 1998).
However, it is important to realize that the size of a centromere
as determined by DNA amount might not necessarily reflect the
centromere chromatin domain size. At present, it is not possible
to make generalization about centromere inactivation, which
potentially could be stochastic.

In an active centromere, the chromatin maintains an open
state for CENH3-nucleosome deposition dynamically in the
cell cycle, but in the inactive centromere, the chromatin state
is closed. The arrangement order and higher structure of

centromeric DNA sequence may provide the basic structure for
centromere establishment, while epigenetic elements including
histone modifications and chromatin assembly factors are the
determinants for CENH3-nucleosome loading (Ekwall, 2007;
Allshire and Karpen, 2008; Black and Cleveland, 2011). These
epigenetic elements may create on or off states of centromeric
chromatin, so that CENH3-nucleosomes can load or fail to load
onto the centromere region (Svensson and Ekwall, 2014). In yeast
and human, several factors involved in centromere assembly
have been reported, including histone deacetylation (Sato et al.,
2012), centromere histone H2B monoubiquitination (Sadeghi
et al., 2014), CENP-A Ser68 phosphorylation (Yu et al., 2015),
and K124 ubiquitylation (Niikura et al., 2015). However, inmaize,
such factors have not been identified.

CENTROMERE NON-DISJUNCTION

The centromere of the maize B chromosome can undergo
non-disjunction at the second pollen mitosis, and the sperm
with B chromosomes will preferentially fertilize the egg in the
process of double fertilization (Roman, 1947, 1948; Carlson,
2007). There are factors on the B chromosome that are
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required for non-disjunction of the B centromere, apparently
including the B centromere adjacent heterochromatin, a site in
proximal euchromatin and another at the very distal tip of the
long arm (Roman, 1947; Lin, 1978). In the B-A translocation
chromosomes 9Bic-1 and 7Bic-1, the inactive B centromere is
transferred to the short arm of chromosome 9 or chromosome
7, respectively. These inactive B centromeres can still perform
non-disjunction in the presence of a whole B chromosome;
thus non-disjunction does not rely on centromere function.
Furthermore, the knob heterochromatin region near the B
centromere is deleted in 9Bic-1 and 7Bic-1, so it is likely that the B
specific centromere sequence is responsible for non-disjunction
given that it is the only major unique repeat unit remaining
on these chromosomes (Han et al., 2007b). The inactive B
centromere state does not affect non-disjunction, indicating the
sequence plays a role in non-disjunction. However in rye, the
non-disjunction of the B chromosome relies on B centromere
function; the pericentromere cohesion is related to B centromere
non-disjunction (Banaei-Moghaddam et al., 2012).

CENTROMERE PAIRING

The function of the centromere in chromosome orientation and
segregation during the cell cycle has been studied in detail.
In maize, homologous chromosome pairing is initiated from
centromeres, and centromere pairing occurs prior to telomere
bouquet formation (Zhang et al., 2013b). It was revealed that
function rather than DNA sequence is responsible of centromere
pairing in maize, suggesting that dynamic chromosome binding
factors at active centromeres may take part in the homologous
pairing process. In 7Bic-1, the inactive B centromere regions
are not paired, when other active centromeres are paired
completely at the leptotene stage (Figure 4). Compared to the
chromosome arm regions and pericentromere sites, functional
centromere regions are the earliest recognition points for
homologous chromosomes. The synaptonemal complex (SC) and
sister-chromatid cohesion are required for centromere pairing,
suggesting that they are involved in homologous centromere
recognition (Zhang et al., 2013b; Figure 5).

DE NOVO CENTROMERE FORMATION

Inactive centromeres show that DNA sequence alone can
not determine centromere establishment. Furthermore, a
specific DNA sequence is not always required for centromere
assembly. Additional evidence for epigenetic effects on
centromere specification comes from the recognition that
de novo centromeres can be formed on acentric chromosomal
fragments without canonical centromeric repeat sequences
produced by chromosome breakage. It has been proposed that
a tug of war between typically larger endogenous centromeres
and smaller de novo ones inactivate the latter (Liu et al., 2015),
clearing it from the arm in analogous fashion to the generation
of Dic15 described above when a small centromere was placed
on a dicentric with a normal sized endogenous centromere and
became inactive (Han et al., 2009).

FIGURE 4 | Inactive centromeres (7Bic-1 in green) can not pair at the
leptotene stage, when the ten pairs of functional centromeres pair
completely. Immuno-FISH using an antibody against centromeric histone
CENH3 in red and B repeat probe in green; chromosomes are counterstained
with DAPI in blue. The inactive B centromeres are separated but the ten active
A centromeres are all paired. Bar = 10 µm.

FIGURE 5 | A model for centromere pairing in meiotic early prophase I
in maize. We suggest a model of homologous chromosome initiation in
maize in which homologous chromosomes find each other at the leptotene
stage and are recognized at centromeres via a centromere function
dependent mechanism. The inactive centromeres do not participate in this
pairing. Then chromosome pairing is further facilitated by telomere bouquet
formation and synaptonemal complex (SC)-dependent pathways.

De novo centromeres have been found in several plant species.
In a wheat background, a stable 7HS telosome with no detectable
barley or wheat centromeric sequences was generated (Nasuda
et al., 2005). In maize, several de novo centromeres have been
found. On the chromosomal fragment Duplication 3a (Dp3a),
a de novo centromere appeared with a 350 kb CENH3 binding
region from the long arm of chromosome 3 (Fu et al., 2013;
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FIGURE 6 | De novo centromere formation in maize. (A) De novo centromere generated by centromere misdivision. B centromere misdivision on the B-9
chromosome causes a broken centromere that fuses with the telomere region of the same chromosome to produce a ring chromosome. The ring chromosome
broke and became linear and gained a 288 kb de novo centromere in derivative 3-3. In the derivative of 3-3, this de novo centromere was inactivated and another
200 kb de novo centromere arose. (B) sDic15 has a de novo centromere derived from a 723 kb sequence. (C) Irradiated acentric chromosomal fragments can
acquire a de novo centromere by CENH3 seeding at that position. Chromosome fragment Dp3a has a 350 kb de novo centromere from a sequence on the long arm
of chromosome 3.

Figure 6). The dicentric chromosome sDic15, mentioned above,
contains 723 kb of genomic DNA sequence from the short
arm of chromosome 9 in the active centromere, with a similar
DNA methylation level and DNA composition to the native
centromere regions (Zhang et al., 2013a; Figure 6). By the process
of the B centromere misdivision in maize translocation line
TB-9Sb (Kaszás and Birchler, 1998), chromosome derivative 3-
3 was produced with a 288 kb de novo centromere derived
from the distal region of the short arm of chromosome 9.
In subsequent derivatives of 3-3, the de novo centromere
of 3-3 was inactivated with another de novo centromere
formed in 3-3-11 with 200 kb sequence on the short arm of
chromosome 9. These de novo centromeres are derived from
different regions and occupy different sequences (Liu et al.,
2015; Figure 6). Two isolates of maize chromosome 3 contained
neocentromeres near the original centromere 3 when normal
maize chromosomes were transfered to an oat background
(Wang et al., 2014).

The above-mentioned cases indicate that de novo
centromere formation is common in maize. The large native
centromere appears capable of suppressing potential de
novo centromeres forming on chromosome arms. Potential
de novo centromeres be established only on fragments

without native centromeres. Any process that produces
chromosomal fragments can potentially promote de novo
centromere formation on the otherwise acentric chromosome
fragments.

The sites for neocentromere formation are not related and
the mechanism of centromere formation at ectopic regions is
still a mystery (Scott and Sullivan, 2014). In maize, de novo
centromeres derived from the sequences near active centromere
regions or on the distal regions of chromosomal arms have been
found (Fu et al., 2013; Zhang et al., 2013a). The sizes of de
novo centromeres vary as noted above, but the smallest, which
is only 200 kb, can transmit stably in meiosis (Liu et al., 2015).
Maize centromeres sizes were dramatically expanded and adopt
a uniform size in the genetic background of oat, which have
larger centromere chromatin domains than maize (Wang et al.,
2014).

For many de novo centromeres in various species, no
commonDNA features or DNAmotifs for centromere deposition
have been found (Birchler et al., 2011). In sDic15, there
are two DNA motifs enriched in the de novo centromere
that are also in native centromeres (Zhang et al., 2013a),
but in other de novo centromeres, such motifs are not
recognized. After the native centromere is deleted on a
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chromosomal fragment, which kinds of factors are involved in
choosing a specific region for CENH3 seeding and centromere
establishment are still not known. Most acentric fragments
are lost during cell division because there is no CENH3
loading.

DNA METHYLATION IN CENTROMERIC
REGION

DNA methylation level is important for centromere identity
and function through regulating the centromeric chromatin
state (Choo, 2001; Schueler and Sullivan, 2006). The DNA
methylation level has been determined in de novo, active
and inactive centromeres in maize. The CENH3-nucleosome
binding DNA sequences in native centromeres of maize is
hypomethylated compared to the DNA sequences associated
with the flanking pericentromere, as is the case in Arabidopsis
thaliana (Zhang et al., 2008). For the B chromosome centromere,
hypomethylated DNA also exists in the active B centromere,
and the inactive B centromere has hypermethylated DNA
(Koo et al., 2011). Core centromere chromatin is not
heterochromatin; to some degree it has a loose structure
for CENH3-nucleosome deposition. The hypomethylated
DNA in centromere regions may provide a relaxed chromatin
environment to allow centromeric transcription and also
serve as a marker recognized by other factors for centromere
assembly.

As centromere formation and maintenance of centromeric
chromatin are regulated by epigenetic factors, the methylation
modification on centromere DNA may take part in centromere
chromatin assembly (Gopalakrishnan et al., 2009). The
DNA methylation in centromere regions may influence the
transcription state, and transcription in a centromere may play
a role in CENH3-nucleosome assembly (Allshire and Karpen,
2008).

TRANSCRIPTION IN CENTROMERE
REGIONS

Centromere transcripts from the repeat sequences have been
found in many species. These transcripts are essential for
regulating CENH3 nucleosomes loading in the centromere
region (Chan and Wong, 2012) and promoting kinetochore
complex assembly (Scott, 2013). In maize, transcripts from
centromere repeat sequences CentC and CRM2 have been
detected (Topp et al., 2004; Du et al., 2010) and the CentC
RNA can interact with CENP-C (Du et al., 2010). In the
de novo centromere sDic15, several genes inside the 723 kb
centromere region are transcribed (Zhang et al., 2013a). In a
neocentromere of human, the transcript of retrotransposon LINE
1 was required for stable transmission of the neocentromere
during the cell cycle (Chueh et al., 2009). As de novo centromeres
have no traditional centromere repeat sequences, the transcripts
in de novo centromeres should be different from the native
centromeres.

The function of centromere transcription in CENH3-
nucleosome assembly has been studied. In Drosophila
melanogaster, non-coding RNA of satellite III in the
centromere region is required for deposition of CENP-A
nucleosomes and CENP-C (Rosic et al., 2014). The work
using an ectopic centromere system in Drosophila showed that
centromere transcription is required for CENP-A deposition,
and the production of these transcripts is dependent on
CENP-A chaperone recruiting chromosome assembly factor
and RNA polymerase II to the centromere region (Chen
et al., 2015). The transcripts of centromere satellite in
human interacts with CENP-A and its chaperone Holliday
junction recognition protein (HJURP; (Quenet and Dalal,
2014).

The function of centromere transcripts in CENH3-
nucleosome loading can be divided into two parts. Firstly,
the chromosome assembly factor as well as histone chaperone
and RNA polymerase II are recruited to the centromere region
to produce an open chromatin state for CENH3-nucleosome
loading. Then the transcribed RNA can interact with CENH3
and the chaperone as well as kinetochore proteins to promote
CENH3 assembly and maintain the centromeric chromatin.
In dicentric chromosomes, the transcripts from an active
centromere cannot work in the inactive centromere region, and
may result from the relatively closed chromatin state in the
inactive centromere.

SUMMARY

DNA sequence and histone modification are involved in
formation and maintenance of centromere activity. Centromere
DNA is the carrier for centromere chromatin. De novo
centromere formation is common in maize. Centromere
inactivation shows that apart from histone variants and histone
modifications, other elements including histone chaperones and
chromatin assembly factors as well as transcription factors
are working in regulation of centromere chromatin. The
transcription products may be combined in the centromere
region controlling CENH3-nucleosome loading.

Centromere DNA can play roles independent of centromere
function in non-disjunction of the B centromere in maize, in
that specific products emanating from a whole B chromosome
can act in trans on the inactive B centromere to induce non-
disjunction (Han et al., 2007b). When the higher structure of
centromeric chromatin is studied in more depth, the nature
of non-repeat DNA sequence in de novo centromeres and the
highly repetitive DNA sequences in native centromeres as well
as how the centromere DNA sequence is involved in centromere
formation and centromere non-disjunction will be understood
better.

An active centromere is required for homologous
chromosome pairing in maize (Zhang et al., 2013b). The
key factors controlling homologous chromosome pairing
may locate in centromere regions in early meiosis. Thus, the
function of the centromere is reflected not only in chromosome
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orientation and segregation, but also in chromosome recognition
and genome stability.

KEY CONCEPTS OF CENTROMERE
FUNCTION IN MAIZE

Concept One: Centromere
The centromere is the major constriction on a metaphase
chromosome. In most species, it is composed of repeat
sequences. Accurate assembly of the kinetochore complex is
dependent on functional centromeric chromatin, and the correct
spindle attachment on the centromere region ensures accurate
chromosome orientation and segregation.

Concept Two: Dicentric Chromosomes
The chromosomes with two sites of centromere sequences are
called dicentric chromosomes. In order to remain stable, one
centromere must be active while the other centromere must
become inactive. Otherwise chromosomes with two functional
centromeres would be unstable during cell division if the two
centromeres separate in opposite directions.

Concept Three: Centromere Inactivation
The process of centromere state change from active to inactive
is called centromere inactivation. The inactive centromere loses
CENH3, while the centromeric DNA sequence is still present.
There is no spindle contact to the inactive centromere during cell
division, and the dicentric chromosome can transmit stably.

Concept Four: Centromere
Non-disjunction
At the second pollen mitosis, the maize B sister centromeres are
held together so that they are transferred to the same pole at
anaphase. Such non-disjoined chromatids preferentially transmit
to the egg cell. In the presence of the whole B chromosome, an
inactive B centromere region can perform non-disjunction.

Concept Five: Centromere Pairing
In maize, during early meiotic prophase, centromere associations
occur between homologous chromosomes before telomere
bouquet formation and chromosome arm pairing. Homologous
chromosomes recognize each other through centromere regions.
An active centromere is necessary to participate in this process.

Concept Six: De Novo Centromere
De novo centromeres are newly formed centromeres in
otherwise non-centromeric regions on chromosomes without
traditional centromeric repeat sequences. De novo centromeres
form on chromosomal fragments generated through different
processes, such as chromosome rearrangements from centromere
misdivision, BFB cycle and so on, in which the native centromere
has been deleted or inactivated.
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