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Ethylene is a plant hormone involved in several physiological processes and regulates
the plant development during the whole life. Stressful conditions usually activate ethylene
biosynthesis and signaling in plants. The availability of nutrients, shortage or excess,
influences plant metabolism and ethylene plays an important role in plant adaptation
under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most
important mineral element required for plant growth and development. The availability of
N significantly influences plant metabolism, including ethylene biology. The interaction
between ethylene and N affects several physiological processes such as leaf gas
exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use
efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis
and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond
differently to N availability balancing ethylene production through its signaling network.
This review discusses the recent advances in the interaction between N availability
and ethylene at whole plant and different organ levels, and explores how N availability
induces ethylene biology and plant responses. Exogenously applied ethylene seems
to cope the stress conditions and improves plant physiological performance. This can
be explained considering the expression of ethylene biosynthesis and signaling genes
under different N availability. A greater understanding of the regulation of N by means of
ethylene modulation may help to increase NUE and directly influence crop productivity
under conditions of limited N availability, leading to positive effects on the environment.
Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees,
where ethylene can have detrimental effects especially during postharvest.

Keywords: ethylene, mineral nutrients, nitrogen availability, N use efficiency, phytohormones

INTRODUCTION

The classical plant hormone, ethylene has emerged as a potent molecule to regulate numerous
physiological and morphological responses in plants by interacting with other signaling molecules
(Iqbal et al., 2012; Khan and Khan, 2014; Fiebig and Dodd, 2015; Khan et al., 2015). Ethylene plays
an important regulatory roles in plant responses to mineral nutrients availability, such as nitrogen
(N; Iqbal et al., 2015), phosphorous (P; Li et al., 2009), potassium (K; Jung et al., 2009), calcium (Ca;
Xu et al., 2010), magnesium (Mg), manganese (Mn; Dorling et al., 2011), copper (Cu; Arteca and
Arteca, 2007), zinc (Zn; Khan and Khan, 2014) and controls plant responses under both optimal

Frontiers in Plant Science | www.frontiersin.org 1 October 2015 | Volume 6 | Article 927

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00927
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2015.00927
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2015.00927&domain=pdf&date_stamp=2015-10-30
http://journal.frontiersin.org/article/10.3389/fpls.2015.00927/abstract
http://loop.frontiersin.org/people/206422/overview
http://loop.frontiersin.org/people/256674/overview
http://loop.frontiersin.org/people/245800/overview
http://loop.frontiersin.org/people/240090/overview
http://loop.frontiersin.org/people/255982/overview
http://loop.frontiersin.org/people/202581/overview
http://loop.frontiersin.org/people/109906/overview
http://loop.frontiersin.org/people/134458/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Khan et al. Ethylene response to nitrogen

and stressful conditions (Iqbal et al., 2013). The ethylene
biosynthesis and plant responses vary with the availability of
mineral nutrients (Iqbal et al., 2013).

Nitrogen is an important nutrient required for plant growth
and development as it is a core constituent of a plant’s nucleic
acid, proteins, enzymes, and cell wall and pigment system (Krapp,
2015). Plants are frequently exposed to N stressed conditions,
excess N due to application of N fertilizers or deficiency. While
low N limits the growth of crop plants (Iqbal et al., 2015),
the loss of excess N fertilizers contributes to environmental
pollution (Gastal and Lemaire, 2002). The availability of N is
of agricultural concern because plant metabolism is differently
affected by excess, optimal and deficient levels (Iqbal et al., 2015).
In maintaining the physiological status of plants under these
conditions, the role of ethylene in responding toN status in plants
has been identified (Tian et al., 2009; Fiebig and Dodd, 2015;
Iqbal et al., 2015). The availability of N concentrations modify
the effect of ethylene and plant responses, like other mineral
nutrients such as phosphate (Li et al., 2009), sulfate (Zuchi et al.,
2009), potassium (Shin and Schachtman, 2004), iron (Romera
and Alcantara, 1994). Fiebig and Dodd (2015) have recently
reported that N supplementation of 10 mM returned ethylene
concentrations in over-irrigated Solanum lycopersicum plants to
the levels of well-drained plants, leading to an increase in shoot
fresh weight that correlated with decreased ethylene levels. This
can be explained considering that over-irrigation induces nitrate
leakage and subsequently N deficiency. Similarly, N differentially
regulates proline and ethylene biosynthesis in order to alleviate
salt-induced photosynthetic inhibition in mustard plants (Iqbal
et al., 2015). It has been also shown that exogenous ethylene
(applied as ethephon, an ethylene releasing compound) increases
N assimilation and photosynthesis in Brassica juncea plants
subjected to different levels of N (Khan et al., 2008; Iqbal et al.,
2011). In B. juncea, Iqbal et al. (2015) have shown that plants
exhibited lesser photosynthesis and growth when treated with
5 mM N than 10 mM N, whereas 20 mM N was inhibitory
under no-stress condition. This indicated that these levels were
low, sufficient and excess, respectively. The inhibitory effect of
excess-N was related to high ethylene production, but under salt
stress, as the demand for N increased the excess-S optimized
ethylene and led to higher proline production and promoted
photosynthesis and growth (Iqbal et al., 2015). Similarly, it has
been found that a high (10 mM) concentration of N inhibits the
lateral root growth of Arabidopsis thaliana, although the number
and length of lateral roots of the etr1-3 and ein2-1 mutants
were less affected than wild-type plants. The leaf longevity in
Agropyron cristatum was affected by ethylene at different N levels
(Ren et al., 2013). Plants under low N conditions accelerate the
development and usually show early transition to reproductive
stage, reaching earlier to senescence stage. Plants grown to high N
availability have longer vegetative stage and delayed senescence.
In both cases, ethylene has a pivotal role, since it is also known as
senescence hormone.

This review explored the state of the art of the information
available on the role of N in modulating ethylene responses in
whole plant and different plant organs. The information related
to ethylene and N availability has been critically discussed arising

due to the contrary results obtained in different works. Moreover,
the lack of information has been highlighted indicating where
further investigations should be addressed.

N AVAILABILITY AND ETHYLENE
BIOSYNTHESIS AND SIGNALING

The literature has only recently started to explore the nature
of the relationships between plant hormones and macronutrient
signaling. The following pages describe recent advances in the
study of the ethylene signaling pathway in the presence of N
perturbation and provide new information based on in silico
analyses.

The availability of N is one of the main factors limiting
plant growth and development. Ammonium (NH4

+) and nitrate
(NO3

−) are the predominated inorganic forms of nitrogen
taken up from the soil. In particularly, nitrates are the most
readily available form of N for root absorption because it
is not absorbed by colloids. Nitrate is assimilated by higher
plants after being reduced to nitrite and then ammonium as a
result of the sequential action of nitrate and nitrite reductases,
and the NH4

+ can be subsequently assimilated into glutamate
and glutamine via the glutamine synthase (GS)/glutamate
oxyglutarate aminotransferase cycle (GOGAT) (Crawford, 1995).
These metabolic intermediates act as important signaling
molecules or as the major amino donors for the synthesis of
other amino acids and N-containing compounds, thus sustaining
plant growth and development, and plant responses to biotic
and abiotic stresses (Stitt, 1999; Forde and Lea, 2007; Vidal
and Gutiérrez, 2008; Mur et al., 2012; Renault et al., 2013).
The assimilation of N by plants, or its incorporation in
plants, depends on the availability of light and activities of
photosynthesis because N can only be incorporated if there are
enough carbon (C) skeletons.

It is thought that N acts as a signaling element in plants, but
very little is known about how this occurs (Lea and Miflin, 2003)
or how N interacts with the ethylene biosynthesis and signaling
pathway that is closely associated with complex environmental
stresses. Ethylene is essential for regulating plant responses to
biotic and abiotic stresses, and plays a key role in regulating
growth and senescence (Lin et al., 2009). Ethylene production
rapidly increases in plants subjected to wounding, flooding,
drought, osmotic shock, senescence, ozone, and pathogen/insect
invasion (Wang et al., 2002; van Loon et al., 2006; Di Baccio
et al., 2012), and this leads to the activation of cell responses
through the ethylene signaling pathway and its interactions with
the signaling pathways of other plant hormones (Overmyer et al.,
2000; Wang et al., 2002; Trivellini et al., 2014). Ethylene is
synthesized by two enzymes encoded by small gene families:
1 aminocyclopropane 1 carboxylic acid (ACC) synthase (ACS)
and ACC oxidase (ACO). The reaction is first catalyzed by ACS,
which converts S-adenosyl-L-methionine (SAM) to ACC, and
then ACC oxidase catalyzes the conversion of ACC to ethylene
with the release of CO2 and cyanide (Wang et al., 2002). ACS
is the rate-limiting step in ethylene biosynthesis, and controls
the main step in stress-induced ethylene regulation (Tsuchisaka
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et al., 2009), whereas ACO activity is constitutively present in
most vegetative tissues. The ethylene biosynthetic pathway is
relatively simple, but its production is strictly regulated at various
levels. In addition to transcriptional regulation (Tsuchisaka
and Theologis, 2004a,b), post-translational regulation is pivotal
for developmental and stress-induced ethylene production
(Christians et al., 2009; Han et al., 2010; Skottke et al., 2011;
Lyzenga et al., 2012).

In order to investigate the role of ethylene depending
on N availability, we first listed the genes involved in
ethylene biosynthesis, signaling and responses by searching
The Arabidopsis Information Resource (TAIR1) (Supplementary
Table S1) and then analyzed the publicly available microarray
data on the Affymetrix ATH1 microarray platform (as of June
2015) using Genevestigator (Hruz et al., 2008). A similarity search
subsequently enabled the determination of lists of the same genes
regulated upon a given N perturbation (Supplementary Table S1).
The analysis considered the expression profiles of the genes that
showed a >2-fold change in transcription level (P < 0.01) under
conditions of nitrate starvation and low or high N content, and
the fold-change values were hierarchically clustered by genes and
experiments using Euclidean distances.

This meta-profiling showed that the ethylene biosynthetic
pathway is regulated by N conditions (Figure 1A), and that
the genes involved in ethylene biosynthesis appeared to be
transcriptionally active under these conditions. In the case of
nitrate starvation, ACC synthase ACS7 and a putative ACO
(and ACS10) were strongly repressed in seedlings, but both
were induced in rosette samples treated with low and high N
levels, whereas ACC synthases ACS8 andACS4, and ACC oxidase
ACO1, ACO5 and ACO2 were negatively regulated under both
conditions. However, ETO1 (OVERPRODUCER1), SAM1, EOL1-
like (ETO-like) and other putative ACOwere induced in response
to N deprivation and low/high N conditions. It is tempting
to hypothesize that the multi-gene ACS and ACO families are
both temporally and spatially differentially expressed under low
N environmental conditions, as has previously been shown in
the case of stresses such as Pi-deprivation (Kim et al., 2008;
Roldan et al., 2013), and depend on the species, tissue and
developmental stage of the plants (Inaba et al., 2007; Trivellini
et al., 2011). A large-scale transcriptome analysis has detected
an ACO6 homolog involved in ethylene synthesis during the
early response of cucumber seedlings to N deficiency (Zhao
et al., 2015), and the induction of an ACO4 homolog and ACO-
like transcript has been observed in response to N starvation in
studies of chronic low N conditions (Bi et al., 2007; Peng et al.,
2007).

It is also worth noting that suboptimal nutrient supply
promotes leaf senescence (Mei and Thimann, 1984; Jibran et al.,
2013). Balazadeh et al. (2014) have recently reported that plants
undergoing senescence retain the capacity to sense and respond
to the availability of N nutrition by reversing the senescence
phenotype induced by N starvation. In this study, the expression
of ACS2, ACS6, and ACS7, and ACO2, ACO3, and ACO4 was
increased during senescence, but only ACS6 was first induced

1https://www.arabidopsis.org/

after 4 days of N deficiency and then reduced 3 h after N resupply.
ACO2 and ACO4 transcript levels were also increased by N
deprivation and then significantly down-regulated after 3 days of
N resupply, once again highlighting the complexity of ACS and
ACO regulation by various stresses signals.

Ethylene production (particularly the rapid breakdown of
ACS proteins) is also tightly controlled by means of protein
degradation (Christians et al., 2009). The recently characterized
Arabidopsis mutant hps3 (Wang et al., 2012), which is
hypersensitive to Pi starvation, was previously identified as
an allele of the ETO1 gene that negatively regulates ethylene
biosynthesis by producing 10–50 times more ethylene than the
wild type (Wang et al., 2004), and our Genevestigator analysis
showed that ETO1 and EOL1 are weakly expressed under low
N conditions. Although these findings potentially define the role
of ethylene in regulating multiple plant responses to conditions
including N starvation, there is a need for further experimental
analyses aimed at identifying the molecular components that
interact with ethylene signaling in regulating plant responses
to N.

A meta-analyses of the ethylene receptors and mitogen-
activated protein kinases (MAPK, MPK, or MKK) linking
upstream sensors to the downstream processes of hormonal
responses under conditions of N deprivation shows that ERS2
and EIL1 are down-regulated, whereas the MPKs involved in
ethylene signaling are all induced (Figure 1B). Previous studies
have shown that MPK3 can be activated by various MKKs
that participate in specific signaling pathways: for example
the MKK4/MKK5/MKK9 pathway activates MPK3/MPK6 to
promote ethylene production (Liu et al., 2008), and MKK9
activates MPK3/MPK6 to regulate leaf senescence (Zhou et al.,
2009) and ethylene signaling (Yoo et al., 2008). However, it is
not yet known whether MAPK signaling cascades are directly
involved in regulating plant responses to various N conditions.

Nitrogen deficiency may play a positive role in ethylene
biosynthesis and signaling as in silico analysis reveals the slight
down-regulation of CTR1 and up-regulation of EIN3 under
conditions of N starvation and low/high N levels. Zheng et al.
(2013) have similarly found that low-level nitrate treatment
induces rapid bursts of ethylene production and regulates the
expression of the ethylene signaling components CTR1, EIN3
and EIL1, and NRT2.1 in wild-type plants. The authors used
NO3

− transporter mutants nrt1.1 and nrt2.1 and the ethylene
mutants ctr1-1 and ein3-1eil1-1, and elegantly proposed that
NO3

− deficiency induces a negative feedback loop between the
transcription of NRT2.1 and ethylene biosynthesis and signaling
that allows plants to fine tune nitrate acquisition during the
exploration of dynamic soil conditions.

The gene sets specified in Figure 1C were further classified
into gene ontology (GO) categories in order to help the
identification of over-representation. Sixty-nine genes were
initially uploaded to the DAVID Bioinformatics Resources 6.7
platform (Huang et al., 20092) in order to identify significantly
enriched biological themes by examining enrichment in more
than 40 publicly available annotation categories (Trivellini et al.,

2http://david.abcc.ncifcrf.gov/
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FIGURE 1 | Meta-profiling hierarchical average of ethylene genes induced in response to different nitrogen (N) perturbations. The expression profiles of
three ethylene gene lists following N conditions were analyzed using the similarity search tool: (A) ethylene biosynthesis; (B) ethylene signaling; and (C) ethylene
response. The data consist of the ethylene-related genes represented in the publicly available Affymetrix ATH1 microarrays obtained using the Genevestigator
toolbox. Blue and yellow respectively indicate down- and up-regulation; black indicates no change in expression. The values indicate the fold-change in expression
in nitrogen starved and untreated rosette samples, and in low- and high-nitrate seedlings.

2012). The analysis identified six clusters that showed significant
enrichment, with enrichment scores (ES) ranging from 69.95–
1.37 (Table 1). The most enriched annotation cluster (ES
69.95) was not surprisingly associated with the genes belong
to the Apetala2/ethylene response factor (AP2/ERF-TF) super
family; the second cluster contained genes with transcription
repressor activity (ES 8.68); the third consisted of genes related
the biological processes of root and lateral root development
(ES 3.45); the fourth included genes involved in the negative
regulation of the ethylene-mediated signaling pathway (ES 2.33);
the fifth included genes involved in the response to cytokinin
(CK) stimuli (ES 1.49); and the sixth the genes involved in the
response to jasmonic acid stimuli (ES 1.39).

The AP2/ERF-TF family is involved in signaling processes and
the responses to environmental stresses (Vogel et al., 2012). Most
importantly, there is increasing evidence that AP2/ERF proteins
are components of multiple signaling pathways as they control
the expression of downstream genes and tune cross-talk between
the signaling pathways involving macronutrients deficiency (Kim
et al., 2012; Cai et al., 2013; Takehisa et al., 2013). Genome-scale
transcriptional profiling of cucumber seedlings has shown that
seven ERF genes are regulated under conditions of N starvation
(Zhao et al., 2015), and comprehensive expression profiling
of N starvation-responsive miRNAs has identified miR829.2,
which is predicted to target an AP2 domain ethylene response
factor required for morphogenesis in the early lateral root
primordium of Arabidopsis (Liang et al., 2012), thus highlighting
the important role of this transcription family in N-starved root
development.

Furthermore, as was done in the case of the genes involved
in the ethylene biosynthesis and perception machinery, the
ethylene response gene list was compared with the publicly
available microarray data using the Perturbations tool in the
Condition Search toolset of Genevestigator (Hruz et al., 2008).

All of the ethylene response genes seemed to be transcriptionally
active under condition of N starvation and/or low/high N
levels, with the PURPLE ACID PHOSPHATASE 1 (PAP1),
PYRIDOXINE BIOSYNTHESIS 1.1 (PDX1.1),PLANTDEFENSIN
1.2B (PDF1.2B) and ETHYLENE AND SALT INDUCIBLE 3
(ESE3) responding strongly to both types of N perturbation
(Figure 1C). PAP1 encodes transcription factors regulating
the expression of anthocyanin biosynthetic genes in vegetative
tissues. PAP1 expression is a frequent plant response to stress
conditions such as drought, heat, chilling, N deficiency and
in response to abscisic acid (ABA), and the sugars in which
anthocyanin is accumulated (Luo et al., 2012). The availability
of N represses anthocyanin biosynthesis-related gene expression
(Rubin et al., 2009) whereas N deficiency stimulates it (Peng et al.,
2008). As it is known that ethylene stimulates the expression of
the genes related to anthocyanin biosynthesis (Afifi et al., 2003;
El-Kereamy et al., 2003), N starvation could induce a transient
rise in ethylene production and signaling (Zheng et al., 2013).
A new allele of ROOT HAIR DEFECTIVE3 (RHD3) with an
anthocyanin over-accumulation phenotype under conditions of
N starvation has recently been identified (Wang et al., 2015),
and the authors speculate that RHD3 achieves its negative
effect on anthocyanin biosynthesis via an ethylene-regulating
pathway involving the ETR1, EIN2, and EIN3/EIL1-mediated
signaling cascade. Further investigations are needed to clarify
the molecular mechanism of RDH3 underlying ethylene signal
transduction.

Interestingly, RAP 2.6, RAP 2.3 (EBP), and RAP 2.2 were
significantly down-regulated in the N starvation experiment,
whereas RAP2.12 and RAP2.6L were weakly up-regulated
under both conditions, and ERF73 seemed to be differentially
regulated (Figure 1C). These genes of the AP2/ERF family are
responsible for modulating tolerance to the hypoxic stresses
encountered by plants: AtRAP2.2 and RAP2.3 are important for
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TABLE 1 | Functional annotation clustering using DAVID bioinformatics resources 6.7.

Cluster number Enrichment score Category Term Gene count

1 69.95 GOTERM_BP_FAT Response to ethylene stimulus 61

2 8.68 GOTERM_MF_FAT Transcription repressor activity 9

3 3.45 GOTERM_BP_FAT Root and lateral development 6

4 2.33 GOTERM_BP_FAT Negative regulation of ethylene mediated signaling pathway 3

5 1.49 GOTERM_BP_FAT Response to cytokinin stimulus 4

6 1.39 GOTERM_BP_FAT Response to jasmonic acid stimulus 6

Cluster enrichment scores for selected significantly enriched functional clusters containing terms showing a significant change (P < 0.05) after Benjamini–Hochberg
correction for multiple testing, and the term(s) most representative of each cluster. The genes associated with the most represented terms are shown in Supplementary
Table S2.

ethylene-mediated tolerance to hypoxia in Arabidopsis seedlings
(Hinz et al., 2010; Limami et al., 2014), and the same is true of
ERF73, the hypoxia-responsive ERF1 gene (HRE1) (Licausi et al.,
2010); the overexpression of RAP2.6L delays the waterlogging
induced by premature senescence and may function through
the ABI1-mediated ABA signaling pathway (Liu et al., 2012);
RAP2.12 is involved in the activation of hypoxic gene expression
and ethylene responses (Licausi et al., 2011; Zhao et al., 2012); and
RAP2.6 is involved in the response to ABA, wounding, jasmonic
acid, salt, cold, and osmotic stresses (Fowler and Thomashow,
2002; Zhu et al., 2010). A number of studies have shown that
hypoxic stress can be mitigated by nitrate fertilization (Morard
et al., 2004; Horchani et al., 2010), but also that nitrate uptake
and assimilation can be affected by oxygen-limiting conditions
(Oliveira and Sodek, 2013; Oliveira et al., 2013). It therefore seems
to be clear that there is a link between N-limiting conditions and
the regulation of the genes associated with hypoxia. The ethylene-
responsive genes typically involved in hypoxia are potential
connectors in the gene/metabolite/hormone-related network of
response to N starvation, but further studies are necessary in
order to verify their possible role in the N assimilation and
signaling pathway.

ETHYLENE RESPONSES TO VARYING
LEVELS OF N AVAILABILITY

The N status of a plant influences its metabolism and growth, and
can affect the synthesis of the building block metabolites and the
distribution of growth substances. This interdependence is due to
the fact that nutrient deficiency or excess affect the concentrations
of specific hormones capable of directing the translocation and
accumulation of nutrients (Kuiper, 1988; Kuiper et al., 1989),
and a similar relationship has also been reported in the case of
nutrient and ethylene interactions. Ren et al. (2013) have recently
found that the addition of N reduces leaf longevity mainly by
altering leaf ethylene production: this result was substantiated by
the fact that the cobalt chloride-induced inhibition of ethylene
biosynthesis reduced leaf N concentration and leaf longevity,
presumably because a high N concentration stimulates the
activities of the enzymes associated with ethylene synthesis
(Tian et al., 2009). Increased ethylene production may also be
involved in modulating nitrate transporters (Tian et al., 2009)
and nitrate metabolism (Leblanc et al., 2008) at high nitrate

levels. A nitrate concentration of 10 mM increases the expression
of genes encoding ACS and ACO (AtACS and AtACO), and
leads to a sudden increase in ethylene production in A. thaliana
plants. Furthermore, the upregulation and downregulation of
nitrate transporters (AtNRT1.1 and AtNRT2.1) was observed
by exogenously applying the ethylene synthesis precursor ACC
and AVG in low and high nitrate concentration, respectively,
whereas the etr1-3 and ein2-1 mutants were insensitive to high
nitrate concentrations (Tian et al., 2009). A very interesting
study by Misyura et al. (2014) found that ethylene may act as
a plant–plant communication signal in rice under conditions of
high-density stress, when the expression of ethylene-associated
genes was related to ethylene homeostasis. The authors showed
that N availability can influence the growth of rice plants
dependent on ethylene homeostasis, and that the developmental
characteristics of plants were negatively affected under high
density conditions when N was limited (3 mM NO3

−) or
sufficient (10 mM NO3

−). The availability of N influences
the evolution of ethylene and affects photosynthesis, stomatal
conductance and growth in B. juncea plants (Khan et al., 2008;
Iqbal et al., 2011). Field experiments demonstrated that the
application of ethephon (ethylene-releasing compound) to plants
grown with N levels of 40 and 80 mg N kg−1 increased ethylene
production and photosynthesis (Iqbal et al., 2011). It has also
been suggested that the application of ethephon induces stomatal
and carboxylation efficiency and the Calvin cycle enzymes in
mustard plants grown at various N levels, with significant
interaction between ethylene, N availability, and photosynthetic
characteristics.

Improving the acquisition of macronutrients such as N,
phosphorus (P) and potassium (K) in poorly fertile soils is one
of the main objectives of program aimed at reducing the use of
fertilizers and increasing the efficiency of nutrient use (Hirel et al.,
2007; Lynch, 2007). The efficient use of N fertilizer is essential to
ensure a better return on investment and minimize the adverse
effects of accumulated reactive N species on the environment.
It is therefore important to increase the N use efficiency (NUE)
of plants in order to avoid N wastage and accumulation. NUE,
the efficiency of carboxylation and water use, and the dry
mass of mustard plants increased at different levels of N in
combination with ethephon (Iqbal et al., 2011). Exogenously
sourced ethylene enhances photosynthetic NUE and promotes
photosynthesis in various types of mustard plant with differing
photosynthesising capacity (Iqbal et al., 2012). The application of
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ethrel at basal 80 kg N ha−1 increased the efficiency of N uptake
and use in mustard plants, and that the exogenous application
of ethephon increased stomatal conductance, photosynthesis
and growth under conditions of N deficiency and optimization
as a result of increased NUE (Mir, 2002). It has also been
found that, under N-deficient conditions, greater endogenous
ethylene evolution decreases NUE, photosynthesis and growth
in mustard plants (Iqbal et al., 2011). However, high levels of
ethylene can also have a negative impact on plant growth and
photosynthesis. Under certain conditions the increase of the
ethylene sensitivity and ethylene action overcomes N deficiency
by increasing photosynthesis and growth in plants with sufficient
or deficient N availability (Iqbal et al., 2011). Recently has been
reported that N availability regulates ethylene formation, which
regulates plant N content and nitrate reductase (NR) activity
(Iqbal et al., 2015). Subsequently ethylene increases the proline
content and salt tolerance of B. juncea plants, and improves
photosynthesis and growth.

Nitrogen deficiency leads to strong synergistic interactions
between volicitin and ethylene, indicated by the induction of
volatile sesquiterpene and indole emissions. Whereas volicitin-
induced volatiles are greatly reduced in plants with medium
N levels, and there are virtually no interactions with ethylene.
The altered volicitin–ethylene interaction due to changes in
the magnitude of induced volatile emissions observed in plants
with low and medium levels of N availability is consistent with
the known increase in ethylene sensitivity that occurs during
N deficiency (Schmelz et al., 2003). N deprivation enhances
the sensitivity of ethylene-responsive cells in root cortex, thus
leading to cell lysis and aerenchyma formation, and that the
exogenous application of ethylene (1.0μL L−1) further promoted
aerenchyma formation in N-starved roots (He et al., 1992). N
starvation increases the number or affinity of root receptors,
thus allowing roots to responds to lower concentrations of
ethylene than those found in unstressed roots. Plants supplied
with high nitrate levels (30 mM) increased their aerial ACC
content by translocating it from the roots to the shoot in
order to induce ethylene synthesis in the leaves by means of
ACC oxidase (Saiz-Fernández et al., 2015). Ethylene plays a
role in the regulation of fully developed and expanding leaves
by reducing leaf area when ethylene accumulates in developing
tissues (Young et al., 2004; He et al., 2009). The interaction
between ethylene and N may also increase the synthesis of amino
acids, proteins and enzymes. The production of ethylene by
soluble solids could be due to increased synthesis of the amino
acid cysteine, a precursor of ethylene that may be extended to
synthesize other amino acids (Kaack and Pedersen, 2014). Zhao
et al. (2015) studied changes in the expression of transcriptional
factor and kinase genes at transcriptional level during the
early stage of the N deficiency response, and observed seven
ERF and three MYB transcription factors, five NAC domain-
containing proteins, and four zinc finger proteins. Bi et al.
(2007) and Peng et al. (2007) have found that ACO4 and
another ACO homologue showed responses to N deficiency:
ethylene production generally increases upon N deprivation
but, in comparison with explants in standard MS medium,
ethylene production by rhizome explants in low N medium

was reduced after 1–3 months of culture. Zhang et al. (2013)
found low nitrate treatment-induced rapid bursts of ethylene
production and the regulated expression of the ethylene signaling
components CTR1,EIN3 and EIL1 in wild-type A. thaliana
(Col-0) seedlings, and enhanced ethylene response reporter
EBS:GUS activity in Col-0 and the ethylene mutants ein3-1, eil1-
1 and ctr1-1. The treatment also caused the up-regulation of
NRT2.1 expression, which was responsible for enhanced high-
affinity nitrate uptake, and had a positive effect on ethylene
biosynthesis and signaling. However, ethylene down-regulated
NRT2.1 expression and reduced high-affinity nitrate uptake, thus
suggesting that nitrate deficiency gives rise to a negative feedback
loop between NRT2.1 expression and ethylene biosynthesis
and signaling, which may contribute to the fine tuning of
plant nitrate acquisition during the dynamic exploration of soil
conditions.

ETHYLENE PRODUCTION IN DIFFERENT
PLANT ORGANS AT DIFFERENT LEVELS
OF N AVAILABILITY

Ethylene can be produced in any plant tissue and is modulated by
various internal and external factors. The responses of different
organs to ethylene vary, depending on tissue sensitivity and the
stage of plant development.

ROOT RESPONSES

The efficient absorption of macronutrients such as N, and
developing the traits involved in remodeling root system
architecture in order to acquire N more efficiently, are important
targets of modern plant breeding program (Forde, 2014).
Phytohormones are involved in controlling root development
and architecture by means of N-mediated signals, and recent
transcriptomic studies have shown that auxin, ethylene and CK
are involved in root architectural responses to nitrates (Tian
et al., 2009; Ruffel et al., 2011; Jin et al., 2012). Lemaire et al.
(2013) found that ethylene signaling affects nitrate uptake and
the expression of BnNRT nitrate transporter genes depending
on changes in the length of exploratory and root hair systems.
Different species, and even the same species under different
growing conditions, may have opposite behaviors. In comparison
with the wild type, Never Ripe (NR) ethylene-insensitive tomato
mutants have more below-ground roots and fewer above-ground
adventitious roots. Interactions and cross-talk with other plant
hormones can lead to different responses. The application of
exogenous auxin leads to different behavior (Clark et al., 1999),
thus indicating that the effects of ethylene depend on its
interaction with auxins as well as abiotic stresses such as nutrient
deficiency.

Ethylene deficiency generally induces root development in
order to increase the root biomass necessary for exploring a
wide area of soil in search of the deficient nutrient. Ethylene
can modulate root waving, and the direction and length of root
growth (Buer et al., 2003), but the response can be affected
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by interactions with nutrients. More studies should be carried
out in order to investigate root architecture under conditions
of N deficiency or excess using ethylene inhibitors. It has
been found that N starvation simultaneously increases ethylene
evolution and induced aerenchyma formation in the roots of
Zea mays plants (Drew et al., 2000). Basal roots are more
sensitive to ethylene than apical roots (Takahashi et al., 2015).
The induction of aerenchyma is also a means of adapting to
flooding, and oxygen shortage can initiate programmed cell death
(PCD) in roots. Hypoxia associated with N deficiency enhances
aerenchyma development, whereas anoxia inhibits or reduces it
because the complete lack of oxygen blocks the ACC oxidase
enzyme, which catalyzes the last step in ethylene biosynthesis.
The use of ethylene biosynthesis and action inhibitors has shown
that ethylene is directly involved in PCD in roots (He et al., 1992).
High N (especially nitrate) availability in soils induces ethylene
biosynthesis in roots. A number of studies have investigated
the effects of ethylene and high nitrate content on legumes,
in which ethylene biosynthesis inhibits the nodules necessary
for N fixation and lateral root development (Caba et al., 1998;
Okushima et al., 2011). The effect of the interaction of ethylene
and high nitrate concentration on nodule formation has been
elegantly demonstrated in various experiments using ethylene
activators and biosynthesis inhibitors such as AVG and silver
(Peters and Crist-Estes, 1989; Caba et al., 1998; Nukui et al.,
2000). The inhibition of nodule formation is negative because
it reduces N fixation in leguminous plants; however, from an
ecological point of view, plants do not need to develop nodules
for gaseous N fixation in soils that are rich in N, particularly
nitrates.

Ethylene causes a triple response in Arabidopsis roots: the
rapid down-regulation of cell elongation, the induction of ectopic
root hairs, and an increase in root width. Le et al. (2001)
found that slight changes in the concentration of environmental
ethylene in Arabidopsis modulate the elongation of target cells
in root epidermis, and suggested that ethylene is a means
of fine and fast tuning root elongation in nature. It has
also been demonstrated that C/N balance is involved in root
morphogenesis (Malamy and Ryan, 2001; Martin et al., 2002),
and that C and N interact with the major plant hormones (Sheen
et al., 1999). Le et al. (2001) reported that ethylene inhibits
the elongation of root cells, but does not affect root length in
the root regions in which cell wall formation occurs before an
increase in ethylene level. Increased ethylene synthesis with low
concentrations of ACC promotes the initiation of lateral root
primordial; however, treatment with higher ACC doses inhibits
the formation of new primordia, but promotes the emergence
of those already existing (Ivanchenko et al., 2008). N deficiency
increases root sensitivity to ethylene and subsequent aerenchyma
formation in maize seedlings (He et al., 1992), although ethylene
production is reduced (Drew et al., 1989). Tari and Csiszár
(2003) have found that, at pH 4.0, nitrite treatment decreases the
evolution of ethylene from the root apex but not from the base.
Yang et al. (2011) reported that ethylene inhibits NH4-stimulated
root hair branching, and that ACC 0.04 mM antagonized the
effect of NH4 by reducing hair branching from the 24% caused
by NH4NO3 to only 5%.

Nitrate can act as both a nutrient and a signal that
regulates global gene expression in plant organs. Tian et al.
(2009) found that, in the presence of high nitrate levels,
roots ethylene production increases from roots as a result
of an increase in the expression of the genes encoding ACS
and ACO. They also showed that ethylene regulated nitrate-
dependent root development by modulating the expression of
nitrate transporters NRT1.1 and NRT2.1, thus demonstrating
that ethylene signaling is involved in regulating nitrate uptake
on the basis of changes in root elongation. The etr1-3 and
ein2-1 mutants of ethylene signaling were insensitive to high
nitrate concentrations. Lemaire et al. (2013) demonstrated that
treatment with the ethylene precursor ACC induces a partial
compensatory increase in N uptake, associated with the over-
expression of the nitrate transporter genes, BnNRT2.1 and
BnNRT1.1. Similar results were obtained by Leblanc et al. (2008)
and Le Ny et al. (2013), who suggested that there is a linear
correlation between root length and BnNRT2.1 expression levels
in response to 10 μM AVG or changes in nitrate availability.
However, Leblanc et al. (2013) reported a decrease in BnNrt2.1
expression with an increase in ACC concentrations from 0.1
to 10 μM, thus suggesting that BnNrt2.1 expression may adapt
to changes in the absorbing surface of whole mature root by
means of a still unknown regulatory mechanism. Leblanc et al.
(2008) found that the rapid modulation of root elongation is
more dependent on ethylene than on the nitrate signal: ACC
treatment reduced C allocation and aspartate content in roots,
thus showing that aspartate content correlates with changes in
root length and shoot surface area. Canales et al. (2014) reported
that up to 10% of the Arabidopsis genomes are N responsive,
and approximately 7% in maize transcriptomes (Yang et al.,
2011). N-induced root developmental plasticity is highly cell
specific and finely regulated within the root (Gifford et al.,
2008). Among the N responsive gene, five nitrate-responsive
genes encoding NRT2.1, NR, HB2, NiR, and HB1 are specifically
regulated in the transition zone (Manoli et al., 2014; Trevisan
et al., 2014). Trevisan et al. (2015) also reported that the
transition zone is critical in sensing nitrate, which directly
influences the transcript levels of a few genes and acts indirectly
through NR.

Ethylene is also involved in regulating legume–rhizobial
interactions: it influences the initial response of root hairs to
Rhizobia bacteria exposure and the progression of infection
into the cortex. Penmetsa and Cook (1997) found that the
sickle mutant in Medicago truncatula is ethylene-insensitive
and hyper-nodulated, and provided genetic support for the
involvement of ethylene in regulating rhizobial symbiosis by
encoding an ortholog of EIN2. Exogenous ethylene severely
inhibits the formation and function of N-fixation nodules on
legume roots (Peters and Crist-Estes, 1989), possibly because the
developmental effects of ethylene include the inhibition of cell
division, DNA synthesis, and hook expansion (Apelbaum and
Burg, 1972), and the induction of phytoalexin and extension
biosynthesis (Ecker and Davis, 1987). Ethylene may act as a
secondary signal regulating nodulation on the basis of the N
status of the plant and as a negative feedback regulator of
rhizobial infection (Oldroyd et al., 2001). Malamy and Ryan
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(2001) have suggested that the number of lateral roots is reduced
in older root regions under conditions of N starvation.

LEAF RESPONSES

N deficiency also increases ethylene evolution in leaves as a
consequence of stress (Legé et al., 1997). Over-irrigation of
tomato plants induces N deficiency in leaves and greater ethylene
biosynthesis, whereas the use of calcium nitrate to restore
adequate N levels reduces ethylene evolution to control levels
(Fiebig and Dodd, 2015). N starvation or deficiency also induces
leaf senescence (particularly leaf yellowing), promotes the re-
mobilization of nutrients from leaves to storage organs, and
increases tissue sensitivity to ethylene. Many plants react to
N starvation by activating the phenylpropanoid pathway and
accumulating anthocyanins (Lea et al., 2007). In particular, low N
levels in soils or growing media activates phenylalanine ammonia
lyase (PAL, EC 4.3.1.5), the key enzyme of phenylpropanoid
compounds. Various post-harvest studies have demonstrated
that ethylene stimulates PAL activity, and it is known that the
exposure of lettuce to ethylene generates russet spotting (i.e.,
brown spots on the mid-rib of head lettuce) (Hyodo et al., 1978;
Ke and Saltveit, 1988).

There are no specific studies of the effects of the ethylene
induced by N deficiency and the consequent PAL activity,
but it is reasonable to assume that ethylene plays a pivotal
role in this physiological behavior. Studies of Medicago sativa
cell suspensions treated with 2-aminoindan-2-phosphonic acid
(AIP), a potent inhibitor of PAL, have shown enhanced ethylene
biosynthesis (Cvikrová et al., 1999), and similar results have
been obtained in vitro callus cultures of red-fleshed apples
with or without N supply in growth media. The absence of N
strongly induces anthocyanin accumulation, thus demonstrating
the direct role of N on phenylpropanoid activation. Under
conditions of N deficiency or starvation, plant leaves activate a
N-recycling system in which N is recycled from phenylalanine
by means of deamination to cinnamic acid, a reaction that is
catalyzed by the PAL enzyme. Although it has not yet been
established, it is likely that this futile cycle is under the control of
ethylene. Ethylene biosynthesis is also affected by excess N. It is
well known that the availability of high N levels induces vegetative
growth, makes shoots more susceptible to insect attack (Davies
et al., 2004), and causes greater damage due to abiotic stresses.
The availability of 20 mM N in B. juncea plants increases ACS
activity and ethylene evolution (Iqbal et al., 2015).

Plant photosynthesis and sugar biosynthesis have to balance
any reduction in nitrates. As uptaken nitrate is reduced to
ammonia under conditions of high N levels, plants cannot
incorporate all of the reduced ammonia in amino acids, and this
can generate stress leading to ethylene biosynthesis.

FLOWER LIFE

There are no specific studies linking N deficiency to ethylene
evolution in flowers, but it has been reported that N deficiency

increases ethylene biosynthesis and tissue sensitivity. Pre-harvest
N deficiency affects the photosynthetic activity of plants, and
the life of both growing and cut flowers (Druege, 2000). Under
conditions of stress such as N efficiency, plants accelerate all
of the physiological processes related to species dispersal: these
usually include the induction of flowering in order to ensure
dissemination.

No studies of flower senescence under conditions of N
deficiency or excess have yet been carried out, but this would be
interesting to investigate further.

FRUIT RESPONSES

N availability affects fruit development and quality, in particular
low nitrogen content delay ripening and fruits are poor of sugars
affecting negatively the overall quality. High nitrogen content
usually induces rapid growth and fruits after harvest have faster
senescence. Melons harvested from soil with deficient (0 or 50 kg
ha−1) or excess N (165 kg ha−1) levels have the same rate
of ethylene biosynthesis. Ethylene production is lowest at the
optimal fertilization dose of 110 kg ha−1 at harvest, after 8 days of
post-harvest storage at 10◦C, ethylene production decreased and
no significant differences were found among treatments (Ferrante
et al., 2008).

It has been found that the use of high, medium or low N
fertilization does not affect ethylene production rates in peach
trees, but high N levels delay the ripening of the fruit (Okamoto
et al., 2001). No differences in ethylene production have been
found in apples receiving soil and foliar N, and controls with
no supply of N (Wargo et al., 2004). There are few published
information concerning N availability and ethylene production in
horticultural crops, and so further studies are required in order to
establish how N soil content affects ethylene production and the
subsequent post-harvest performance of fruit.

Figure 2 shows a general view of how ethylene concentrations
are affected by N levels in the different parts of plants.

ETHYLENE INTERACTIONS WITH
OTHER PHYTOHORMONES AT
DIFFERENT LEVELS OF N AVAILABILITY

Nitrogen levels considerably influence root architecture and
crop production (Mohd-Radzman et al., 2013), and plants
have efficient internal execution points to control N uptake,
reduction and assimilation, and environmental NUE (Xu et al.,
2012). Some recently published studies have begun to elucidate
the link between ethylene signaling and N availability. Nitrate
assimilation can take place directly in roots, and the assimilated
nitrate can be stored in vacuoles or transferred to the aerial parts
of a plant (Krapp, 2015) but, in many species, it preferentially
occurs in shoots, where photosynthesis takes place and energy is
easily available (Searles and Bloom, 2003).

However, a number of stresses can separate nitrate
assimilation and photosynthesis by triggering nitrate allocation
to roots. As hormonal action is an interdependent process, the
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FIGURE 2 | Effects of nitrogen deficiency and excess on ethylene biosynthesis in different organs. The nitrogen levels that, alone or in combination with
other factors, increase (left) or reduce ethylene biosynthesis (right) are shown for each organ.

action of ethylene at different N levels may be influenced
by regulatory interactions between ethylene and other
phytohormones. Genetic studies of A. thaliana by Swarup
et al. (2007) have shown that ethylene-induced inhibition of
root growth involves auxin, the presence of which significantly
enhanced the inhibition of root cell elongation induced by
the ethylene precursor ACC. It has also been reported the
mutations in auxin transport or signaling components cause
aberrant responses to ethylene, thus indicating the existence
of cross-talk between the two phytohormones (Luschnig et al.,
1998; Stepanova et al., 2005). Alonso et al. (2003) found that
mutations in the auxin receptor TIR1 lead to ethylene-insensitive
root growth phenotypes. Ethylene inhibits cell elongation by
locally stimulating auxin biosynthesis and basipetal auxin
transport toward the elongation zone; in mutants deficient in
auxin perception or basipetal auxin transport, ethylene cannot
activate the auxin response or regulate root growth (Ru̇žička
et al., 2007).

Stress-initiated nitrate allocation to roots (SINAR) improves
stress tolerance and decreases plant growth under non-stressed
conditions via an ET/JA-NRT1.5/NRT1.8 signaling module
(Zhang et al., 2014), which allows the regulation of nitrate
assimilation at the level of the organ at which stresses initiate
ET and JA signaling, which converges to EIN3/EIN3-Like1 (EIL1)

in order to modulate ERF expression and up-regulate NRT1.8;
ET and JA signaling mediates the down-regulation of NRT1.5
via EIN3/EIL1 and other unknown component(s). Krouk et al.
(2010) demonstrated that, at low nitrate levels, mutations in the
NRT1.1 nitrate transporter enhance auxin accumulation in lateral
roots and lateral root growth. At low (but not high) nitrate levels,
NRT1.1 represses lateral root growth by promoting the outward
transport of basipetal auxin. Ma et al. (2014) showed that low N
induces lateral root growth in Arabidopsis, and that this growth
was dependent on the function of the auxin biosynthesis gene
tryptophan aminotransferase related 2 (TAR2), which is induced
under low N conditions. It has also been shown that molecules
mediating auxin influx (AUX1, LAX2, LAX3) and efflux (PIN1,
PIN2, PIN4, and PIN7) are transcriptionally regulated by N
and/or C (Gutierrez et al., 2007; Li et al., 2011), and that most
of these carriers are required for root development (Petrášek and
Friml, 2009). It has been reported that jasmonic acid is a negative
regulator of nodulation. Mi et al. (2008) reported that, in the
presence of low N levels, the auxin, CK and nitric oxide (NO)
signaling pathways are involved in regulating root elongation:
an abundant N supply increases CK levels, but decreases auxin
and NO levels in the roots of maize. The exogenous supply of
CK increases ethylene production (Stenlid, 1982; Bertell et al.,
1990). Nitrate-induced inhibition of root elongation in maize
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is significantly reversed by treating the roots with a NO donor
(SNP) and IAA (Zhao et al., 2007). In the presence of high
nitrate levels, endogenous levels of NO in the root apices of
maize seedlings are much lower than those in apices grown in
the presence of low nitrate levels. The inhibition of NO synthesis
reduces root elongation in maize plants grown in a low-nitrate
medium (Mi et al., 2008).

It has been reported that N supplementation induces CK
accumulation in detached Helianthus annuus and Nicotiana
tabacum leaves (Salama and Wareing, 1979; Singh et al., 1992).
AtIPT3 (a gene involved in CK biosynthesis) is nitrate inducible,
and atipt3 mutants reduce CK levels, thus indicating that AtIPT3
is a key determinant of nitrate-dependent CK biosynthesis
(Miyawaki et al., 2004; Takei et al., 2004). The nitrate transporter
NRT1.1 mediates the nitrate inducible expression of AtIPT3
(Liu et al., 1999; Ho et al., 2009), and Kiba et al. (2011) have
found that CK represses the nitrate transporter gene and nitrate
uptake regardless of plant N status. However, Rubio et al. (2009)
and Krouk et al. (2011) have shown that CK also regulates the
expression of N uptake- and assimilation-related genes, as well as
root architecture (Werner et al., 2003; Higuchi et al., 2004). CK
may function as a long-distance “root-to-shoot” signal related to
NO3

− supply (Takei et al., 2004; Sakakibara, 2006), and Ruffel
et al. (2011) found that it is a crucial component of a root-shoot-
root signaling mechanism that is involved in conveying a plant’s
NO3

− status, thus enabling a compensatory increase in lateral
root growth in NO3

−-rich zones of a root system foraging for N
resources in a heterogeneous N environment.

Signora et al. (2001) showed that both ABA-insensitive
mutants (abi4-1, abi4-2, and abi5-1) and ABA-deficient mutants
(aba1-1, aba2-3, aba2-4, and aba3-2) are less sensitive to the
inhibitory effects of high nitrate levels, and the study of the
Medicago truncatula latd mutant by Yendrek et al. (2010)
provided another line of evidence supporting a link between
ABA and N signaling. The latd mutant is characterized by severe
defects in root meristem maintenance and root growth, and its
primary root growth is insensitive to nitrate; the LATD gene
encodes a transporter belonging to the NRT1 (PTR) family, and is
rescued by exogenous ABA (Bright et al., 2005; Liang et al., 2007).

Sun et al. (2015) have found that the NR pathway in Oryza
sativa generates NO, which improves N acquisition capacity
by increasing the initiation of lateral roots and the uptake of
inorganic N, a strategy that allows the plants to adapt to a
fluctuating nitrate supply and increase NUE. Liu et al. (2010)
reported that ethylene induces NO formation in A. thaliana.
N availability affects ethylene biosynthesis and signaling, which
further increases N uptake and transport to enhance plant
growth. The effect of ethylene on root architecture increases
N absorption and influences N transport-related genes. It has
been shown that the action of ethylene on N uptake or root
growth is not independent of other phytohormones as low nitrate
levels also increase CK, auxin, ABA and NO. CK increases the
production of ethylene, which acts in coordination with auxin
in order to ensure root growth and lateral root formation.
These hormones are influenced by N and affect root growth
but, as their cross-talk allows them to acquire N in the case
of a limited supply, there is a need to verify whether ethylene

functions in coordination with these hormones under the same
conditions. Inhibiting these phytohormones under condition of
limitedN availability could provide insights into their mechanism
of action, and enable the use of ethylene as a means of increasing
plant NUE, avoiding N wastage, and preventing environmental
pollution.

It is widely recognized that a high ethylene concentration
is a potent inhibitor of nodule development in plants (Lee
and LaRue, 1992; Sun et al., 2006; Gresshoff et al., 2009).
Ferguson et al. (2011) have recently reported that there is a
close relationship between gibberellin, ethylene and nodulation
in Pisum sativum: the application of the ethylene precursor
ACC significantly reduces the number of nodules and root and
shoot length in wild-type NA plants, whereas treatment with
the ethylene biosynthesis inhibitor AVG increases the number
of nodules to 36 times the number formed on gibberellin-
deficient mutant na-1 plants. They also suggested that ethylene
biosynthesis genes (PsACS1 and PsACO1) were decreased in na-
1 roots, but the fact that there was no significant change in
PsACO1 in the roots of na-1 plants during nodule formation
indicates that ethylene plays a role in nodulation. However, there
is a need for further experiments aimed at investigations the
relationships between ethylene and other hormones in nodule
formation.

The use of methyl jasmonate restrains nodulation in Lotus
japonicas, including infection thread formation and NIN gene
expression in wild-type plants and the hyper-nodulated har1
mutant (Nakagawa and Kawaguchi, 2006). It has also been found
that nodulation is inhibited in Medicago truncatula cultured
in a growth medium containing JA, and that the number of
NIN transcripts is larger in transgenic than in wild-type plants.
Ethylene signaling negatively regulates the early stage of nodule
development, including infection thread formation and the
emergence of nodule primordia (Penmetsa and Cook, 1997).

CONCLUSION AND FUTURE
PROSPECTS

Nitrogen availability has a strong influence on ethylene
biosynthesis and signaling, and plants have different metabolic
responses to optimal and stressful conditions. As N is a core
mineral nutrient, larger amounts of N improve crop productivity,
increasing NUE. Modulating ethylene availability should have
a positive effect on sustainable development by reducing the
wastage of applied N and increasing environmental protection.
In order to maximize the genetic potential of N use, it is
important to focus research on clarifying the interactions of N,
ethylene and other hormones in order to be able to use more
N under N-deficient conditions without affecting environmental
safety.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2015.00927
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