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Transcription factors (TFs) are major players in stress signaling and constitute an integral

part of signaling networks. Among the major TFs, WRKY proteins play pivotal roles in

regulation of transcriptional reprogramming associated with stress responses. In view of

this, genome- and transcriptome-wide identification of WRKY TF family was performed

in the C4model plants, Setaria italica (SiWRKY) and S. viridis (SvWRKY), respectively.

The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally

analyzed for their physicochemical properties. Sequence alignment and phylogenetic

analysis classified these proteins into three major groups, namely I, II, and III with majority

of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY), followed by group

III (39 SiWRKY and 11 SvWRKY) and group I (10 SiWRKY and 6 SvWRKY). Group II

proteins were further classified into 5 subgroups (IIa to IIe) based on their phylogeny.

Domain analysis showed the presence of WRKY motif and zinc finger-like structures

in these proteins along with additional domains in a few proteins. All SiWRKY genes

were physically mapped on the S. italica genome and their duplication analysis revealed

that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively.

Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes

demonstrated the orthologous relationships between these genomes. In silico expression

analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in

different tissues and stress conditions. Expression profiling of candidate SiWRKY genes

in response to stress (dehydration and salinity) and hormone treatments (abscisic acid,

salicylic acid, and methyl jasmonate) suggested the putative involvement of SiWRKY066

and SiWRKY082 in stress and hormone signaling. These genes could be potential

candidates for further characterization to delineate their functional roles in abiotic stress

signaling.

Keywords: WRKY transcription factors, Setaria italica, Setaria viridis, abiotic stress, stress signaling, expression

profiling, comparative mapping
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INTRODUCTION

Plants are exposed to diverse environmental stresses, which

significantly affect their growth and development leading
to drastic decrease in productivity. Among the different

environmental stimuli, abiotic stresses are predominant, which
includes drought, heat, salinity, and submergence. Climate

change due to global warming is another aggravating challenge
that influences the sustainability and productivity of crop plants
(Kole et al., 2015). Plants have developed broad-spectrum

defense responses to circumvent these stresses and exhibit
stress tolerance or stress avoidance through acclimation and
adaptation mechanisms (Mickelbart et al., 2015). On perception

of stress, a complex signal transduction pathway (either abscisic
acid-dependent or -independent) is induced, which initiates
molecular, physiological and metabolic responses that ultimately
enhance stress tolerance (Lata et al., 2015). Transcription factors

(TFs) are a class of genes that predominate as tolerance
determinants in plants (Mickelbart et al., 2015) by regulating
the expression of stress-inducible genes. The TFs may constitute

gene networks or signaling cascades, by which they regulate other
TFs and/or other regulatory and/or functional genes (Tran and
Mochida, 2010). Approximately 7% of the plant genome encodes

for TFs (Udvardi et al., 2007), which are classified into 58 TF
families (Jin et al., 2014). Among these TFs, WRKY is the seventh
largest TF family (http://planttfdb.cbi.pku.edu.cn/). WRKY TFs
are characterized by their unique WRKYGQK motif followed
by a metal chelating zinc finger motif (CX4−5CX22−23HXH or
CX5−8CX25−28HX1−2C) (Eulgem et al., 2000). These WRKY
proteins bind to a specific domain called W-box in the promoter
region with consensus sequence (C/T)TGAC[T/C], resulting in
the expression of downstream target genes (Eulgem et al., 2000).
In addition to W-box, WRKY TFs can also interact with a sugar
responsive cis-element called SURE and activate transcription of
downstream genes (Sun et al., 2003).

Several reports have shown the regulatory role of WRKY
TFs in signaling pathways and modulation of diverse molecular
and physiological processes including pollen development and
function (Guan et al., 2014), seed dormancy (Rushton et al., 2010;
Ding et al., 2014), seed development (Johnson et al., 2002; Sun
et al., 2003; Luo et al., 2005), flowering time and plant height (Cai
et al., 2014b), somatic embryogenesis (Alexandrova and Conger,
2002), biomass (Wang et al., 2010; Yu et al., 2013), secondary
metabolite biosynthesis (Sun et al., 2003; Xu et al., 2004; Ma et al.,
2009; Suttipanta et al., 2011), hormone signaling (Zhang et al.,
2004) and leaf senescence (Miao et al., 2004). More importantly,
WRKY TFs have been shown to get activated in response to
different biotic (Dong et al., 2003; Muthamilarasan and Prasad,
2013) and abiotic stresses (Tang et al., 2013), including heat and
drought (Rizhsky et al., 2002; Wu et al., 2009; Ren et al., 2010),
cold (Huang and Duman, 2002; Pnueli et al., 2002), salinity (Jiang
and Deyholos, 2006), wounding (Hara et al., 2000; Yoo et al.,
2014), bacterial infection (Dellagi et al., 2000; Du and Chen,
2000; Chen et al., 2002; Chen and Chen, 2002; Deslandes et al.,
2002; Kim et al., 2008), fungal invasion (Chen et al., 2002; Zheng
et al., 2006; Marchive et al., 2007), virus attack (Wang et al.,
1998; Yang et al., 1999; Chen et al., 2002, 2013; Huh et al., 2012)

and defense against oomycetes (Beyer et al., 2001; Kalde et al.,
2003).

Thus, considering the vital role of WRKY TFs in various
molecular, biological and physiological processes, the WRKY
gene family has been extensively characterized in various crop
plants (Zhang and Wang, 2005), such as rice (Ross et al., 2007),
cucumber (Ling et al., 2011), maize (Wei et al., 2012), tomato
(Huang et al., 2012), Castor bean (Li et al., 2012), physic nut
(Xiong et al., 2013), barley (Liu et al., 2014), Brachypodium (Wen
et al., 2014), Gossypium raimondii, G. hirsutum (Cai et al., 2014a;
Dou et al., 2014), grapevine (Wang et al., 2014), G. arboretum
(Ding et al., 2015), cabbage (Yao et al., 2015), and in trees
including rubber (Li et al., 2014), poplar (He et al., 2012; Jiang
et al., 2014) and willow (Rao et al., 2015), and in Arabidopsis (de
Pater et al., 1996; Deslandes et al., 2002; Song and Gao, 2014).
However, no such studies have been reported in C4 models,
Setaria italica (foxtail millet) and S. viridis (green foxtail). Both
S. italica and its wild progenitor S. viridis have collectively been
accentuated as model crops for expediting functional genomics
studies in Panicoideae, particularly C4 photosynthesis, biofuel
traits and abiotic stress tolerance (Brutnell et al., 2010, 2015; Li
and Brutnell, 2011; Wang et al., 2011; Lata et al., 2013; Diao et al.,
2014; Muthamilarasan and Prasad, 2015).

In view of their importance, the U.S. Department of Energy
Joint Genome Institute and Beijing Genomics Institute, China
have independently sequenced the genomes of S. italica and
S. viridis (Bennetzen et al., 2012; Zhang et al., 2012). The
availability of genome sequence information of S. italica in
public domain has facilitated the identification of 2297 putative
TFs belonging to 55 families (Bonthala et al., 2014). Of these
55 families, NAC (Puranik et al., 2012), AP2/ERF (Lata et al.,
2014), MYB (Muthamilarasan et al., 2014a) and C2H2 zinc
fingers (Muthamilarasan et al., 2014b) have been extensively
characterized and their expression patterns in response to
different abiotic stresses and hormone treatments have been
investigated. However, no such global analysis of TFs has
been performed in S. viridis due to non-availability of genome
sequence in public domain (Muthamilarasan and Prasad, 2015).
Recently, Xu et al. (2013) pooled the RNA isolated from S.
viridis at three developmental stages, namely seed germination,
vegetative growth, and reproduction in different tissues including
leaf, stem, node, crown, root, spikelet, floret, and seed tissues.
Subsequently, cDNA library was constructed from the pooled
RNA and sequenced using Illumina HiSeq 2000 platform
(Xu et al., 2013). Transcriptome-wide analysis of TFs has
been demonstrated in important crop plants, namely barley
(Tombuloglu et al., 2013), bread wheat (Okay et al., 2014),
Medicago sativa (Postnikova et al., 2014), and G. aridum (Fan
et al., 2015). In the present study, similar computational approach
has been used to identify WRKY encoding transcripts from
S. viridis transcriptome and the identified transcripts were
analyzed with WRKY encoding genes of S. italica. Being the first
comprehensive study on WRKY TFs in S. italica and S. viridis,
the present study provides insights into the functional aspects of
these TFs in response to abiotic stress, and highlights potential
candidates for further characterization toward delineating their
functional role in abiotic stress signaling.
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MATERIALS AND METHODS

In Silico Mining of WRKY Proteins From
Setaria Italica and S. viridis
The WRKY domain-containing protein sequences of Setaria
italica and S. viridis were identified using the method of
Plant Transcription Factor Database (Jin et al., 2014). S. italica
protein sequences (v2.1) were retrieved from Phytozome v10.2
(Goodstein et al., 2012) and HMMER search was executed
using the PFAM domain (PF03106) (Finn et al., 2011). The
HMM profile generated with WRKY TFs of maize (Wei et al.,
2012) and rice (Ross et al., 2007) were used to generate HMM
profile and searched against the protein sequences of S. italica
using HMMER (Finn et al., 2011). Both de novo and reference-
based transcriptome sequences of S. viridis (kindly provided by
Prof. Xin-Guang Zhu; Xu et al., 2013) were used to generate
unique clusters using CD-Hit (Fu et al., 2012) with default
parameters and the resultant sequences were subjected to ORF
prediction using OrfPredictor (Min et al., 2005). The obtained
peptide sequences were used for identification of WRKY
domain-containing proteins using the methodology described
for S. italica. The identified WRKY sequences were confirmed
for the presence of PFAM domain PF03106 (WRKY DNA-
binding domain) using HMMSCAN (http://www.ebi.ac.uk/
Tools/hmmer/search/hmmscan) and ScanProsite (http://prosite.
expasy.org/scanprosite/; de Castro et al., 2006). The identified
SiWRKY protein sequences were searched using BLASTP against
S. italica database (v2.1) of Phytozome v10.2 to retrieve
corresponding genomic, transcripts and coding sequences along
with their chromosomal positions.

Protein Features, Multiple Sequence
Alignment, and Phylogenetic Analysis
Protein features including molecular weight, isoelectric point
(pI) and instability index were predicted using ProtParam tool
of ExPASy (Gasteiger et al., 2005). Amino acid sequences of
WRKY TFs belonging to S. italica (SiWRKY) and S. viridis
(SvWRKY) were imported into BioEdit v7.2.5 (Hall, 1999) and
multiple sequence alignment was performed using ClustalW
at default parameters. The SiWRKY and SvWRKY sequences
along with maize sequences (ZmWRKY; Wei et al., 2012) were
imported into MEGA v6.06 (Tamura et al., 2013) to construct a
phylogenetic tree by Neighbor-Joining method and the bootstrap
test was performed with 1000 iterations.

Prediction of Gene Structure and
Chromosomal Locations
The coding sequences and genomic sequences of SiWRKY
proteins were analyzed using GSDS web server v2.0 (Hu et al.,
2015) to identify the positions of introns and exons. Gene
structure analysis for SvWRKY genes was not performed due
to non-availability of genomic sequence of S. viridis in public
databases. The information about chromosomal position of each
SiWRKY gene was imported into MapChart v2.2 (Voorrips,
2002) and a physical map was constructed by mapping the
genes in ascending order from short-arm telomere to long-arm

telomere. MCScanX was used to identify tandem and segmental
duplications of SiWRKY genes (Wang et al., 2012).

Gene Ontology Annotation and Promoter
Analysis
SiWRKY and SvWRKY amino acid sequences were analyzed
using Blast2GO v3.0.10 (Conesa et al., 2005) to obtain gene
ontology (GO) annotation. The sequences were screened using
BLASTN againstOryza sativa protein sequences following which,
mapping, InterProScan, and annotation were performed. GO
enrichment was conducted using BiNGO plugin of Cytoscape
v2.6 based on Benjamini and Hochberg false discovery correction
value (Q-value) at 0.05 for the genes (Shannon et al., 2003; Maere
et al., 2005). The SiWRKY gene sequences were searched using
BLASTN against S. italica database in Phytozome to retrieve
2 kb upstream sequences. These sequences were screened for
cis-regulatory elements using PLACE web server (Higo et al.,
1999).

Identification of Orthologs in C4 Grass
Genomes and Ks Dating
Orthologous genes of SiWRKY and SvWRKY in sequenced
C4 grasses including switchgrass (Panicum virgatum), sorghum
(Sorghum bicolor), and maize (Zea mays) were identified by
BLAST analysis of the gene and protein sequences, respectively
against these genomes. Sequences with >90% similarity were
used for performing reciprocal BLAST and potential orthologs
were identified. A comparative map was constructed using
Circos (Krzywinski et al., 2009). Synonymous (Ks) and
non-synonymous (Ka) substitution rates were calculated for
paralogous and orthologous genes by PAL2NAL server (http://
www.bork.embl.de/pal2nal/) and period of divergence was
calculated using the equation T = Ks/2λ, where λ was taken as
6.5× 10−9 (Mishra et al., 2013; Puranik et al., 2013).

In silico Expression Profiling of SiWRKY

and SvWRKY Genes
The transcriptome data of root (SRX128223), stem (SRX128225),
leaf (SRX128224), spica (SRX128226), dehydration stress library
(SRR629694), and control library (SRR629695) of S. italica
were retrieved from European Nucleotide Archive (http://www.
ebi.ac.uk/ena) (Zhang et al., 2012; Qi et al., 2013). S. viridis
transcriptome data of pooled RNA isolated from samples across
three developmental stages, namely seed germination, vegetative
growth, and reproduction in different tissues including leaf, stem,
node, crown, root, spikelet, floret, and seed tissues available under
the accession number SRP019744 (Xu et al., 2013) was retrieved
from DNA Data Bank of Japan (Tateno et al., 2002). The reads
were filtered using NGS Toolkit (Patel and Jain, 2012), mapped
on S. italica genome using CLCGenomicsWorkbench v4.7.1 and
normalized by RPKM method. A heatmap was generated using
MultiExperiment Viewer (MeV) v4.9 (Saeed et al., 2003).

Expression Profiling of Candidate Genes
under Abiotic Stress and Hormone
Treatments
Candidate SiWRKY genes were chosen for qRT-PCR expression
analysis based on their in silico expression patterns. Primers were
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designed for the 3′ UTR of each transcript using GenScript Real-

time PCR Primer Design tool (https://www.genscript.com/ssl-
bin/app/primer) (Supplementary Table S1). S. italica cv. “Prasad”
was chosen for the study as the cultivar was reported to be
tolerant to salinity and dehydration stress (Lata et al., 2010;
Puranik et al., 2011). The seeds were grown in green house

following conditions described by Lata et al. (2014). Twenty-
one day old seedlings were treated with 250mM NaCl (salinity)

and 20% PEG 6000 (dehydration) for abiotic stress, and 100µM
methyl jasmonate (MJ), 100µM salicylic acid (SA), and 100µM
abscisic acid (ABA) for hormone treatments (Lata et al., 2014).
Samples were collected at 0 h (control), 1 h (early), and 24 h (late)

intervals, immediately frozen in liquid nitrogen and stored at
−80◦C. Total RNA from each sample was isolated following the

method described by Logemann et al. (1987) and treated with
RNase-free DNase I (50 U/ml). The quality and purity of RNA

was tested using NanoDrop Spectrophotometer (Thermo Fisher
Scientific, USA) [OD260:OD280 nm absorption ratio (1.8–2.0)]
and integrity was checked by resolving on 1.2% agarose gel
containing 18% formaldehyde. First strand complementary DNA
was synthesized with random primers from 1µg total RNA using
Thermo Scientific Verso cDNA Synthesis kit (Thermo Fisher
Scientific, USA) following manufacturer’s instructions. qRT-PCR
was performed in StepOne Real-Time PCR Systems (Applied
Biosystems, USA). A constitutive Act2 gene-based primer was
used as the endogenous control (Kumar et al., 2013). The PCR
mixtures and reactions followed by melting curve analysis and
agarose gel electrophoresis were performed following Kumar
et al. (2013). Three technical replicates for each biological
replicate were maintained for qRT-PCR analysis.

RESULTS

WRKY Transcription Factors of Setaria
HMM search for WRKY proteins in Setaria italica showed
the presence of 113 WRKY proteins (SiWRKY), which was in
agreement with the numbers reported in Plant Transcription
Factor Database v3.0 (Jin et al., 2014) and Foxtail millet
Transcription Factor Database (Bonthala et al., 2014). Among
these, four SiWRKY proteins (Si031469 m, Si030012 m, Si029764
m, and Si036581 m) were found to be the products of alternate
transcripts. In case of S. viridis, 50 WRKY TF sequences were
identified (SvWRKY). Domain analysis of both SiWRKY and
SvWRKY proteins using HMMSCAN and ScanProsite web
tools revealed that four SiWRKY and six SvWRKY proteins
did not possess the consensus WRKY DNA-binding domain
(PF03106). The resultant 105 SiWRKY and 44 SvWRKY
sequences (Supplementary Table S2) were used in further studies.
Among the 105 SiWRKY proteins, SiWRKY099 was identified
to be the smallest protein with 93 amino acids (aa), whereas the
largest one was SiWRKY011 (1290 aa). The molecular weights
of the proteins also varied according to protein size ranging
from 10.3 kDa (SiWRKY099) to 145.8 kDa (SiWRKY011). In
case of SvWRKY, the smallest proteins were SvWRKY008 (204
aa) and SvWRKY025 (207 aa), while the largest protein was
SvWRKY031 (1290 aa). The molecular weight of SvWRKY

proteins ranged from 21.6 kDa (SvWRKY008) to 145.8238 kDa
(SvWRKY031). Isoelectric point (pI) of SiWRKY and SvWRKY
proteins ranged from 4.8 (SiWRKY056) to 10.1 (SiWRKY037)
and 5 (SvWRKY026) to 11.8 (SvWRKY006), respectively. The
large variation in protein features might denote the presence of
putative novel variants. Instability index of these proteins showed
that most proteins (99 SiWRKY and 41 SvWRKY) were unstable
(Supplementary Table S2).

Classification of SiWRKY and SvWRKY
Proteins
WRKY proteins are classified into three major groups (I, II, and
III) based on the conserved WRKY domain and zinc finger-like
structure (Rushton et al., 1995). Group I has twoWRKY domains
as well as CX4−5CX22−23HXH structure, group II has oneWRKY
domain with conserved zinc-finger motif sequence, whereas
group III has one WRKY domain and CX4−5CX22−23HXC
structure (Eulgem et al., 2000). Group II proteins are further
classified into five sub-groups (IIa–IIe) based on the conservation
of amino acid motifs outside the WRKY domain (Park et al.,
2005). Sequence alignment of SiWRKY and SvWRKY showed
that all proteins, except SiWRKY044, SiWRKY063, SvWRKY005,
SvWRKY007, SvWRKY008, and SvWRKY011, possess conserved
WRKY domain and zinc finger-like structure. These exceptional
WRKY proteins were classified as group IV. However, these
proteins could represent pseudogenes or sequencing and
assembly errors (Xie et al., 2005; Ross et al., 2007).

Among the remaining 103 SiWRKY proteins, 10 belong to
group I, 54 to group II and 39 to group III, whereas in case
of SvWRKY proteins, 6 belong to group I, 23 to group II and
11 to group III (Figure 1). The first WRKY domain of group I
proteins possesses a conserved WRKYGQK amino acid motif,
whereas the second domain lacked the GQK signature. Both the
WRKY domains were followed by conserved CX4CX22−23HXH
structure. Interestingly, SvWRKY004 was observed to possess
three WRKY domains followed by zinc finger-like structures. In
case of group IV proteins, the conserved WRKYGQK domain
was present in the N-terminal region (Figure 1). Phylogenetic
analysis of group I, II, and III proteins of SiWRKY, SvWRKY,
and ZmWKRY (Wei et al., 2012) confirmed the group-wise
classification and also enabled the sub-classification of group
II proteins (Figure 2). Group IV proteins deduced through
sequence alignment were not included in phylogenetic analysis
as they represent the products of pseudogenes or sequencing
and assembly errors (Xie et al., 2005; Ross et al., 2007; Wei
et al., 2012). Among the 54 group II SiWRKY proteins, 5
belong to IIa, 8 to IIb, 20 to IIc, 9 to IId, and 12 to IIe.
Similarly, two SvWRKY proteins belong to group IIa, 3 to IIb,
9 to IIc, 4 to IId, and 5 to IIe. Interestingly, group IIc was
interrupted by the members of IIb and IIa (Figure 2). A similar
observation was reported by Wei et al. (2012) in maize, wherein
the phylogenetic tree ofWRKY proteins fromArabidopsis, maize,
rice, barley, and Physcomitrella patens showed the interruption
in group IIc. Domain analysis using HMMSCAN and PROSITE
tools revealed the presence of additional NB-ARC domain
(PF00931) in SiWRKY011 and SvWRKY031, and domain of
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FIGURE 1 | Multiple sequence alignment of three major groups of SiWRKY and SvWRKY proteins. Group I, II, III, and IV proteins have been aligned

separately and the consensus motifs are highlighted in blue boxes. Highly conserved amino acids have been shown in black boxes, less conserved in gray boxes,

while amino acids with no similarly were indicated in black texts. The red lines in group I proteins indicate that the intermittent sequences, which were less conserved

were not shown.

unknown function (PF12204) in SiWRKY011 and SiWRKY096
(Supplementary Table S3).

Structure, Location, and Duplication of
SiWRKY Genes
Positions of introns and exons within the SiWRKY genes and
their chromosomal locations were determined. However, this
could not be performed for SvWRKY genes since the genome
sequence data of S. viridis is not released in public database,
till date. Gene structure prediction showed the numbers and
arrangement of introns and exons within the SiWRKY genes
(Supplementary Figure S1). The majority of SiWRKY genes (59;
∼56%) were found to contain two introns, whereas 22 genes
(∼21%) have a single intron. Thirteen SiWRKY genes (∼12%)
have three introns, while 5 (∼5%) and 4 (∼4%) genes have
four and five introns, respectively. A maximum of 10 introns
were found to be present in SiWRKY096 and the SiWRKY065
gene was intronless (Supplementary Figure S1). The length of

SiWRKY genes was also observed to be variable ranging from
0.6 kb (SiWRKY019) to 7.5 kb (SiWRKY103). Physical mapping
of all the 105 SiWRKY genes onto nine chromosomes of S. italica
revealed an uneven distribution of these genes in the genome
(Figure 3). Among the four groups, members of group II and
III were present in all the nine chromosomes, whereas group
I SiWRKY genes were not present in chromosomes 1 and 4.
Twomembers of group IV, namely SiWRKY044 and SiWRKY063,
were present in chromosome 5. Subsequently, the expansion of
WRKY gene family in S. italica genome was examined using
MCScanX tool, which showed that 10 and 8 SiWRKY gene
pairs underwent tandem and segmental duplications, respectively
(Figure 3). The tandemly duplicated genes include one pair
of group I (in chromosome 3), two pairs of group II (in
chromosomes 4 and 9), and seven pairs of group III genes (in
chromosomes 1, 5, 7, and 8). Segmental duplication was found to
occur between the SiWRKY genes of chromosome 3 and 5, and
not in other chromosomes (Figure 3).
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FIGURE 2 | Unrooted Neighbor-Joining tree constructed with WRKY proteins of Setaria italica (SiWRKY), S. viridis (SvWRKY), and Zea mays

(ZmWRKY). SiWRKY and SvWRKY protein IDs are highlighted in blue color and groups are differentiated with different colors.

Gene Ontology Annotation and Analysis of
cis-acting Elements
Gene ontology (GO) annotation of SiWRKY and SvWRKY
proteins was performed using Blast2GO and Cytoscape tools and
showed the involvement of these proteins in different biological
processes and molecular functions (Supplementary Table S4).
A majority of these proteins were predicted to be involved in
response to stress as well as cellular, metabolic and biosynthetic
processes (biological process; P ≤ 2.2 × 10−6) (Figure 4).
The molecular functions of these proteins corresponded to
transcription regulator activity (P ≤ 4.2 × 10−13). Further,
cellular component analysis revealed the localization of these
gene products in nucleus (Figure 4). Promoter analysis of
SiWRKY genes showed the presence of 284 cis-regulatory

elements (CREs), of which some elements were present in
all the 105 genes, whereas a few were unique to one or
two genes of the entire family (Supplementary Table S5).
ARR1AT (element involved in cytokinin responsiveness),

CAATBOX1 (element in enhancer regions of the promoter),
CACTFTPPCA1 (element involved in mesophyll-specific gene
expression of C4 phosphoenolpyruvate carboxylase gene in C4

plants), DOFCOREZM (target binding site of Dof proteins),

EBOXBNNAPA (target binding site of bHLH and MYB-
transcription factor), GATABOX (light responsive element),

MYCCONSENSUSAT (MYC recognition site), and WRKY71OS
(binding site of WRKY TFs) were present in the upstream
region of all SiWRKY genes. In contrast, few CREs were found
to be present in only one SiWRKY gene (Supplementary Table
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FIGURE 3 | Physical map of SiWRKY genes showing their chromosomal locations. Vertical bars represent the chromosomes and numbers at the left indicate

the position of genes (in Mb). Tandemly duplicated gene pairs are indicated with red vertical bars and segmentally duplicated gene pairs are connected with yellow

bands. Colors of SiWRKY IDs correspond to the different groups.

S5). This includes ABADESI2 (Synthetic element related to

response to abscisic acid and to desiccation; in SiWRKY009),
ABRE2HVA1 (ABA responsive element; in SiWRKY053),
ACGTSEED3 (bZIP transcription activator binding site; in
SiWRKY015), AGL2ATCONSENSUS (MADS binding site;

in SiWRKY034), AUXRETGA2GMGH3 (auxin responsive
element; in SiWRKY017), EREGCC (ethylene responsive
element; in SiWRKY051), HSE (heat shock responsive element;
in SiWRKY047), MREATCHS (MYB Recognition Element; in
SiWRKY094), POLLEN2LELAT52 (required for pollen specific
expression; SiWRKY002), and S2FSORPL21 (leaf-specific, light-
independent regulatory element; in SiWRKY094; Supplementary
Table S5).

Comparative Mapping in Related Grass
Genomes and Ks Dating of Paralogs and
Orthologs
All the 105 SiWRKY genes and 44 SvWRKY proteins were
subjected to BLAST search against the database of switchgrass
(Panicum virgatum), sorghum (Sorghum bicolor) and maize (Zea
mays) to identify corresponding orthologs (>90% similarity).
Potential orthologs were confirmed by reciprocal BLAST
(Figure 5; Supplementary Tables S6–S11). A total of 60
SiWRKY genes (∼57%) showed syntenic relationship with maize
(Supplementary Table S8), followed by switchgrass (∼54%;
Supplementary Table S6) and sorghum (∼40%) (Supplementary
Table S7). In case of SvWRKY proteins, maximum synteny
was observed with switchgrass (31, ∼70%; Supplementary Table
S9), followed by maize (24, ∼55%; Supplementary Table S11)
and sorghum (20, ∼45%; Supplementary Table S10). Further,
the effect of Darwinian positive selection in duplication and
divergence of WRKY genes was examined by estimating the
ratios of non-synonymous (Ka) vs. synonymous (Ks) substitution
for paralogous as well as orthologous gene pairs. The Ka/Ks ratio

for tandemly duplicated gene pairs ranged from 0.09 to 0.18
with an average of 0.13 (Supplementary Table S12), while for
segmentally duplicated gene pairs, the ratio ranged from 0.06
to 0.14 with an average of 0.1 (Supplementary Table S13). Both
the tandem and segmental duplications have been estimated to
occur around 29million years ago (mya) and 23mya, respectively
(Supplementary Tables S12, S13). Similarly, the average Ka/Ks
ratios of orthologous gene pairs of S. italica - P. virgatum, S.
italica - S. bicolor, and S. italica - Z. mays were estimated as
0.94, 0.19, and 0.19, respectively (Supplementary Tables S6–S8).
In case of S. viridis - P. virgatum, S. viridis - S. bicolor, and S.
viridis - Z. mays orthologs, the Ka/Ks ratios were 0.79, 0.21, and
0.18, respectively (Supplementary Tables S9–S11). This revealed
that the orthologous gene pairs underwent natural selection
(Ka/Ks < 1). The estimated time of divergence of S. italica
and P. virgatum was 4.7 mya, whereas S. italica and S. bicolor
as well as Z. mays diverged around 27 mya. Similar estimates
were observed in case of S. viridis - P. virgatum (4.7 mya), S.
viridis - S. bicolor (26.8 mya), and S. viridis - Z. mays (27.8 mya)
orthologs.

In silico Expression Profiling of SiWRKY

and SvWRKY Genes
Expression pattern of SiWRKY genes in four tissues, namely root,
leaf, spica, and stem revealed a differential expression pattern
(Figure 6). A few genes including SiWRKY003, SiWRKY017,
SiWRKY033, SiWRKY034, SiWRKY056, and SiWRKY101 were
found to be highly expressed in all the tissues. Tissue-specific
higher expression of SiWRKY028, SiWRKY032, SiWRKY042,
SiWRKY045, SiWRKY060, SiWRKY062, SiWRKY078, and
SiWRKY091 in root and SiWRKY044 in stem was also observed.
Some genes such as SiWRKY006, SiWRKY019, SiWRKY026,
SiWRKY039, SiWRKY057, etc. did not show any expression
in all the four tissues (Figure 6). In case of expression profiles
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FIGURE 4 | Gene ontology (GO) enrichment analysis of (A) SiWRKY and (B) SvWRKY genes. The number of genes falling in each GO category is directly

proportional to the node size. The nodes are color shaded according to the significance level (corrected P-value).

FIGURE 5 | Synteny map showing the orthologous gene positions of WRKY genes in Setaria italica (Si) and (A) Panicum virgatum (Pv), (B) Sorghum

bicolor (Sb), (C) Zea mays (Zm). Each block represents individual chromosome and the orthologous genomic regions are marked with red lines.

in dehydration stress library, relatively higher expression of
SiWRKY004, SiWRKY024, SiWRKY046, and SiWRKY068
was observed in stressed sample as compared to control.
Downregulation of a few genes viz., SiWRKY60, SiWRKY61,
etc. was also seen (Figure 6). Expression patterns of SvWRKY
genes in pooled RNA isolated from samples across three
developmental stages, namely seed germination, vegetative
growth, and reproduction in different tissues including leaf,
stem, node, crown, root, spikelet, floret, and seed tissues showed
higher transcript abundance of SvWRKY001, SvWRKY027,
SvWRKY033, SvWRKY037, and SvWRKY039. However, the
majority of SvWRKY genes showed no or negligible expression
(Figure 6).

Expression Pattern of SiWRKY Genes in
Response to Stress and Hormone
Treatments
To investigate the expression of SiWRKY genes in response

to abiotic stress and hormone treatments, 12 genes were

selected based on their differential expression pattern in

RNA-seq libraries of four tissues and under drought stress

(Figure 6). Additionally, the genes were resourced from the

nine chromosomes of S. italica in order to provide a genome-

wide coverage (Figure 2). The expression profiles of the 12

candidate genes were examined during early (1 h) and late

(24 h) stages of dehydration, salinity, ABA, SA, and MeJA
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FIGURE 6 | Heatmap showing the expression pattern of (A) SiWRKY genes in four tissues, namely root, leaf, spica, stem, and dehydration stress

library of Setaria italica, and (B) SvWRKY genes in pooled transcriptome of S. viridis samples across three developmental stages, namely seed

germination, vegetative growth, and reproduction in different tissues including leaf, stem, node, crown, root, spikelet, floret, and seed tissues. The

colored bar at top left represents relative expression value, where 0.0, 2.0, and 13.5 denotes low, medium, and high expression, respectively.

treatments. The relative transcript abundance assessed through

qRT-PCR showed a differential expression pattern of all the

SiWRKY genes (Figure 7). Few genes including SiWRKY003,

SiWRKY017, SiWRKY033, SiWRKY042, and SiWRKY056 did not

show any significant expression throughout the experiments,

whereas SiWRKY034 was highly expressed only during the late

phase of SA treatment. During dehydration and salinity stress,

SiWRKY064, SiWRKY066, SiWRKY074, and SiWRKY082 were

found to be upregulated at both the time points, in which,

significant upregulation of SiWRKY064 and SiWRKY082 at late

phase of salinity stress, and SiWRKY066 and SiWRKY074 at

both the phases of dehydration were observed (Supplementary

Figure S2). In case of hormone treatments, all these four

genes were found to be highly expressed during late phase. In

addition to these, SiWRKY101 was observed to be upregulated

during late phase of dehydration and MeJA treatment. The fold

expression of SiWRKY064 and SiWRKY082 were significantly

higher during both the phases of stress and at late phase of

hormone treatments, suggesting their potential as candidates for

functional characterization.

DISCUSSION

WRKY transcription factors have been reported to play multiple
roles in regulating normal growth and development, and in
response to environmental stimuli in plants (Rushton et al.,
2010). This class of TFs are one of the well-studied proteins
whose mechanism of action, autoregulation and cross-regulation
in signaling and evolution have been reported (Bakshi and
Oelmüller, 2014). Though initially considered as vital players
of biotic stress tolerance, WRKY TFs were later discovered to
play significant roles in conferring tolerance to diverse abiotic

stresses including salinity (Jiang and Yu, 2009; Chen et al.,
2010), drought, heat (Li et al., 2009, 2011), cold (Zou et al.,
2010), H2O2(Song et al., 2009), ozone oxidative stress (Jiang
and Deyholos, 2009), UV radiation (Jiang and Deyholos, 2009),
sugar starvation (Song et al., 2010), phosphate depreviation
(Chen et al., 2009) and wounding (Shang et al., 2010). Further,
numerous reports have indicated the response of a single
WRKY gene to several stress factors, thus highlighting the
diverse regulatory role of WRKY proteins in stress response
(Wei et al., 2008; Jiang and Deyholos, 2009; Li et al., 2009,
2011; Chen et al., 2012). The expression of WRKY TFs
in response to broad-spectrum abiotic stresses suggests their
participation in regulation of signaling mechanisms associated
with transcriptional reprogramming during environmental
stress. Genome-wide identification of WRKY TFs has been
performed in many crop plants and their expression profiling in
response to various abiotic stresses have been studied.

Recently, C4 crops are gaining momentum in stress biology
research owing to their improved water-use efficiency and
nitrogen-use efficiency (Sadras et al., 2011). C4 photosynthesis
also confers tolerance to crops against abiotic stress, particularly
to drought and heat (Sadras et al., 2011). Setaria italica and
its wild progenitor S. viridis, have recently been identified as
model crops for studying C4 photosynthesis and abiotic stress
tolerance due to their small genome, short life span, inbreeding
nature and ability to withstand adverse environmental conditions
(Brutnell et al., 2010; Wang et al., 2011; Diao et al., 2014;
Muthamilarasan and Prasad, 2015). Furthermore, both the crops
sharemaximum genetic synteny with various biofuel grasses such
as switchgrass, napiergrass and pearl millet and therefore, S.
italica and S. viridis have also been regarded as model systems
for bioenergy research (Li and Brutnell, 2011; Lata et al., 2013;
Brutnell et al., 2015; Muthamilarasan and Prasad, 2015) and
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FIGURE 7 | Relative transcript levels of candidate SiWRKY genes in response to treatment with stresses and hormones. Expression profiles of SiWRKY

genes in Setaria italica seedlings exposed to dehydration, salinity, abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) for two time points (1 h and 24

h) were analyzed by qRT-PCR and presented as heatmap. The scale bar at the top represents relative expression value. Relative fold expression values are presented

as bar diagram in Supplementary Figure S2.

nutrition studies (Muthamilarasan et al., in press). Therefore,
in view of the importance of S. italica and S. viridis in abiotic
stress biology, the present investigation was performed to identify
and characterize WRKY TFs using computational tools and
examine their expression patterns in response to abiotic stress
and hormone treatments.

In this study, 105 WRKY genes from S. italica genome
(SiWRKY) and 44 from S. viridis transcriptome (SvWRKY) were
identified. Comparison of the number of WRKY genes in S.
italica with other sequenced grass genomes namely maize (163
genes), sorghum (110 genes) and rice (O. sativa subsp. indica;
109 genes) has shown that S. italica has comparatively lesser
number of genes. However, Brachypodium has a minimum of
87 genes, owing to its smaller genome size. Similar comparisons
of the number of WRKY genes among all the sequenced plants
showed that soybean has the maximum number ofWRKY genes
(233), followed by cotton (219), whereas the primitive plants of
Chlorophyta have one to two genes. Interestingly, the genome
of Physcomitrella patens has 41 WRKY genes. Only 44 WRKY
proteins were identified from the transcriptome of S. viridis due
to the non-availability of genome sequence information and this
number is expected to increase when the whole genome sequence
is released in public domain. Examining the protein properties
of SiWRKY and SvWRKY TFs revealed large differences in
amino acid length, molecular weight and isoelectric point of these
proteins, and these variations could be attributed to the presence
of putative novel variants, which needs to be validated.

Sequence alignment and phylogenetic analysis of SiWRKY
and SvWRKY proteins classified them into three major groups
(I, II, and III) based on the WRKY domain and conserved zinc
finger-like motif. In addition, a distinct class of WRKY proteins
classified as group IV has been identified with two members
of SiWRKY and four members of SvWRKY. These proteins
possess only the WRKY domain and not the zinc finger-like

motif. Sequence alignment and phylogenetic analysis showed
that a majority of SiWRKY proteins belong to group II (54)
followed by group III (39) and group I (10). Similar case was
observed in SvWRKY proteins, where a maximum of 23 proteins
belong to group II, 11 to group III, and 6 to group I. This
is in agreement with the distribution reported in maize (Wei
et al., 2012). The position of WRKY domain and associated zinc
finger-like structures in SiWRKY and SvWRKY was investigated
through multiple sequence alignment and domain analyses tools,
namely HMMSCAN and ScanProsite. The analyses revealed that
the distribution of phylogenetic groups corresponds well with
the domain structures and sequence conservation. It showed
three interesting observations: (i) two proteins of SiWRKY
(SiWRKY044 and SiWRKY063) and four SvWRKY proteins
(SvWRKY005, SvWRKY007, SvWRKY008, and SvWRKY011)
possess only WRKY domain and lack zinc finger-like structure.
(ii) two additional domains, namely NB-ARC and DUF were
present in SiWRKY011 and SvWRKY031, and SiWRKY011
and SiWRKY096, respectively. and (iii) SvWRKY004 has three
WRKY domains followed by zinc finger-like structures.

Physical mapping of SiWRKY genes on the nine chromosomes
of S. italica showed that maximum number of genes were
present on chromosomes 5 (22 genes; ∼21%) and 3 (19 genes;
∼18%), and a minimum of 5 genes each (∼5%) were present
on chromosomes 4 and 6. The maximum number of genes on
chromosomes 5 and 3 could be attributed to the occurrence of
segmental duplication, as revealed by MCScanX analysis. Eight
genes in these chromosomes were segmentally duplicated, and in
addition, 10 gene pairs were identified to be tandem duplicates.
The Ks dating and estimation of Ka/Ks ratios of duplicated
gene pairs showed that these genes underwent intense purifying
selection. The time of duplication of tandemly and segmentally
duplicated gene pairs were estimated as ∼26 and ∼23 million
years ago (mya), which were in congruence with the whole
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genome tandem and segmental duplication reported to have
occurred around 25–27 and 18–22 mya (Zhang et al., 2012). This
also demonstrates the effect of chromosomal duplication events
in shaping the distribution and organization of WRKY genes in
S. italica genome.

Comparative mapping of SiWRKY genes and SvWRKY
proteins on the switchgrass, sorghum and maize databases
was performed to understand the orthologous relationships
between the grass genomes. SiWRKY genes showed maximum
synteny with maize (∼57%), followed by switchgrass (∼54%) and
sorghum (∼40%), whereas SvWRKY proteins showed maximum
orthology with switchgrass (∼70%), followed by maize (∼55%)
and sorghum (∼45%). Though higher percentage of orthology
was expected between Setaria and switchgrass owing to their
extensive gene-level synteny, SiWRKY genes were found to be
more homologous to maize. However, SvWRKY revealed the
syntenic pattern with respect to decrease in synteny with increase
in phylogenetic distance, between these crops. Estimation of
time of divergence of orthologous gene pairs revealed that S.
italica and switchgrass WRKY genes diverged around 4.7 mya,
whereas divergence between S. italica WRKY genes and those
of maize and sorghum occurred around 27 and 27.5 mya,
respectively. Similarly, S. viridis and switchgrass WRKY genes
were predicted to have diverged around 4.7 mya, while S. viridis
and maize, and sorghum WRKY genes diverged around 26.8
and 27.8 mya, respectively. These findings are in accordance
with the period of divergence of Poaceae members as reported
by Zhang et al. (2012). The comparative map constructed
using orthologous WRKY genes demonstrated the frequent
occurrence of nested chromosomal fusions in the grass genomes.
Further, this comparative map would be useful in choosing
candidate WRKY genes from these genomes for functional
characterization.

The publicly available transcriptome data of four different
tissues and dehydration stress library of S. italica, and pooled
tissue library of S. viridis were processed using in-house
perl scripts and computational tools to derive the RPKM
expression values for SiWRKY and SvWRKY genes. The heatmap
generated using these expression values showed tissue-specific
and condition-specific expression patterns of WRKY genes.
Relatively higher expression of few genes in all the tissues, or
in any one tissue or only during dehydration stress suggested
the multifaceted roles of WRKY genes in diverse molecular
and physiological activities. This data could be exploited for
selecting candidate genes showing distinct expression pattern
for delineating their functional roles. Based on this heatmap
and physical map data, twelve candidate SiWRKY genes were
chosen for expression profiling under different abiotic stress
(dehydration and salinity) and hormone (ABA, SA, and MeJA)
treatments (at two time points). These genes showed differential
expression pattern in the four tissues (root, stem, leaf, and spica)
and drought stress library as deduced using RNA-seq expression
data. Further, the genes were also chosen to represent all the
nine chromosomes of foxtail millet, to provide a representative
genome-wide coverage. The qRT-PCR analysis of these genes
showed their differential expression patterns during exposure
to stresses and hormones, and this suggested the putative

involvement of WRKY genes in stress response mechanism and
their regulation in response to phytohormones. Overall, the qRT-
PCR analysis revealed that SiWRKY066 and SiWRKY082 could
be potential candidates for further functional characterization
and for delineating their roles in abiotic stress signaling.

CONCLUSIONS

With the advancement of high-throughput technologies
and strategies, including physiology, chemical genetics, and
computational approaches, the role of WRKY TFs in signal
transduction and gene regulation has been well studied
in all the major crops and tree species. However, no such
study on WRKY TFs has been conducted in S. italica and
S. viridis, which are now considered as model systems for
investigating C4 photosynthesis, biofuel traits and abiotic stress
tolerance mechanisms. Considering the importance of these
crops and WRKY TFs, the present study used comprehensive
computational approaches to identify and characterize WRKY
gene family members. The identified members were used
for construction of a physical map, duplication studies,
phylogenetic analysis, gene ontology annotation, promoter
analysis, comparative mapping, and evolutionary studies. In
addition, in silico expression profiling of SiWRKY and SvWRKY
genes were performed to understand the expression pattern of
these genes in different tissues and dehydration stress conditions.
Expression profiling of candidate SiWRKY genes under abiotic
stress and hormone treatments showed differential expression
pattern of these genes, thus providing an indication of their
regulatory functions under stress conditions.
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