l" frontiers
in Plant Science

ORIGINAL RESEARCH
published: 29 October 2015
doi: 10.3389/fpls.2015.00939

OPEN ACCESS

Edited by:

Kevin Davies,

New Zealand Institute for Plant and
Food Research, New Zealand

Reviewed by:

Kathrin Schrick,

Kansas State University, USA
Anton R. Schéffner,
Helmholtz Zentrum Mdinchen,
Germany

*Correspondence:
José C. del Valle
jcdelvallegarcia@gmail.com

Specialty section:

This article was submitted to

Plant Metabolism and Chemodiversity,
a section of the journal

Frontiers in Plant Science

Received: 28 July 2015
Accepted: 16 October 2015
Published: 29 October 2015

Citation:

del Valle JC, Buide M4L,
Casimiro-Soriguer I, Whittall JB and
Narbona E (2015) On flavonoid
accumulation in different plant parts:
variation patterns among individuals
and populations in the shore campion
(Silene littorea).

Front. Plant Sci. 6:939.

doi: 10.3389/fpls.2015.00939

®

CrossMark

On flavonoid accumulation in
different plant parts: variation
patterns among individuals and
populations in the shore campion
(Silene littorea)

José C. del Valle™, M2 L. Buide’, Inés Casimiro-Soriguer’, Justen B. Whittall? and
Eduardo Narbona'

' Area de Botanica, Departamento de Biologia Molecular e Ingenieria Bioquimica, Universidad Pablo de Olavide, Seville,
Spain, 2 Department of Biology, College of Arts and Sciences, Santa Clara University, Santa Clara, CA, USA

The presence of anthocyanins in flowers and fruits is frequently attributed to attracting
pollinators and dispersers. In vegetative organs, anthocyanins and other non-pigmented
flavonoids such as flavones and flavonols may serve protective functions against
UV radiation, cold, heat, drought, salinity, pathogens, and herbivores; thus, these
compounds are usually produced as a plastic response to such stressors. Although,
the independent accumulation of anthocyanins in reproductive and vegetative tissues is
commonly postulated due to differential regulation, the accumulation of flavonoids within
and among populations has never been thoroughly compared. Here, we investigated the
shore campion (Silene littorea, Caryophyllaceae) which exhibits variation in anthocyanin
accumulation in its floral and vegetative tissues. We examined the in-situ accumulation of
flavonoids in floral (petals and calyxes) and vegetative organs (leaves) from 18 populations
representing the species’ geographic distribution. Each organ exhibited considerable
variability in the content of anthocyanins and other flavonoids both within and among
populations. In all organs, anthocyanin and other flavonoids were correlated. At the plant
level, the flavonoid content in petals, calyxes, and leaves was not correlated in most
of the populations. However, at the population level, the mean amount of anthocyanins
in all organs was positively correlated, which suggests that the variable environmental
conditions of populations may play a role in anthocyanin accumulation. These results are
unexpected because the anthocyanins are usually constitutive in petals, yet contingent
to environmental conditions in calyxes and leaves. Anthocyanin variation in petals may
influence pollinator attraction and subsequent plant reproduction, yet the amount of
anthocyanins may be a direct response to environmental factors. In populations on the
west coast, a general pattern of increasing accumulation of flavonoids toward southern
latitudes was observed in calyxes and leaves. This pattern corresponds to a gradual
increase of UV-B radiation and temperature, and a decrease of rainfall toward the south.
However, populations along the southern coast exposed to similar climatic stressors
showed highly variable flavonoid contents, implying that other factors may play a role in
flavonoid accumulation.

Keywords: anthocyanins, Caryophyllaceae, coastal dune ecosystem, flavones, flavonols, flower color, plasticity,
intra- and inter-population variation
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INTRODUCTION

Flavonoids are secondary metabolites common to angiosperms,
which confer a variety of biological functions (Gould and Lister,
2006; Agati et al., 2012). Anthocyanins, a group of flavonoids,
are synthesized in the anthocyanin biosynthetic pathway (ABP),
a highly conserved route of flavonoid biosynthesis. Branches of
the ABP may lead to important groups of metabolites such as
aurones, chalcones, flavones or flavonols (Davies and Schwinn,
2006; Saito et al.,, 2013). Anthocyanins show a variety of colors
from blue to red, but their flavonoid intermediates are largely
colorless, with the exception of aurones and chalcones that are
yellow or pale- yellow (Tanaka et al., 2008). The accumulation
of anthocyanins in flowers or fruits is commonly related to
pollinator attraction and seed/fruit dispersers (Schaefer and
Ruxton, 2011). However, in vegetative organs, anthocyanins and
flavonols may perform a variety of functional roles in response
to biotic and abiotic stressors such as UV radiation, cold, heat,
drought, salinity, herbivory, pathogens, etc. (Chalker-Scott, 1999;
Falcone Ferreyra et al., 2012; Narbona et al,, 2014). In flowers,
anthocyanin expression is generally constitutive and honed by
the preferences of pollinators and the light environment (Fenster
etal., 2004; Schiestl and Johnson, 2013). Conversely, in vegetative
tissues, anthocyanins and other flavonoids usually accumulate
transiently, as a plastic response to biotic or abiotic stressors
(Manetas, 2006; Hatier and Gould, 2009).

Plants can differentially regulate anthocyanins in various
tissues, organs and cell-types. Therefore, species with
anthocyanin-pigmented flowers may or may not accumulate
anthocyanins in vegetative tissues (e.g., Wheldale, 1916; Streisfeld
and Kohn, 2005), and the same with anthocyanin accumulation
in stems and leaves (e.g., Gould et al., 2010; Hughes et al., 2010).
Their production can be variable among cells within the same
tissue. This is the case of variegated flowers or flowers with
striped petals (Schwinn et al., 2006; Shang et al., 2011) and of
leaves with red margins (Albert et al., 2015). In white-flowered
plants, the petal-specific downregulation of the ABP allows
plants to avoid the negative effects of anthocyanin and flavonoid
loss in vegetative organs (Strauss and Whittall, 2006; Streisfeld
and Rausher, 2011). This tissue or cell-specific regulation is
possible due to ABP gene regulation at the transcriptional level
by the transcription factor MYB-bHLH-WD repeat (MBW)
complex (Koes et al., 2005; Davies et al., 2012). Thus, the MBW
complex allows plants to spatially and temporally change their
anthocyanin production (Sobel and Streisfeld, 2013; Albert et al.,
2014). In addition, it has been demonstrated that members
of the MBW can be regulated by environmental conditions,
such as light and temperature (Lu et al, 2009; Albert et al.,
2011; Zoratti et al., 2014). Interestingly, some light-regulated
transcription factors may control both anthocyanin production
in vegetative tissues and in petals (Albert et al., 2011; Maier et al.,
2013), indicating that anthocyanin accumulation in petals may
not always be completely decoupled from vegetative tissues.
This agrees with historic observations in which alpine and artic
species show greater amount of anthocyanins at the whole plant
level (Wheldale, 1916). Although the molecular basis of tissue
or cell-specific regulation of anthocyanin production has been

elucidated in several species (Albert et al., 2014), confirmation
of the independent accumulation of anthocyanins and other
flavonoids in different parts of plants in the field remains limited
(but see Koski and Ashman, 2015).

Because most flavonoids are plastically produced as an
acclimation process to environmental stressors (Manetas, 2006;
Albert et al, 2011; Anderson et al, 2013; Hectors et al,
2014), individuals in different populations exposed to varying
environmental conditions usually show variable accumulation of
flavonoids (Jaakola and Hohtola, 2010). Environmental factors
(temperature, precipitation, solar radiation, etc.) in populations
throughout the species distribution area are often subjected to
latitudinal, longitudinal, or altitudinal gradients (Narbona et al.,
2010; Arista et al., 2013; Prendeville et al., 2013); thus, flavonoid
accumulation may show geographic clines. For instance,
flavonoid content in fruits of two species of Vaccinium showed
a geographical gradient, with higher amounts of flavonoids
in northern latitudes, probably due to the length of the day
(Latti et al., 2008, 2010). Flavonoid contents in Betula pubescens
leaves were positively correlated with latitude (Stark et al,
2008). In European populations of Plantago lanceolata, latitude
and altitude have a strong influence on the accumulation of
anthocyanins in inflorescences, suggesting that these geographic
effects are caused by the local thermal environment (Lacey
et al., 2010). Recently, it has been demonstrated that plants
of Argentina anserina showed an increased pattern of floral
pigmentation (UV-absorbing flavonoids) in populations at
lower latitudes in both hemispheres (Koski and Ashman,
2015), which confirms an analogous hypothesis for animals,
of increased pigmentation toward equatorial latitudes (Lincoln
et al,, 1998). Thus, analyzing flavonoid accumulation in a variety
of populations subjected to climatic gradients may be useful to
identify potential environmental factors influencing anthocyanin
production (Santamaria et al., 2003). Coastal species represent
an ideal study system because the physical environment of their
populations is very homogenous (elevation, topography, etc.), yet
there is a wide range of climatic conditions among populations
along a latitudinal gradient (Sagarin et al., 2006).

In this study, we investigated the accumulation of
anthocyanins and other flavonoids in reproductive (petal
and calyx) and vegetative (leaf) organs of Silene littorea Brot.
(Caryophyllaceae) in 18 populations across their geographic
range. This entomophilous pink-flowered species has calyxes,
stems and leaves that range from light green to dark red
depending on the amount of anthocyanin produced (Figure 1).
This pigmentation is caused by the accumulation of anthocyanins
(cyanidin-3-glucoside derivatives), but other flavonoids such
as flavones and flavonols are also present in vegetative and
reproductive tissues (Casimiro-Soriguer, 2015). Although
betalains are produced in some families of the Caryophyllales,
only anthocyanins are documented in the Caryophyllaceae
(Brockington et al., 2011). The redness of vegetative tissues is a
highly variable character (Narbona et al., 2014), which may be
a plastic response to UV-B light (Del Valle et al., unpublished
data). Gene expression analyses suggest that MYB transcription
factors could be involved in natural within-population variation
of petal color intensity (Casimiro-Soriguer, 2015). S. littorea
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FIGURE 1 | Petals (A), calyxes (B), and leaves (C) of Silene littorea and
their UV-Vis reflectance spectra. Two contrasting populations in redness
were chosen for each plant organ: Alc (dark pink circles) and Are (light pink) for
petals, Sin (red circles) and Bre (green circles) for calyxes, and San (red circles)
and Tra (green circles) for leaves (see Table 1 for population code). The mean
population reflectance spectrum is showed. For details of spectra acquisition
see Buide et al. (2015). (D) Detail of a calyx showing superficial accumulation
of anthocyanins in the veins, scale = 0.5 nm. (E) Detail of a transversal section
of a leaf showing accumulation of anthocyanins in epidermal cells of abaxial
surface exposed to light, scale = 0.2 nm.

specifically inhabits foredunes from the northwest (43°N, 8°W)
to the southeast (36°N, 1°W) of the Iberian Peninsula. Thus,
populations are exposed to a high degree of solar exposure,
temperature and precipitation (Supplementary Table 1). In
contrast, within a given population, environmental conditions
are very homogeneous, and the same is true for several among-
population conditions such as soil properties and vegetation
composition (Lomba et al., 2008).

Within this framework, we predicted how anthocyanin
and non-anthocyanin flavonoid accumulation varies among
different organs within a single plant, and among individuals
or populations across the species geographic range. Considering
that the biosynthesis of flavonoids can be tissue-specifically
regulated (e.g., Davies et al., 2012) and also represent a cost
for the plant (Steyn et al, 2002), we predict that flavonoid
content in different organs of the plants will not be correlated. In

addition, because flower color is subject to pollinator-mediated
selection (e.g., Fenster et al., 2004), we expect that the amount of
anthocyanins in the petals will vary to a lesser extent than those
in the calyxes and leaves. On the other hand, anthocyanins and
other flavonoids that accumulate in the same tissue are generally
positively related, because they are synthesized in the general
flavonoid biosynthetic pathway, and the same transcription
factor may simultaneously regulate several steps in the pathway
(Davies and Schwinn, 2006, but see Mouradov and Spangenberg,
2014). Consequently, we also predict that anthocyanins and non-
anthocyanin flavonoids will be correlated within each specific
organ. Finally, considering the protective role of flavonoids
(Agati et al., 2012; Falcone Ferreyra et al., 2012) and plastic
accumulation due to climatic conditions (Lacey et al., 2010),
we hypothesize that flavonoids will accumulate to different
levels across the geographic range of S. littorea in relation
to climate, specifically we expect a positive correlation with
temperature and UV-B radiation and a negative correlation with
precipitation (Chalker-Scott, 1999; Koski and Ashman, 2015).
Thus, we address the following questions: How do the flavonoid
contents vary in different plant organs (petals, calyxes, and leaves)
within and among populations? Is there a relationship between
anthocyanin and non-anthocyanin flavonoids that accumulate in
each plant organ? Do the flavonoid contents of each plant organ
show a geographical pattern related to the climate features of the
populations?

MATERIALS AND METHODS
Study System and Sampling

Silene littorea is a self-compatible species mainly pollinated by
butterflies, bees and moths (Del Valle, unpublished data). This
annual plant blooms between March and June and exhibits
large variation in flower production, from three to ca. 300
flowers per plant (mean + se. = 974 =+ 9.1, Casimiro-
Soriguer et al., 2013). Most S. littorea plants have pink petals
with a range of intensity across populations (Figure 1A).
In two populations from northwestern Spain (Bar and Lou,
Supplementary Table 1) white petals can be found on ca. 20%
of plants (Narbona et al., 2014). In these two polymorphic
populations, white-flowered individuals were not included in this
study. Anthocyanin accumulation in calyxes and leaves produces
a continuous variety of colored organs from light green to dark
red (Figures 1B,C). Within an individual plant, the color of each
tissue is homogeneous; thus, we only sampled once per plant.
The flavonoid derivatives present in S. littorea, identified by
HPLC-ESI-MS/MS, were the flavones apigenin, isovitexin and
luteolin; the flavonols rutin and quercetin; and the anthocyanin
cyanidin-3-glucoside (Casimiro-Soriguer, 2015). In both calyxes
and leaves, anthocyanins are accumulated in epidermal cells
(Figures 1D,E).

Samples were collected from 2012 to 2014 during the peak-
flowering period. We have observed several populations during
the flowering season in three consecutive years, and we did
not detect any color change within individuals, nor among the
entire population for floral and vegetative tissues. We randomly
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sampled 15-31 individuals per population for 18 populations
from the northwestern to southeastern portions of the Iberian
Peninsula (Figure 2; Supplementary Table 1).

Flavonoids Quantification

In order to quantify the in-situ accumulation of flavonoids,
a branch or a whole plant was placed in zip-lock bag and
transported inside a cooler with ice until later extraction (usually
in within 6 h with no apparent color change). For each individual,
four petals and the calyx of one flower were dissected. In
addition, a section of approximately 1 centimeter of length of a
leaf from the middle region of the stem was selected. Weights
of calyxes and leaves were measured using a precision scale.
The petals were photographed on graph paper and the total
area was measured using the software Image] v.1.48v (National
Institutes of Health, USA); the petal’s weight was calculated
using the mean weight per area (2.11pg cm™2, N = 8).
Samples were preserved in 1mL of CH3OH:H,0 (7:3, v:v)
containing 1% HCI and stored at —20° C in the dark until
the subsequent pigment extraction. Petals were homogenized
using 3 mm diameter glass beads (EMD Millipore Corporation,
Billerica, MA), and beaten in a bead beater for 1 min intervals
until samples were thoroughly homogenized. The supernatant
was removed after 10 min centrifugation (13,000 rpm) and stored
at —80°C. The same procedure was applied for calyx and leaf
samples, but these plant parts were previously frozen in liquid
nitrogen to improve homogenization.

Three replicates of 200 wL per flavonoid extraction were
placed in a Multiskan GO microplate spectrophotometer
(Thermo Fisher Scientific Inc., MA, USA). Extracts of each plant
part were scanned in order to identify the absorption maximum
of the different flavonoids, using the wavelengths commonly

used in the literature to determine the concentration of the
main groups of flavonoids (Merken and Beecher, 2000; Shimada
et al., 2005; Zhu et al., 2012); absorbances were read at 520 nm
for anthocyanins and at 350 nm for combined non-anthocyanin
flavonoids (flavones and flavonols). We estimated combined non-
anthocyanin flavonoids content at 350 nm because the amount of
flavones (absorbance peak at 350 nm) in samples of S. littorea is
2.5 times higher than that of flavonols (peak at 370 nm; Casimiro-
Soriguer, 2015). In calyx and leaf samples, anthocyanin content
was corrected using the formula Asyp-0.24 X Ags3 in order to
compensate for the small overlap in absorption by chlorophyll
(Murray and Hackett, 1991; Gould et al., 2000). Anthocyanin
and non-anthocyanin flavonoid content were quantified using
five-point calibration curves of cyanidin-3-glucoside chloride
and luteolin standards (Sigma-Aldrich, Steinheim, Germany)
and expressed as cyanidin-3-glucoside and luteolin equivalents,
respectively.

Relationship between Amounts of
Anthocyanins and Climatic Features

Mean temperature and cumulative rainfall were extracted from
the Digital Climatic Atlas of Spain (Ninyerola et al., 2005) using
15 and 50 year datasets for local weather stations. Total solar
and UV-B (280-315 nm) radiation values were obtained from the
Solar Radiation Data (SoDa Services), an online data service that
provides daily mean surface solar irradiance for the period 1985-
2005 from the HelioClim-1 database. This database has been
created from archives of images of the Meteosat satellites using
the Heliosat-2 method (Rigollier et al., 2004). Solar and UV-B
radiation was highly correlated; thus, we used UV-B radiation in
our analyses due to the known functional relationship between

uv-B
(kJ/m?2)
26
28
30
Naz
32
34 Sin
Alj
36 San
38 Tra
Atlantic Ocean

10°W

5°W

FIGURE 2 | Geographical distribution of studied populations of S. littorea in the Iberian Peninsula. Population mean anthocyanin contents in the calyxes
were represented by means of the relative point size (original values are showed in Table 1). Incident UV-B radiation (kJ/mZ) on each population is represented by
means of a color scale inside the circle. Population code is showed in Supplementary Table 1.
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flavonoids and UV-B (Jansen et al., 1998; Hectors et al., 2014).  were performed between latitude (see Results) and the mean
Climate data was restricted to the growing period of S. littorea  population flavonoid contents. In addition, to test if flavonoid
(February-May; Supplementary Table 1). contents were spatially autocorrelated (i.e., similar contents
L. . values in adjacent populations), Mantel tests with pairwise
Statistical Analysis o ) geographic distances based on latitude and longitude were
For each plant.organ, the Varlatlon.of the. ﬂavongld content  carried out using the “ade4” R package (Crawley, 2007).

among populations was explored with a linear mixed-effects Data were Box-Cox transformed to meet normality and
model, considering the “population” as a random factor homoscedasticity assumptions. The normality was tested with the
(Bennington and  Thayne, 1994). In these analyses, the  ghapiro-test and homoscedasticity was checked with the Fligner—
components of variance for the population factor and the  Kijjleen statistic (Crawley, 2007). All analyses were performed in
error term (plant nested within population) were estimated R version 3.1.1 (R Core Team, 2013), with the exception of PCA

(Crawley, 2007). The inter- and intra-population correlations of 14t was performed in Tanagra software (http://eric.univ-lyon2.
anthocyanin and non-anthocyanin flavonoid contents among fr/~ricco/tanagra/en/tanagra.html).

petals, calyxes, and leaves were assessed with Pearson correlations
and a Bonferroni adjustment for multiple comparisons (Rice,
1989). A similar analysis was carried out to test possible
relationships between the anthocyanin and non-anthocyanin
flavonoid contents in each plant organ. Lo . .
We also evaluated whether flavonoid contents in each plant Variation in Flavonoid Contents Among

organ were related to the main climatic variables of the Plants and Populations

populations (UV-B radiation, temperature and precipitation).  Considering the whole data set, the average content of
Although the multicollinearity of these environmental variables  anthocyanins in petals, calyxes, and leaves were 28.18 & 1.49 mg
and latitude (see Results) make the use of multivariate g~ ! fresh weight (hereafter FW; mean + SE), 2.72 £ 0.14mg g~
statistics unsuitable (Kutner et al, 2005; Grace, 2006), we FW,and 0.75 & 1.00 mg g~ ! FW, respectively. The average non-
performed a principal component analysis (PCA) to explore  anthocyanin flavonoid content in each organ was much higher
the relative importance of all climatic and geographic variables. ~ compared to anthocyanins: 127.27 & 7.01 mg g~! FW, 16.31 &
In each organ, linear regressions with Bonferroni adjustments ~ 0.90 mg g~' FW, and 16.05 & 0.88 mg g~! FW for petals, calyxes

RESULTS

TABLE 1 | Descriptive statistics of anthocyanin and non-anthocyanin flavonoid contents (mg g‘1 FW) in petals, calyxes, and leaves of S. littorea
populations (ordered from NW to SE).

Pop. Anthocyanins? Non-anthocyanin flavonoids?
Petals Calyxes Leaves Petals Calyxes Leaves

Mean + SE Cv Mean + SE Ccv Mean + SE Cv Mean + SE Ccv Mean + SE Cv Mean + SE cv
Bal 13.0£1.0 35.4 1.75+0.14 37.7 0.38+0.09 107.7 90.1+4.5 22.9 10.9+0.49 20.3 11.9+0.94 36.3
Tre 46.3+2.1 20.9 2.17+0.16 33.9 0.14+£0.03 80.4 218.3+£8.7 17.8 13.8+1.61 38.8 16.7+£0.79 18.7
Lir 11.7+£0.9 36.2 2.19+0.16 34.0 0.39+0.04 441 791+25 14.5 8.7+0.33 17.2 9.5+0.66 32.0
Lou 20.9+2.7 47.8 3.562+0.44 46.5 0.38+0.05 471 169.3+28.0 40.6 18.0+1.24 24.8 13.8+£0.74 19.3
Are 6.7+0.4 27.5 2.92+0.26 41.2 0.62+0.10 74.9 73.4+£2.3 14.5 12.2+0.78 29.4 11.6+0.55 21.7
Bar 19.7£15 38.4 2.19+0.24 55.0 0.33+0.04 65.7 137.2+4.2 14.6 11.1+0.55 24.9 16.1+0.95 30.1
Mir 27.5+1.6 27.8 2.49+0.35 65.2 0.40+£0.05 50.0 186.6+14.8 23.8 17.8+1.53 35.4 14.8+1.08 33.4
Naz 401 +£2.4 27.7 1.86+0.23 57.7 0.56 £0.06 49.0 1564.7+7.8 23.0 10.4+0.51 18.9 12.6+0.66 23.5
Cas 46.0+3.6 35.6 2.93+0.36 50.7 0.41+£0.07 78.5 129.7+51 18.1 18.4+£1.31 32.6 12.0+1.14 43.5
Alc 55.7+5.7 43.0 4.66+0.52 48.1 2.21+0.48 83.8 148.1+£9.1 26.1 26.9+2.46 38.9 245+2.38 40.1
Sin 232+23 42.2 4.61+£0.52 46.2 1.35+0.40 1156.3 145.94+10.8 28.6 25.4+1.86 30.3 18.5+2.17 45.4
Alj 38.7+1.3 14.5 3.99+0.37 41.7 1.76 £0.30 76.7 108.2+4.6 20.0 23.4+1.68 31.1 25.9+2.68 45.0
San 56.5+3.6 26.7 5.914+0.41 29.8 2.16+0.29 56.8 1425+7.5 22.3 25.7+1.91 30.6 16.8+1.31 31.0
Odi 35.0+1.5 19.5 3.69+0.48 58.2 1.82+0.28 65.7 133.5+5.6 17.9 23.2+1.59 27.4 33.5+2.50 29.8
Tra 1561+1.2 43.7 1.05+0.12 64.0 0.11+£0.03 156.7 122.2+3.1 141 10.0+0.63 33.1 10.0+0.55 27.5
Bre 23.6+1.3 19.7 1.11+£0.14 46.5 0.34+£0.06 56.9 93.7+4.2 156.6 13.1+0.77 211 22.2+2.29 32.6
Man 18.6+2.4 50.2 1.60+0.17 43.0 0.49+£0.11 93.8 1569.3+9.7 22.7 20.5+1.06 20.8 16.0+0.77 19.9
Car 17.4+1.0 27.3 1.97+0.21 49.4 0.53+0.05 44.7 80.4+3.3 18.7 11.94+0.69 26.4 14.1+0.89 29.1
Total 28.2+1.5 63.5 2.72+0.14 68.2 0.75+0.04 133.0 127.3+7.0 36.6 16.3+0.90 49.2 16.0+0.88 51.2

aDetermined as cyanidin-3-glucoside equivalents.
bpetermined as luteolin equivalents. SE, standard error; CV, coefficient of variation expressed in percentage. Population code is show in Supplementary Table 1.
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and leaves, respectively. This relationship was consistent among
populations (Table 1).

The contents of anthocyanins and non-anthocyanin
flavonoids in each organ of S. littorea varied within and
among populations (Table 1). The coefhicients of variation (CV)
of anthocyanin content in the whole dataset were approximately
twice as high in leaves (133.0%) as in petals and calyxes (63.5 and
68.2%, respectively). However, the non-anthocyanin flavonoid
content was less variable, with overall CV of 36.6% in petals and
ca. 50% in calyxes and leaves.

Differences in anthocyanin content among populations were
statistically significant for petals [t(17, 340y = 26.97, P <0.0001],
calyxes [t(17, 342) = 34.29, P <0.0001] and leaves [t(17, 209) =
64.71, P <0.0001]. In petals, the proportion of anthocyanins
content variation among populations was three times higher than
within population variation (73.37 vs. 26.63%). However, the
within population and among population variance was nearly
similar in both calyxes (47.51 vs. 52.49%, respectively) and leaves
(47.75 vs. 52.25%). We also found significant differences among
populations in the non-anthocyanin flavonoids for the petals
[t(177 312) = 68.54, P <00001], calyxes [t(17, 312) = 78.23,
P <0.0001], and leaves [t;7 316y = 77.53, P <0.0001]. In
petals, there was higher variance among populations than within
populations (71.33 vs. 28.67%). Yet, in calyxes there was higher
variance within populations than among, but to a lesser degree
(56.98 vs. 43.02%). The variance for leaf anthocyanin content was
similar for within vs. among population comparisons (48.53 vs.
51.47%).

Relationships between the Flavonoid

Contents in Different Organs

In general, neither anthocyanin content, nor non-anthocyanin
flavonoid content correlated among petals, calyxes, and leaves
within each population (Table 2). However, when we analyzed
the average values of each population, we found that the
population mean anthocyanin content between different plant
organs were significantly correlated; the correlation coeflicient
was high in calyxes vs. leaves but moderate in petals vs. calyxes
and in petals vs. leaves comparisons (Figures 3A-C). For the
non-anthocyanin flavonoids, a significant correlation was only
present in calyxes vs. leaves (Figures 3D-F).

Relationship between Anthocyanins and
Non-anthocyanin Flavonoids in the Same
Organ

In petals and leaves, correlations between anthocyanins and
non-anthocyanin flavonoid content were found in 10 and 6
populations, respectively. In calyxes, this correlation was found
within almost all populations (Table 3). Considering the average
values of all populations, the strongest relationship was between
the calyxes and leaves (Figure 4).

Relationship between Flavonoid Contents

and Geographic and Climatic Factors
All climatic variables were strongly correlated (r > 0.88;
Table 4). Latitude showed a strong correlation with all the

TABLE 2 | Pearson correlation coefficients comparing anthocyanin and
non-anthocyanin flavonoid contents in petals, calyxes, and leaves of S.
littorea populations.

Anthocyanins Non-anthocyanin flavonoids

Population Petal vs. Petal vs. Calyx vs. Petal vs. Petalvs. Calyxvs.
Calyx Leaf Leaf Calyx Leaf Leaf
Bal —-0.05 0.09 0.48 0.01 0.01 0.43
Tre 0.34 -0.12 -0.20 -0.67 -0.13 —-0.03
Lir 0.22 -0.20 -0.15 0.43 —0.03 0.01
Lou 0.68* 0.06 -0.11 0.82 0.22 0.09
Are 0.10 0.06 0.50 -0.59* -0.15 0.26
Bar 0.10 0.27 —0.04 -0.27 —-0.16 0.25
Mir 0.1 0.33 0.32 —0.69 —-0.18 0.64*
Naz -0.19 0.05 0.34 —0.31 0.23 —-0.20
Cas 0.1 —0.05 0.23 0.35 —0.06 —0.36
Alc 0.00 —0.16 —0.31 —-0.02 —-0.01 —-0.31
Sin —0.04 —-0.02 0.63 -0.07 0.17 0.54
Alj -0.16 0.33 0.1 0.07 —0.11 0.24
San -0.17 -0.37 0.32 0.27 —0.04 0.60
Odi 0.30 0.15 0.36 -0.10 —0.31 -0.22
Tra 0.28 0.07 0.39 0.24 0.10 —0.59*
Bre —0.01 0.42 0.66 —-0.16 0.21 0.68
Man 0.27 —0.08 0.46 —-0.22 0.36 0.02
Car 0.05 —0.21 —0.50 0.03 0.23 0.67*

*P-values in bold are significant at Bonferroni-corrected P level (0.05/3 = 0.017).

climatic variables of S. littorea populations (r > 0.93; Table 4).
Temperature and UV-B radiation were greater at lower latitudes,
whereas precipitation had the opposite trend. In contrast, there
was no correlation between longitude and climatic factors
(Table 4). The PCA showed that the PC1 and PC2 explained
83.4 and 12.4% of the variance, respectively. In PCl1, the three
climatic variables and latitude showed high and similar factor
loadings (ranged between 0.94 and 0.98), whereas longitude
showed a loading of 0.69 (Supplementary Table 2). Given the
similar loading of all the climatic factors and the latitude in PC1,
as well as the high correlation among them, we used latitude as a
representative variable for this group of variables.

Using all populations, we did not find a relationship between
the anthocyanin contents and latitude in any plant organ (R*> =
0.06, P = 0.317 for petals; R? = 0.02, P = 0.622 for
calyxes; R> = 0.17, P = 0.090 for leaves). Similar results
were found for the non-anthocyanin flavonoids in petals (R? =
0.02, P = 0.594), but in this case, calyxes and leaves showed
marginally significant relationships (R> = 0.19, P = 0.068;
R> = 0.9, P = 0.067, respectively). The Mantel tests
showed absence of spatial autocorrelation for all plant organs
and flavonoids types, except for the non-anthocyanin flavonoids
in petals (P = 0.002; Supplementary Table 3). Conversely,
if we consider only the populations on the west coast of the
distribution area (i.e., populations from Bal to San, Figure 2),
we observe a general pattern of increasing flavonoid contents
toward southern latitudes (Figure 5). In anthocyanins of calyxes
and leaves the relationship was highly significant but in petals,
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it was slightly significant (Figures 5A,C,E). In non-anthocyanin
flavonoids, the relationship was highly significant in calyxes and
marginally significant in leaves, whereas in petals the relationship
was not significant (Figures 5B,D,F). The Mantel tests showed
a significant autocorrelation in the flavonoid contents among
population (P < 0.002 for the three plant organs; Supplementary
Table 3).

DISCUSSION

Patterns of Flavonoid Content Variation

within and Among Populations

Our results show that in each plant organ, the content of
anthocyanins and other flavonoids varies greatly within and
among populations. As expected, CVs of anthocyanin content in
petals were much lower than in leaves, both at the population

and the species level. Changes in the presence or absence of
anthocyanins (i.e., pigmented vs. unpigmented flowers) may
cause important changes in pollinator fauna due to pollinator
preferences for particular colors (Fenster et al., 2004; Hoballah
etal., 2007). Furthermore, changes in anthocyanin concentration
may also affect petal color (i.e., hue and chroma, Holton et al,,
1993; Schmitzer et al., 2009) and subsequent pollinator activity
(Shang et al., 2011). Thus, the low variation in anthocyanin
contents in petals of S. littorea suggests petal specific regulation
and possibly some evolutionary constraint on that character
because of the importance for pollinators (Schiestl and Johnson,
2013). With respect to non-anthocyanin flavonoid content, the
CV of the petals was smaller than those of calyxes and leaves,
which may be explained by the relationship between the contents
of anthocyanins and other flavonoids in each organ (see below).
We found that both at the population and species levels,
the anthocyanin content in calyxes was approximately four
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TABLE 3 | Pearson correlation coefficients of the comparison between
anthocyanins and non-anthocyanin flavonoid contents in each plant
organ of S. littorea populations.

Population Petals Calyxes Leaves
Bal 0.56* —0.38 0.05
Tre 0.93*** -0.74* -0.16
Lir 0.44* —-0.58* -0.68*
Lou 0.92* 0.69* —0.38
Are 0.14 —0.59* -0.37
Bar 0.48* —0.52* 0.20
Mir 0.65 0.81*** 0.36
Naz —0.41 —0.61* 0.00
Cas 0.68* 0.62* —0.59*
Alc 0.53* 0.77* 0.43
Sin —-0.21 0.59* 0.40
Alj —0.35 0.79*** 0.74***
San 0.52 0.88*** 0.51*
Odi 0.31 0.52* 0.50
Tra 0.37* 0.75*** —-0.13
Bre 0.52* 0.74* 0.76*
Man —0.03 —0.66* 0.21
Car 0.26 —-0.70* 0.81***

Significant correlations were highlighted in bold. *P < 0.05; ***P < 0.0001.

times higher than in leaves, but that of non-anthocyanin
flavonoids was nearly similar in both plant parts. The content of
non-anthocyanin flavonoids was 6 and 21 times higher than those
of anthocyanins in calyxes and leaves, respectively. In petals, non-
anthocyanin flavonoids were also five-fold more abundant than
anthocyanins. This much higher content of non-anthocyanin
flavonoids is common in plants (Jaakola et al., 2004; Zhu et al,,
2012; Chen et al,, 2013). Although, both groups of compounds
show protective functions against biotic and abiotic stressors
(Gould and Lister, 2006; Agati et al., 2012), the predominance
of non-anthocyanin flavonoids suggests that by mass alone, the
visible anthocyanins represent the minority of the flavonoids (yet
the visible anthocyanins are often the focus of functional studies;
Manetas, 2006).

Anthocyanin and other Flavonoid
Variations in the Same and Different
Organs

Within populations, there was no correlation between the
flavonoid content in petals vs. calyxes, petals vs. leaves, and
calyxes vs. leaves. These results suggest that in each plant,
flavonoid production is regulated independently in each organ. In
the white flowered S. latifolia, similar independent accumulation
of anthocyanins and flavones in leaves and calyxes has been
proposed (Mastenbroek and Van Brederode, 1986). Although, the
independent accumulation of anthocyanins or other flavonoids
in different plant parts has previously been documented as a
qualitative or discrete character (e.g., Warren and Mackenzie,
2001; Streisfeld and Kohn, 2005; Dick et al., 2011), here we show
comparable results as using a quantitative approach. The tissue-
specific regulation of the ABP (Davies et al., 2012; Albert et al.,
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FIGURE 4 | Pearson correlations between the population mean content
of anthocyanins and non-anthocyanin flavonoids in petals (A), calyxes
(B), and leaves (C). Anthocyanins were determined as cyanidin-3-glucoside
equivalents and non-anthocyanin flavonoids were determined as luteolin
equivalents. The best-fit lines were drawn for significant correlations.

2014), may help to explain this independent accumulation of
flavonoids in S. littorea in different organs. The independent
accumulation of flavonoids may have adaptive advantages for S.
littorea. For example, the leaves and calyxes could accumulate
anthocyanins or other flavonoids in response to biotic or abiotic
stressors (Gould and Lister, 2006) without changing the color of
the petals (Schwinn et al., 2006; Wang et al., 2013).

Conversely, when the mean population content of
anthocyanins was analyzed, a positive correlation among
all plant organs was found. In the pink flowered S. dioica,
anthocyanin accumulation in petals, calyxes, and vegetative
organs is greatly increased when understory plants are exposed
to full sun (Kamsteeg et al., 1979). The apparent contradiction in
which anthocyanin content in the different organs are unrelated
at the intra-population level, but related at the inter-population
level, may be explained by the lower range of climatic variation
at the intra-population level than at the inter-population level,
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as is common in coastal species (Sagarin et al., 2006). Thus,
the effect of UV-B radiation on anthocyanin accumulation is
dosage-dependent (Zoratti et al., 2014). Similarly, Sperdouli

TABLE 4 | Pearson correlation coefficients between climatic and
geographic variables from the studied populations of S. littorea.

uv-B Mean Cumulative
radiation temperature precipitation
Mean temperature 0.88***
Cumulative precipitation —0.90*** —0.90***
Latitude —0.96*** —0.93*** 0.93***
Longitude —0.40 -0.28 0.37

For climatic data calculations, the period from February to May were used. Signifcant
correlations were highlighted in bold. ***P < 0.0001.

and Moustakas (2012) experimentally demonstrated that
anthocyanin accumulation only increased in moderate drought
conditions. On the other hand, a significant correlation was
only found between calyxes and leaves in the mean population
content of non-anthocyanin flavonoids. This suggests that
the climate has a similar effect on non-anthocyanin flavonoid
accumulation in calyxes and leaves.

The relationship between the content of anthocyanins and
other flavonoids in the same organ showed a well-defined
pattern. At the intra-population level, the content of both
groups of flavonoids was correlated in the calyx in almost all
populations, and in some populations in petals and leaves.
At the inter-population level, we found that both groups of
flavonoids were also correlated in each of the analyzed plant
parts. In genetically modified ornamental species, anthocyanin
production can be modified by altering the activity of enzymes
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in key branches of the ABP, which generates a negative
relationship between the content of flavonols and anthocyanins
due to competition for a common substrate—dihydroflavonols
(Holton et al., 1993; Davies et al., 2003). This competition for
substrate by enzymes leading to different flavonoid branches is
also suggested in Muscari armeniacum; plants with pigmented
petals show high concentrations of anthocyanins, but low
concentrations of the flavonols kaempferol and myricetin,
whereas the reverse pattern was found in white-petal mutants
(Lou et al., 2014). Conversely, in a comparison among petals of
Nelumbo cultivars, a positive correlation exists between five types
of anthocyanins and kaempferol derivatives (Chen et al., 2013).
In S. littorea, our results demonstrated positive relationships
between anthocyanins and other groups of flavonoids, composed
of flavones and flavonols derivatives, which suggests that the
sub-pathways leading to these compounds are coordinated (not
competing), especially in calyxes, where positive correlations
were found in almost all populations.

Geographic and Climatic Variations in
Flavonoid Content: Latitude only Partially

Explains Plastic Flavonoid Accumulation
Considering the populations on the west coast of the Iberian
Peninsula, flavonoid content in both calyxes and leaves increased
toward southern latitudes. In our study, latitude greatly co-
varies with mean temperature, cuamulative precipitation and UV-
B radiation in the growing and flowering period, as is found in
studies of the same area (Narbona et al., 2010; Arista et al., 2013).
Thus, increasing flavonoid contents follow a positive gradient
with UV-B radiation and temperature, and a negative gradient
with precipitation. Similar latitudinal variation in flavonoid
accumulation with associated environmental gradients have been
reported for several other plants. For instance, in northern
latitudes, flavonoid content appears to increase with an increase
of sunlight hours or UV-B radiation (reviewed in Jaakola and
Hohtola, 2010). Higher flavonoid content has also been reported
in some species in drought-stress scenarios (Chalker-Scott, 1999),
but this information is based on manipulative controlled studies
(e.g., Hughes et al, 2013; Ma et al, 2014), and no natural
environmental gradients had previously been described before
this on 8. littorea. Conversely, Plantago lanceolata produced
darker anthocyanin pigmented inflorescences at cooler ambient
temperatures in northern populations, which increased the
absorption of solar radiation and accelerated seed production
(Stiles et al., 2007). Thermal acclimation is suggested to drive
this variation (Lacey et al., 2010), which seems common in other
species in the genus Plantago (Anderson et al., 2013).

The increased flavonoid accumulation associated with hotter,
drier, and higher UV-B radiation populations across the western
coast of the Iberian Peninsula may represent some advantages
for S. littorea. For instance, flavonoids that accumulate in the
epidermis of calyxes and leaves of S. littorea would mitigate
the effects of solar radiation by reducing the amount of
photosynthetically active radiation transmitted to chlorenchyma
(Gould et al., 2010; Tattini et al., 2014) and to protect against
UV-B damage to DNA (Jansen et al., 1998). Petals, which lack
photosynthetic apparatus and are relatively ephemeral, would be

less conditioned by such environmental gradients. In fact, the
correlation between latitude and both anthocyanin and other
flavonoids in petals was weak or insignificant. In addition, the
reactive oxygen species’ (ROS) scavenging capacity of flavonoids
may also protect plants from drought and high temperatures
common in the southern populations (Hatier and Gould, 2009;
Falcone Ferreyra et al,, 2012).

Unexpectedly, when all populations of S. littorea were
considered, there was no correlation between flavonoid content
and latitude. This is because the southeastern populations
along the Mediterranean Sea showed very low amounts of
flavonoids despite their climatic features being comparable to
those of the southwestern populations (Figures 2, 5). Differences
in flavonoid accumulation among populations may be caused
by the combination of genetics (i.e., adaptation to local
conditions) and environmental effects (i.e., phenotypic plasticity;
Nicotra et al., 2010). Thus, these low values in southeastern
populations would be caused by genetic constraints that restrict
the adaptive potential of plants (Santamaria et al., 2003),
resulting in individuals with limited capability to synthesize
pigments (Jain and Gould, 2015). However, common garden
experiments suggest that genetic effects are less important than
environmental effects in S. littorea (Del Valle et al., unpublished
data). Lastly, other biotic or abiotic factors (e.g., herbivory;
Rolshausen and Schaefer, 2007) not considered in the present
study may affect differential flavonoid accumulation in southern
populations.

CONCLUSIONS

This study accounts for a considerable variability of anthocyanins
and other flavonoids in floral and vegetative organs of an
annual plant species. First, the accumulation of flavonoids
was highly variable among organs within individual plants.
Their accumulation was independent at the population level.
This within-individual variation in flavonoid accumulation
may represent a component of phenotypic variability with an
important adaptive value (Herrera, 2009). Interestingly, the mean
population anthocyanin content in all organs was correlated,
suggesting that the variable environmental conditions of coastal
populations may drive anthocyanin accumulation in the whole
plant. In the analysis of the populations located on the west
coast, an increase of anthocyanin content in petals, calyxes and
leaves, and non-anthocyanin flavonoids in calyxes and leaves was
found toward southern latitudes, with higher content toward
the south. The capacity to change the flavonoid accumulation in
photosynthetic organs of S. littorea may represent an advantage
for the species in climate change scenarios, where an increase
of temperature and UV-B radiation is expected (Ballaré et al.,
2011). Overall, this study has contributed to a more detailed
understanding of how flavonoids accumulate in different plant
organs, and their variation within and among populations.
Despite the fact that flavonoid function is far from clearly
understood (Landi et al., 2015), here we find new evidence
for the relationship between anthocyanin and non-anthocyanin
flavonoids in each organ, and describe a pattern of flavonoid
variation along a climatic gradient. In addition, we demonstrate
unexpectedly high correlations of population mean anthocyanin
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content between petals, calyxes and leaves that warrant further
attention.
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