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Several underutilized grasses have excellent potential for use as bioenergy feedstock

due to their lignocellulosic biomass. Genomic tools have enabled identification

of lignocellulose biosynthesis genes in several sequenced plants. However, the

non-availability of whole genome sequence of bioenergy grasses hinders the study

on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet

(Setaria italica L.; Si) is a model crop for studying systems biology of bioenergy grasses.

In the present study, a systematic approach has been used for identification of gene

families involved in cellulose (CesA/Csl), callose (Gsl) and monolignol biosynthesis (PAL,

C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD) and construction of physical

map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins

showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl

and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of

foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed

maximum homology with switchgrass, followed by sorghum and maize. Expression

profiling of candidate lignocellulose genes in response to different abiotic stresses and

hormone treatments showed their differential expression pattern, with significant higher

expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2, and SiCAD6 genes. Further, due to the

evolutionary conservation of grass genomes, the insights gained from the present study

could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other

biofuel species for further characterization.

Keywords: foxtail millet (Setaria italica L.), secondary cell wall biosynthesis, lignocellulose, bioenergy grasses,

genomics, comparative mapping

INTRODUCTION

Cell wall polymers of living plants constitute a predominant proportion of their biomass, which
is formed by fermentable linked sugars. These polymers form a major structural component of
plant cell wall and particularly, secondary cell walls provide mechanical strength and rigidity
to vascular plants (Wang et al., 2013; Zhong and Ye, 2015). Secondary cell walls are present
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in tracheary elements, xylem, phloem, extraxylary and
interfascicular fibers, sclereids and seed coats, and are made
of cellulose, hemicelluloses and lignin. Cellulose, the primary
unit, cross-links with hemicelluloses including xylan and
glucomannan, and impregnated with phenolic polymer lignin,
and altogether, this complex polymeric network forms secondary
cell wall. The proportion of cellulose, hemicelluloses, and
lignin varies among different plant species and of note, the
composition may also vary in response to diverse developmental
and environmental conditions (Zhong and Ye, 2015). Being the
prime constituents of wood and fiber, secondary cell walls have
been extensively studied to understand and exploit their biofuel
prospects. Biochemical and genomic methods have identified the
genes encoding for enzymes which participate in the biosynthesis
of secondary cell wall components.

Pear et al. (1996) was the first to identify cellulose synthase
(CesA) genes in cotton and following this, CesA genes in other
plants have been identified and their numbers were shown
to vary between plant species. In Arabidopsis, 10 CesA genes
have been identified (Richmond and Somerville, 2000), whereas
12 in maize (Appenzeller et al., 2004), 16 in barley (Burton
et al., 2004), 18 in poplar (Djerbi et al., 2005) have been
reported. The CesA enzymes belong to glycosyltransferase-2
(GT-2) superfamily, which is defined by an eight-transmembrane
topology and conserved cytosolic substrate binding and catalytic
residues (McFarlane et al., 2014). In addition to CesA, plants also
have cellulose synthase-like (Csl) genes, which can be involved
in biosynthesis of hemicellulose and other glucans (Lerouxel
et al., 2006). Csl genes can synthesize other polysaccharides
that are not components of the hemicellulose matrix (Lerouxel
et al., 2006). So far, several types of Csl genes have been
identified, denoted as CslA to CslK. CslA encodes for (1,4)-
β-D-mannan synthases (Dhugga et al., 2004; Liepman et al.,
2005), CslF and CslH encode the mixed linkage glucan
synthases for (1,3;1,4)-β-glucan biosynthesis (Burton et al., 2006;
Doblin et al., 2009), CslC genes are involved in xyloglucan
biosynthesis (Cocuron et al., 2007), and CslD in xylan and
homogalacturonan synthesis (Hamann et al., 2004; Bernal et al.,
2008a,b; Li et al., 2009), whereas the functional roles of
other Csl genes remain elusive (Yin et al., 2009). Noteworthy,
CslB and CslG are specific to dicots whereas CslF and CslH
are found only in monocots (Fincher, 2009; Doblin et al.,
2010), but recently two CslG genes were identified in Panicum
virgatum (Pavirv00027268m and Pavirv00027269m; Yin et al.,
2014).

Callose is a (1,3)-β-D-glucan, which is not present in cell
walls but deposited in the walls of specialized tissues such as
pollen mother cell walls, plasmodesmatal canals, and sieve plates
in dormant phloem during normal growth and development
(Stone and Clarke, 1992). In addition, callose is also deposited
in response to environmental stimuli including abiotic stress,
wounding, and pathogen challenge (Stone and Clarke, 1992;
Muthamilarasan and Prasad, 2013). Callose is synthesized by
callose synthases, which are encoded by glucan synthase-like (Gsl)
genes (Saxena and Brown, 2000; Cui et al., 2001). To date, 12 Gsl
genes have been identified in Arabidopsis, 13 in rice, 9 in poplar,
and 8 in barley (Farrokhi et al., 2006).

In the case of lignin biosynthesis, phenylalanine is
metabolized through the phenylpropanoid pathway to produce
hydroxycinnamoyl-CoA esters, which enter the lignin branch
of this pathway and are converted to monolignols. The process
requires the involvement of phenylalanine ammonia lyase
(PAL), trans-cinnamate 4-hydroxylase (C4H), 4-coumarate
CoA ligase (4CL), hydroxycinnamoyl CoA:shikimate/quinate
hydroxycinnamoyl transferase (HCT), p-coumaroyl shikimate
3′-hydroxylase (C3H), caffeoyl CoA 3-O-methyltransferase
(CCoAOMT), ferulate 5-hydroxylase (F5H), caffeic acid O-
methyltransferase (COMT), cinnamoyl CoA reductase (CCR),
and cinnamyl alcohol dehydrogenase (CAD) (Bonawitz and
Chapple, 2010; Zhong and Ye, 2015). Of these enzymes, PAL is
the first enzyme of phenylpropanoid pathway which catalyzes
the deamination of phenylalanine to generate cinnamic acid
and C4H hydroxylates cinnamic acid to generate p-coumaric
acid (Harakava, 2005). 4CL performs CoA esterification of
p-coumaric acid and caffeic acid, whereas HCT catalyzes
the conversion of p-coumaroyl-CoA and caffeoyl-CoA into
corresponding shikimate or quinate esters and C3H converts
these esters to corresponding caffeoyl esters. Following this,
CCoAOMT catalyzes methylation of caffeoyl CoA to produce
feruloyl CoA, whereas CCR converts hydroxycinnamoyl CoA
esters to their corresponding aldehydes (Harakava, 2005).
F5H has been assumed to catalyze the conversion of ferulic
acid to 5-hydroxyferulic acid but recombinant DNA studies
in Arabidopsis and Liquidambar styraciflua revealed that F5H
converts coniferaldehyde and coniferyl alcohol to synapaldehyde
and sinapyl alcohol, respectively (Humphreys et al., 1999;
Osakabe et al., 1999). COMT is involved in the conversion
of 5-hydroxyconiferaldehyde and/or 5-hydroxyconiferyl
alcohol to sinapaldehyde and/or sinapyl alcohol, respectively
(Osakabe et al., 1999; Parvathi et al., 2001), while CAD
catalyzes the conversion of cinnamyl aldehydes into their
corresponding alcohols (Harakava, 2005). The genes encoding
these enzymes have recently been identified and characterized
in several plant species (Raes et al., 2003; Vanholme et al.,
2012; Shen et al., 2013; Carocha et al., 2015; van Parijs et al.,
2015).

With the raise in the impacts of global climate change,
reduction of greenhouse gases is essential, which could
be facilitated through generating biorenewables. Importantly,
production of lignocellulosic biofuels from secondary cell wall
biomass has become a strategic research area, as it holds
the potential to enhance energy security. C4 grasses, namely
switchgrass (P. virgatum), napier grass (Pennisetum purpureum),
pearl millet (P. glaucum), and foxtail millet (Setaria italica)
have recently gained momentum in lignocellulosic biofuel
research due to their high-efficiency CO2 fixation and efficient
conversion of solar energy to biomass through C4 photosynthesis
and photorespiration-suppressing modifications, respectively
(Schmer et al., 2008; Byrt et al., 2011; van der Weijde et al., 2013).
In addition, these grasses also possess better water use efficiency
(WUE), higher nitrogen use efficiency (NUE), capacity to grow
in arid and semi-arid regions and relatively high tolerance
to environmental constraints including heat, drought, salinity
and water-logging. For these reasons, C4 photosynthesis is an
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important trait for lignocellulosic biofuel crops (Byrt et al., 2011;
van der Weijde et al., 2013).

Recently, foxtail millet (S. italica) and its wild progenitor,
green foxtail (S. viridis) have been recognized as the suitable
experimental models for biofuel research owing to their genetic
relatedness to several biofuel grasses (Li and Brutnell, 2011;
Zhang et al., 2012; Lata et al., 2013; Petti et al., 2013; Diao
et al., 2014; Warnasooriya and Brutnell, 2014; Muthamilarasan
and Prasad, 2015). The genomes of both foxtail millet and
green foxtail have been sequenced (Bennetzen et al., 2012;
Zhang et al., 2012), and the availability of foxtail millet draft
genome sequence in public domains has facilitated various
genetic and genomic studies in this model crop pertaining
to stress response and crop improvement (Diao et al., 2014;
Muthamilarasan and Prasad, 2015; Muthamilarasan et al.,
2015) though no comprehensive genome-wide study on biofuel
traits has been performed. Recently, Petti et al. (2013) has
compared the lignocellulosic feedstock composition, cellulose
biosynthesis inhibitor response, saccharification dynamics and
CesA gene family of green foxtail with sorghum, maize and
switchgrass. The study identified eight potentialCesA gene family
members for functional genomic characterization (Petti et al.,
2013).

The present study has been performed to identify the
gene families participating in lignocellulose biosynthesis using
computational approaches. Further, qRT-PCR analysis of few
genes has been performed to understand their expression
patterns in response to different abiotic stress treatments.

MATERIALS AND METHODS

Identification of Lignocellulose
Biosynthesis Gene Families
Protein sequences of enzymes involved in cellulose biosynthesis,
namely CesA, Csl, and Gsl of rice and Arabidopsis were
retrieved from cell wall genomics webserver (https://cellwall.
genomics.purdue.edu/intro/index.html). The sequences for
PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR,
and CAD reported in other crops (Appenzeller et al., 2004;
Burton et al., 2004; Carocha et al., 2015; Zhong and Ye, 2015)
were retrieved from respective literatures and HMM profile
has been generated for individual families. Precisely, the
sequences of respective families were aligned using Clustal
Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) and HMM
profiles were built using hmmbuilt command (http://hmmer.
janelia.org/). HMMER tool was used to identify respective
homologous proteins in foxtail millet protein dataset retrieved
from Phytozome v10.2 (http://phytozome.jgi.doe.gov/) under
default parameters (Muthamilarasan et al., 2014a). The protein
sequences were confirmed using HMMSCAN (http://www.ebi.
ac.uk/Tools/hmmer/search/hmmscan) analysis, and respective
genomic, transcript, and CDS sequences were downloaded
from Phytozome by BLAST searching the retrieved protein
sequences against S. italica database under default parameters
(http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Si
talica).

Protein Properties and Phylogenetic
Analysis
The properties of identified cell wall-related proteins including
molecular weight, pI, and instability index were identified using
ExPASy ProtPram tool (http://web.expasy.org/protparam/). The
amino acid sequences of respective families were imported
into MEGA v6 (Tamura et al., 2013) for multiple sequence
alignment and phylogenetic tree construction using neighbor-
joining method after bootstrap analysis for 1000 replicates
(Muthamilarasan et al., 2014b). Sequence alignment and analysis
was performed using BioEdit v7.2.5 (http://www.mbio.ncsu.edu/
bioedit/bioedit.html).

Physical Mapping and Gene Structure
Analysis
The chromosomal location of cell wall biosynthesis genes
including chromosome number, position of gene start and end,
gene length and orientation were obtained from Phytozome
and a physical map was constructed using MapChart (Voorrips,
2002). Gene duplications, namely tandem and segmental were
identified by performing MCScanx (Wang et al., 2012) according
to the protocol of Plant Genome Duplication Database (Lee
et al., 2012). Gene structure was predicted using Gene Structure
Display Server v2.0 (http://gsds.cbi.pku.edu.cn/).

Promoter Analysis, Targeting miRNA, and
Marker Prediction
The upstream genomic sequence (∼2 kb) of lignocellulose
pathway genes of foxtail millet were retrieved from Phytozome
and the presence of cis-regulatory elements were identified
by Signal Scan Search using New PLACE web server (https://
sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?page=analysis&lang=en).
Mature miRNA sequences of foxtail millet were downloaded
from miRBase v21 (Kozomara and Griffiths-Jones, 2014) and
FmMiRNADb (Khan et al., 2014). This information along
with the miRNA data of a dehydration stress library (Yadav
et al., unpublished data) were used to identify the miRNAs
targeting the transcripts of lignocellulose pathway genes using
psRNAtarget server (Dai and Zhao, 2011) under default
parameters. The large-scale genome-wide molecular markers
namely simple sequence repeats (SSR; Pandey et al., 2013),
expressed sequence tag (EST)-SSR (eSSR; Kumari et al., 2013),
and intron-length polymorphic markers (Muthamilarasan et al.,
2014c) were retrieved from the Foxtail millet Marker Database
(http://www.nipgr.res.in/foxtail.html; Suresh et al., 2013) and
searched for their presence in the genic and promoter regions of
lignocellulose biosynthesis genes using in-house perl script.

Comparative Genome Mapping and
Evolutionary Analysis
Protein sequences of lignocellulose pathway genes of foxtail
millet were BLASTP searched against the protein sequences
of switchgrass (Panicum virgatum), rice (Oryza sativa), and
poplar (Populus trichocarpa), and hits with more than 80%
identity were selected. The genomic and CDS sequences along
with chromosomal locations for these proteins were retrieved
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by performing BLAST searches against the corresponding
genomes retrieved from Gramene (http://www.gramene.org/)
under default parameters and comparative maps were visualized
using Circos (Krzywinski et al., 2009). Reciprocal BLAST was
also performed to ensure the unique relationship between
the homologous genes (Mishra et al., 2013). Estimation of
nonsynonymous substitutions per non-synonymous site (Ka)
and synonymous substitutions per synonymous site (Ks) for
paralogous (tandem and segmentally duplicated genes) as well
as homologous (comparative mapping data) gene pairs were
calculated by codeml program in PAML using PAL2NAL
(Suyama et al., 2006). The Ka/Ks ratios along with estimation
of duplication and divergence (as T = Ks/2λ, where, λ =

6.5×10−9) were performed according to Puranik et al. (2013).

In silico Expression Profiling in Tissues and
Drought Stress
The transcriptome data of different tissues, namely root
(SRX128223), stem (SRX128225), leaf (SRX128224), spica
(SRX128226), and a drought stress library (SRR629694) as
well as its control (SRR629695) were retrieved from European
Nucleotide Archive (http://www.ebi.ac.uk/ena) (Zhang et al.,
2012; Qi et al., 2013). The reads were filtered using NGS
Toolkit (http://www.nipgr.res.in/ngsqctoolkit.html), mapped on
foxtail millet genome using CLC Genomics Workbench v4.7.1,
normalized by RPKM method and a heat map was generated
using MultiExperiment Viewer (MeV) v4.9 (Saeed et al., 2003).

Plant Materials, Stress and Hormone
Treatments and Quantitative Real-time
PCR Analysis
Seeds of foxtail millet cv. “IC-403579” (dehydration and salinity
tolerant) were grown under optimum conditions following
Lata et al. (2014). Twenty one day-old seedlings were exposed
to 250mM NaCl (salinity), 20% PEG6000 (dehydration), 4◦C
(cold), 100mM abscisic acid (ABA), 100mM methyl jasmonate
(MeJA), and 100mM salicylic acid (SA) treatments (Mishra
et al., 2013; Puranik et al., 2013; Kumar et al., 2015) and
whole seedlings were collected at 0 h (h) (control), 1 h (early),
and 24 h (late) (Yadav et al., 2015). The samples were frozen
immediately in liquid nitrogen and stored at −80◦C. RNA
isolation, cDNA synthesis and RT-PCR analysis were performed
according to Puranik et al. (2013) in three technical replicates
for each biological triplicate using the primers mentioned in
Supplementary Table S1. All qRT-PCR data were the means
of at least three independent experiments and the results
were presented as the mean values ± SE. The significance of
differences between mean values of control and each stressed
samples were statistically performed using One-Way analysis of
variance (ANOVA) and comparison among means was carried
out through Tukey-Kramer multiple comparisons test using
GRAPHPAD INSTAT software v3.10 (http://www.graphpad.
com). The differences in the effects of stress treatments on various
parameters in 16 foxtail millet genes under study were considered
statistically significant at ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

RESULTS

CesA/Csl and Gsl Superfamily of Foxtail
Millet
HMM searches identified the presence of 14 CesA
(SiCesA) and 39 Csl (SiCsl) proteins in foxtail millet
(Supplementary Table S2). Among the 14 SiCesA proteins, one
was found to be an alternate transcript (Si028766m), whereas in
SiCsl, three alternate transcripts (Si029554m, Si035399m, and
Si035101m) were identified. Domain analysis of SiCesA proteins
revealed the presence of both the cellulose synthase domain
(CS; PF03552) and the zinc finger structure (ZF; PF14569) in
all the proteins except SiCesA8 and SiCesA10, which have only
the CS domain (Supplementary Table S3). In addition, all the
SiCesA proteins except SiCesA8 had Glycosyl transferase 2 (GT2;
PF13632) domain. In the case of SiCsl proteins, 36 proteins
(primary transcripts) were identified, of which 10 belonged
to SiCslA, 6 to SiCslC, 5 to SiCslD, 4 to SiCslE, 7 to SiCslF, 2
each to SiCslH and SiCslJ families (Supplementary Table S2).
Interestingly, two members of CslJ have been identified in foxtail
millet, which was previously considered to be a cereal-specific
gene family (Doblin et al., 2010). Domain analysis showed that all
the SiCslA and SiCslC proteins possess GT2 domain (PF13641,
PF13632, PF00535, and PF13506) (Supplementary Table S3).

All 5 SiCslD proteins possess CS (PF03552) and GT2
(PF13632) domain, and interestingly, SiCslD2, SiCslD4, and
SiCslD5 were evidenced to have an additional RING/Ubox
like zinc-binding domain (PF14570), whereas SiCslD3 has two
CS domains (Supplementary Table S4). All the SiCslE proteins
except SiCslE2 have more than one CS domain and SiCslE3
has an additional GT2 domain (PF13641). In the case of SiCslF
proteins, all of the members except SiCslF6 have two CS domains
and in addition, SiCslF1, SiCslF3, and SiCslF7 possess GT2
domain (PF13632). Two members each belonging to CslH and
CslJ family proteins were identified and both the group members
have two CS domains (Supplementary Table S4).

A total of 12 Gsl (SiGsl) proteins were identified in
foxtail millet and all possessed glucan synthesis (GS)
domain (1,3-beta-glucan synthase component; PF02364)
(Supplementary Table S5). The number of GS domain within
these proteins also varied as SiGsl1, SiGsl6, and SiGsl12 have two
GS domains, whereas SiGsl11 had three domains. In addition,
SiGsl2, SiGsl3, SiGsl5, SiGsl7, SiGsl8, SiGsl10, and SiGsl11 have
a 1,3-beta-glucan synthase subunit FKS1, domain-1 (PF14288).
Furthermore, SiGsl08, SiGsl10, and SiGsl11 have an additional
Vta1 (VPS20-associated protein 1) like domain (PF04652)
(Supplementary Table S5).

Monolignol Pathway Proteins of Foxtail
Millet
HMM profiling of PAL (SiPAL), C4H (SiC4H), 4CL (Si4CL),
HCT (SiHCT), C3H (SiC3H), CCoAOMT (SiCCoAOMT),
F5H (SiF5H), COMT (SiCOMT), CCR (SiCCR), and CAD
(SiCAD) proteins in foxtail millet identified 10, 3, 20, 2, 2, 6, 2,
4, 33, and 13 members, respectively (Supplementary Table S6).
Splice variants were evidenced among these members, including
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three each in SiCL16 and SiCCR14, two in SiCCR11 and
one each in Si4CL5, SiCCoAOMT1, SiCOMT, SiCCR11, and
SiCCR17. HMMSCAN revealed a diverse domain organization
of these proteins (Supplementary Table S7). All of the SiPAL
proteins possess aromatic amino acid lyase (PF00221) domain,
whereas Cytochrome P450 (PF00067) was present in all SiC4H,
SiC3H, and SiF5H proteins. AMP-binding enzyme (PF00501)
and AMP-binding enzyme C-terminal (PF13193) domains
were present in all the Si4CL proteins except Si4CL13, which
has only an AMP-binding enzyme domain. Both SiHCT1
and SiHCT2 have transferase family (PF02458) domains,
and SiCCoAOMT proteins were evidenced to possess O-
methyltransferase (PF01596) and methyltransferase (PF13578)
domains with an exception of SiCCoAOMT, which has two
O-methyltransferase domains (Supplementary Table S7).
O-methyltransferase domain was also found to be present
in SiCOMT proteins, whereas SiCOMT2 has an additional
dimerisation domain (PF13578). A diverse domain composition
was observed among SiCCR proteins in addition to the presence
of signature NAD-dependent epimerase/dehydratase family
(PF01370) and 3-beta hydroxysteroid dehydrogenase/isomerase
family (PF01073) domains. Almost all the SiCCR proteins
possess additional domains including GDP-mannose-4,6-
dehydratase (PF16363), Male sterility protein (PF07993),
NmrA-like family (PF05368), NAD(P)H-binding (PF13460),
Polysaccharide biosynthesis protein (PF02719), and KR domains
(PF08659). Of note, SiCCR7 was devoid of any of these domains
except the NAD-dependent epimerase/dehydratase family
domain, and SiCCR3 has an additional Alcohol dehydrogenase
GroES-like domain (PF08240) (Supplementary Table S7).
The presence of Alcohol dehydrogenase GroES-like and Zinc-
binding dehydrogenase (PF00107) domains is the characteristic
feature of SiCAD proteins and in addition to these, D-isomer
specific 2-hydroxyacid dehydrogenase, NAD-binding domain
(PF02826) was present in SiCAD4, SiCAD9, and SiCAD12.
Moreover, an alanine dehydrogenase/PNT, C-terminal domain
(PF01262) was found to be present in SiCAD12 and SiCAD13
(Supplementary Table S7).

Properties of Lignocellulose Pathway
Proteins
Among the SiCesA proteins, SiCesA4 was the largest protein with
1095 amino acids (aa), followed by SiCesA2 (1092 aa), SiCesA11
(1090 aa) and SiCesA3 (1088 aa), and the smallest was SiCesA8
(884 aa) (Supplementary Table S2). The molecular weight of
these proteins also varied accordingly, ranging from SiCesA8
(95.5 kDa) to SiCesA11 (123.2 kDa), with an isoelectric pH (pI)
of 6.03 (SiCesA10) to 8.15 (SiCesA1). The protein instability
index was between 36.07 (SiCesA11) to 50.62 (SiCesA8), which
signified that all the SiCesA proteins except SiCesA2, SiCesA8,
and SiCesA10 were stable. In the case of SiCsl proteins, the
smallest protein was SiCslE2 with 144 aa and the largest was
SiCslD1 (1217 aa), and their respective molecular weights ranged
from 16.4 kDa (SiCslE2) to 132.2 kDa (SiCslD1). The pI of SiCsl
proteins ranged from 4.61 (SiCslE2) to 9.32 (SiCslF7), and their
instability index range (31.44–67.71) revealed that a maximum
of SiCsl proteins (∼33%) were stable. The size and molecular

weights of SiGsl proteins ranged from 418 aa (47.8 kDa in
SiGsl9) to 1956 aa (225.2 kDa in SiGsl8). Similarly, pI range of
these proteins was between 8.61 (SiGsl12) and 9.69 (SiGsl9).
The instability index range between 28.89 and 52.08 indicated
that ∼46% of SiGsl proteins were stable and the rest are unstable
(Supplementary Table S2).

The SiPAL class of monolignol pathway proteins showed
a narrow range of protein properties, as their sizes varied
from 699 (SiPAL1 and SiPAL2) to 851 aa (SiPAL10), with
molecular weights from 74.9 kDa (SiPAL2) to 91.1 kDa (SiPAL10)
(Supplementary Table S6). The pI range of SiPAL was between
5.82 and 6.52, and their instability index range (28.82–39.84)
showed that all the proteins except SiPAL5 were stable. The
three members of SiC4H, namely SiC4H1, SiC4H2, and SiC4H3
had molecular sizes of 530 aa (59.7 kDa), 430 aa (49.3 kDa),
and 506 aa (57.9 kDa), respectively. Their respective pI were
9.26, 7.72, and 9.33, and their instability index (46.46, 49.84,
and 48.61) revealed that SiC4H proteins were stable. Among
the Si4CL proteins, Si4CL4 and Si4CL10 were the smallest
proteins with 198 aa (21.8 and 21.7 kDa in size, respectively)
and the largest was Si4CL9 (642 aa; 68.5 kDa). Their pI range
was between 5.14 and 8.98. The protein instability index ranged
from 24.76 (Si4CL3) to 47.96 (Si4CL6) hinting that all the
Si4CL proteins except Si4CL3 were stable. SiHCT, SiC3H, and
SiF5H proteins have two members each, with a narrow range
of protein properties, and all these proteins were found to
be stable as indicated by their stability index. A significant
difference was observed with the sizes of SiF5H members since
SiF5H1 was 158 aa (16.7 kDa) and SiF5H2 was 524 aa (57.7 kDa)
(Supplementary Table S6). Among SiCCoAOMT proteins, the
smallest protein was SiCCoAOMT1 with 243 aa (25.7 kDa) and
the largest was SiCCoAOMT5 with 307 aa (33.4 kDa). The pI
range was between 5.04 and 8.94, and the protein instability
index range (27.69–51.49) showed that except SiCCoAOMT4, all
others were stable. The three-member SiCOMT class proteins
have molecular sizes of 247 aa (25.8 kDa; SiCOMT1), 402 aa
(43.53 kDa; SiCOMT2), and 153 aa (16.71 kDa; SiCOMT3). The
pI values were 5.09, 5.97, and 9 for SiCOMT1, SiCOMT2,
and SiCOMT3, respectively. The instability index range (42.24–
52.75) hinted that all SiCOMT proteins are stable. Among
the monolignol pathway proteins, SiCCR class has the highest
number (26 members) and their sizes ranged from 27.2 kDa (251
aa; SiCCR26) to 69.13 kDa (625 aa; SiCCR9), with a pI range
of 4.72 (SiCCR23) to 9.32 (SiCCR19). The protein instability
index ranged from 24.86 (SiCCR18) to 54.11 (SiCCR13), which
points out that ∼77% of SiCCR proteins were stable. In the
case of SiCAD proteins, SiCAD9 and SiCAD13 were the smallest
proteins with 336 aa (35.6 and 36.4 kDa in size, respectively)
and SiCAD8 was the largest with 495 aa (52.7 kDa). The pI
ranged from 5.05 to 9.24, and the instability index (19.35–
39.79) showed that ∼50% of SiCAD proteins are unstable
(Supplementary Table S6).

Sequence Alignment and Phylogenetic
Analysis of CesA/Csl and Gsl Proteins
SiCesA and SiCsl proteins were aligned individually, and
the alignment revealed the presence of conserved “DXD, D,
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QXXRW” motif in both the superfamilies. All the SiCesA
proteins except SiCesA8 have a “DCD, D, QVLRW” consensus
sequence, whereas SiCesA8 had a unique “DYD, D” sequence and
the motif “QXXRW” was absent (Supplementary Figure S1).
Noteworthy, SiCesA8 protein has only the CS domain, while
the other SiCesA proteins possess CS, ZF, and GT2 domains
(Supplementary Table S3). In the case of SiCsl proteins,
the “DXD” motif is absent in all the members of SiCslA,
SiCslC and SiCslE2 (Supplementary Figure S2). This motif was
predominantly “DCD,” except in SiCslF1 and SiCslF2, which
have “DGD.” The second consensus “D” amino acid is present
in all the SiCsl members (as “ED”), except SiCslA6, SiCslE2,
and SiCslF4 (Supplementary Figure S2). In addition, SiCslA6
and SiCslE2 did not possess the “QXXRW” motif also, whereas
a subgroup-wise conservation was evidenced in this motif in
rest of the members. The majority of SiCslA (7) and all the
SiCslC members have “QQHRW”motif, whereas SiCslE proteins
have “QHKRW,” SiCslH and SiCslJ proteins have “QYKRW” and
“QNKRW”motifs, respectively (Supplementary Figure S2). The
unrooted phylogenetic tree constructed using the amino acid
sequences of SiCesA/Csl proteins along with CesA/Csl proteins
of rice and Arabidopsis (https://cellwall.genomics.purdue.edu/
intro/index.html) showed 2 distinct clusters, namely I and II
(Figure 1). Cluster I was resolved into six branches including
CesA, CslD, CslE, CslF, CslH, and CslJ, whereas cluster II had two
branches, CslA and CslC.

Sequence alignment of SiGsl proteins showed that the N-
terminal region of all these proteins was diverse, whereas the
C-terminal region was conserved (Supplementary Figure S3).
Prediction of transmembrane (TM) helices in these proteins
using TMHMM Server v2.0 (http://www.cbs.dtu.dk/services/
TMHMM/) showed the presence of 7–16 TM helices in
SiGsl proteins (Supplementary Figure S4). Phylogeny of foxtail
millet, rice and Arabidopsis Gsl proteins showed three clusters
(Figure 2). Cluster I included SiGsl4, SiGsl5, and SiGsl7, whereas
cluster II comprised SiGsl2 and SiGsl3. SiGsl1, SiGsl6, SiGsl8,
SiGsl10, SiGsl11, and SiGsl12 were included in cluster III.

Sequence Alignment and Phylogenetic
Analysis of Monolignol Biosynthesis
Pathway Proteins
Sequence alignment and analysis of SiPAL proteins showed
that all the members are almost completely conserved
(Supplementary Figure S5). SiPAL2 was found to possess
an extended N-terminal sequence of about 135 amino acids,
which is unique to this class of protein. A phylogenetic tree
constructed with PAL sequences of foxtail millet, eucalyptus,
poplar, tobacco, medicago and Arabidopsis showed that
the SiPAL proteins are phylogenetically divergent from the
rest (Figure 3A). Sequence alignment of SiC4H showed
that all the members share the conserved P450 superfamily
domain and P450-featured motifs, namely, haem-iron
binding motif (PFGVGRRSCPG), the T-containing binding
pocket motif (AAIETT, the E-R-R-E-R-E-R), for optimal
orientation of the enzyme (Supplementary Figure S5). Further,
presence of conserved substrate recognition sites (SRSs)

of C4H/CYP73A5 enzymes, including SRS1 (SRTRNVV
FDIFTGKGQDMVFTVY), SRS2 (LSQSFEYNY), SRS4
(IVENINVAAIETTLWS), and SRS5 (RMAIPLLVPH) was
also evidenced (Supplementary Figure S5). Phylogeny of SiC4H
along with C4H protein sequences of other organisms showed
the grouping of SiC4H1 with C4H1 proteins of eucalyptus and
Phaseolus vulgaris, whereas SiC4H2 and SiC4H3 were found to
be more divergent (Figure 3B).

Si4CL protein sequence alignment showed the presence of 2
highly conserved peptide motifs “box I” (LPYSSGTTGLPKGV;
AMP binding signature) and “box II” (GEICIRG), in addition to
other conserved regions (Supplementary Figure S5). Phylogeny
of 4CL proteins showed grouping of Si4CL1, Si4CL2, Si4CL15,
and Si4CL16 with switchgrass (Pvi4CL1), demonstrating
their close proximity and similarly, Si4CL11 was found to be
grouped with Pvi4CL2, whereas other Si4CL proteins formed
their own distinct cluster (Figure 3C). Alignment of SiHCT
sequences showed that all the proteins have the conserved
motifs for the acyl transferase family, namely “HXXXDG” and
“DFGWG” (Supplementary Figure S5). Multiple sequence
alignment of SiC3H proteins showed the presence of
Cytochrome P450 cysteine heme-iron ligand signature [FW]-
[SGNH]-x-[GD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD]
(Supplementary Figure S5). The conserved motifs including
three putative S-adenosyl-L-methionine binding motifs (A, B,
and C) and CCoAOMT signature motifs (D, E, F, G, and H) were
identified through multiple sequence alignment of SiCCoAOMT
proteins (Supplementary Figure S5). Phylogenetic analysis of
SiHCT, SiC3H, and SiCCoAOMT proteins with their respective
family members of other organisms revealed the dissimilarity
of foxtail millet proteins compared to their homologs
(Figures 3D–F). In the case of CCoAOMT, SiCCoAOMT2
formed a distinct clade, whereas other SiCCoAOMT members
were grouped together in one clade (Figure 3F).

Being truncated proteins, alignment of SiF5H1 with
SiF5H2, and SiCOMT2 with SiCOMT1 and SiCOMT3
were not performed (Supplementary Figure S5). Protein
sequence alignment between SiCOMT1 and SiCOMT3 did not
highlight any consensus motif and their phylogenetic analysis
with COMT proteins of other plants showed grouping of
SiCOMT with ZmaCOMT of maize (Figure 3G). Sequence
alignment of SiCCR proteins revealed that the conserved
“KNWYCYGK” motif, catalytic site or the binding site for
the cofactor NADPH (Larsen, 2004) has been diversified in
foxtail millet (Supplementary Figure S5). Except SiCCR1
and SiCCR24, other SiCCR proteins have at least one amino
acid change in this motif, which could be attributed to the
substrate affinity of CCR proteins (Pichon et al., 1998).
Phylogenetic analysis of SiCCR proteins showed that a
maximum of these proteins were clustered in a separate
group, whereas few proteins were grouped with CCR proteins
of maize, switchgrass and poplar (Figure 3H). Alignment
results of SiCAD highlighted a high degree of similarity in
conserved domains and binding residues, including Zn-1
binding domain motif GHE(X)2G(X)5G(X)2V, NADP(H) co-
substrate-binding motif GXG(X)2G (glycine-rich repeat) and
Zn-2 metal ion binding motif GD(X)9,10C(X)2C(X)2C(X)7C
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FIGURE 1 | Unrooted protein phylogenetic tree constructed with CesA/Csl proteins of Setaria italica (Si), Oryza sativa (Os), and Arabidopsis thaliana

(At).

(Supplementary Figure S5). Phylogenetic tree of SiCAD with
CAD proteins of other plant species showed clustering of
a maximum of SiCAD proteins in one clade with complete
out-grouping of SiCAD10. SiCAD1 and SiCAD11 were found to
cluster with poplar CAD proteins (Figure 3I).

Gene Structure of Lignocellulose Pathway
Genes
The sequence data of genomic DNA, transcript and CDS along
with chromosomal locations of confirmed protein sequences
of identified lignocellulose biosynthesis pathway enzymes were
retrieved and analyzed for gene size, intron-exon and physical
position (Supplementary Tables S2, S6). The size of SiCesA

genes ranged from 3.1 (SiCesA8) to 6.9 kb (SiCesA9) and few
genes including SiCesA3, SiCesA7, SiCesA5, and SiCesA9 have
a maximum of 13 introns, whereas SiCesA12 was intronless
(Supplementary Figure S6). The gene sizes of SiCsl ranged from
1.7 (SiCslA6 and SiCslE2) to 6.6 kb (SiCslA1 and SiCslF6),
and their gene structure analysis revealed that SiCsl genes
have up to eight introns (Supplementary Figure S7). The only
intronless gene of SiCsl superfamily was SiCslE2. Among the
SiGsl gene family members, SiGsl3 was the smallest gene (3.2 kb),
whereas the largest one was SiGsl4 (17 kb). Interestingly, SiGsl
genes were evidenced to contain numerous introns. SiGsl7 has
a maximum of 49 introns, whereas SiGsl2 and SiGsl3 were
intronless (Supplementary Figure S8).
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FIGURE 2 | Unrooted protein phylogenetic tree constructed with Gsl proteins of Setaria italica (Si) and Arabidopsis thaliana (At).

SiPAL gene sizes ranged from 2.1 (SiPAL4) to 4.6 kb
(SiPAL3), of which SiPAL4, SiPAL5, and SiPAL6 were intronless,
SiPAL2 has two introns and other SiPAL genes have 2
introns each (Supplementary Figure S9). Among the Si4CL

genes, Si4CL3 was the smallest gene (2 kb), whereas Si4CL15
was the largest (6.7 kb). A total of 10 Si4CL genes have 5
introns each, while maximum number of introns was found
in Si4CL5 (6 introns). Si4CL3 has the least number of one
intron in its gene (Supplementary Figure S9). The size of
SiCCoAOMT genes ranged from 0.8 (SiCCoAOMT4) to 3 kb
(SiCCoAOMT2) with a maximum number of introns (7) in
SiCCoAOMT2. SiCCoAOMT3 and SiCCoAOMT4 have one
intron each (Supplementary Figure S9). Among the SiCCR

genes, SiCCR3 was 1.3 kb in size and though it is the smallest
gene of this class, it has eight introns. SiCCR9 and SiCCR22 are
the largest genes with a size of 5.8 kb and both the genes have
4 introns each. SiCCR2 has a maximum of 10 introns, while
SiCCR7 is the only intronless gene in this group. The size of
SiCAD genes ranged from 1.4 (SiCAD9) to 4.2 kb (SiCAD1 and
SiCAD8), with SiCAD7, SiCAD8, and SiCAD9 having aminimum
of 2 introns each whereas SiCAD5 has a maximum of 6 introns
(Supplementary Figure S9).

Chromosomal Location and Gene
Duplication of Lignocellulose Pathway
Genes
The identified secondary cell wall biosynthesis genes were plotted
onto the nine chromosomes of foxtail millet to generate the
physical map (Figure 4), which showed that the majority of
lignocellulose biosynthesis pathway genes (31; ∼22%) were
present in chromosome 2, followed by chromosome 9 (24
genes; ∼17%) and chromosome 1 (21 genes; ∼15%), and a
minimum of 4 genes (∼3%) were mapped on chromosome 8.
Expansion of respective gene families within the genome were
analyzed by investigating tandem and segmental duplication,
which showed that 7 genes underwent tandem duplication,
whereas segmental duplication did not occur among the
lignocellulose pathway genes (Figure 4). SiCesA members were
distributed on chromosomes 2 (4 genes), 4 (1), 5 (2), and 9
(3) and none of the genes were evidenced to undergo tandem
or segmental duplication. SiCsl genes were found to be present
in all the chromosomes except chromosome 8, and duplication
analysis revealed that SiCslE3 and SiCslE4 were tandemly
duplicated gene pairs on chromosome 2. SiGsl members were
distributed on chromosomes 1 (2 genes), 2 (1), 4 (2), 5 (4),
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FIGURE 3 | Unrooted protein phylogenetic trees constructed with (A) PAL, (B) C4H, (C) 4CL, (D) HCT, (E) C3H, (F) CCoAOMT, (G) COMT, (H) CCR, and (I)

CAD proteins of Setaria italica (Si), Eucalyptus gunnii (Egu), E. grandis (Egr), Nicotiana tabacum (Nta), Populus trichocarpa (Ptr), Pinus pinaster (Ppi),

Pinus taeda (Pta), Medicago truncatula (Mtr), Panicum virgatum (Pvi), Zea mays (Zma), Malus domestica (Mdom), Vitis vinifera (Vvi), Eucalyptus

globulus (Egl), Populus alba x Populus grandidentata (Pag), Petroselinum crispum (Pec), Populus tremuloides (Ptm), Phaseolus vulgaris (Pvu), and

Eucalyptus robusta (Er).

and 9 (3) and no duplication pattern in this gene family was
observed.

Among the monolignol biosynthesis genes, the majority of
SiPAL genes were present in chromosome 1 (5) and 7 (3), and
interestingly, SiPAL4 and SiPAL5 as well as SiPAL8 and SiPAL9
were identified to be tandem duplicates. Each of the three SiC4H
genes were found in chromosome 1, 3, and 5 (Figure 4). A
higher number of Si4CL genes were present in chromosome
9 (7 genes), of which Si4CL11 and Si4CL12 were tandemly

duplicated gene pairs. Chromosome 1 and 6 have two Si4CL
members each and one member each in chromosome 2, 3, 4,
5, 7, and 8. Two members of SiHCT, SiC3H, and SiF5H as
well as three genes of SiCOMT were present in chromosome
1, 3, 6, 7, 8, and 9 (Figure 4). Four out of five SiCCoAOMT
genes were present in chromosome 6 and SiCCoAOMT1 was
mapped on chromosome 2, and duplication analysis revealed
that SiCCoAOMT3 and SiCCoAOMT4 were tandemly duplicated
gene-pairs. Among the SiCCR genes, SiCCR26 could not be
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FIGURE 4 | Physical map showing the chromosomal locations of lignocellulose biosynthesis genes. Bars represent chromosomes and the numbers at the

left corresponds to location (in Mb). Gene IDs are provided in the right. Tandemly duplicated gene pairs are highlighted with gray shade.

mapped due to non-availability of its co-ordinates in Phytozome
database. Of the 25 SiCCR genes mapped, a maximum of 8 genes
were found to be present in chromosome 4 (8), followed by
chromosome 2 (6) and 1 (4). Of the 13 SiCAD genes, maximum
was in chromosome 2 (5) and a minimum of one each in
chromosomes 1, 4, and 9. SiCAD2 and SiCAD3 on chromosome
2 as well as SiCAD8 and SiCAD9 on chromosome 6 were found
to be tandemly duplicated gene-pairs (Figure 4).

Promoter Analysis on Lignocellulose
Pathway Genes
In silico analysis for predicting putative cis-regulatory elements
showed the presence of universal as well as gene-specific
promoter sequences in the upstream of lignocellulose pathway
genes (Supplementary Tables S8, S9). A total of 271 cis-elements
were found in CesA/Csl and Gsl genes, of which 15 (5.5%)
elements, namely ACGTATERD1, ARR1AT, CAATBOX1,
CACTFTPPCA1, DOFCOREZM, EBOXBNNAPA, GATABOX,
GT1CONSENSUS, GTGANTG10, MYCCONSENSUSAT,
NODCON2GM, OSE2ROOTNODULE, POLLEN1LELAT52,
WBOXNTERF3, andWRKY71OS were present in all these genes
(Supplementary Table S8). Thirty-nine unique cis-elements
(∼14%) which were present in any one gene of CesA/Csl and
Gsl superfamilies were also found, such as ABADESI1 (SiCslF6),
CEREGLUBOX3PSLEGA (SiCesA2), GBOXLERBCS (SiCslA8),
ZDNAFORMINGATCAB1 (SiCslA6), TATCCACHVAL21
(SiGsl3), etc. In addition, few promoter sequences were found
to be present in all the genes except one or two genes and this
includes BIHD1OS (SiCslC4), CCAATBOX1 (SiCslA1, SiCslF4),
CURECORECR (SiCslC3, SiGsl1), DPBFCOREDCDC3 (SiCslC2,
SiCslC4), EECCRCAH1 (SiGsl5), MYBCORE (SiCesA3, SiCslD4),
RAV1AAT (SiCslD1), and SORLIP1AT (SiCesA4, SiGsl8). Of

note, no superfamily specific regulatory elements were identified
(Supplementary Table S8).

A total of 293 cis-elements were detected in the upstream
region of monolignol pathway genes, of which 10 (3.4%) were
present in all the genes and 37 (∼13%) were unique to any
one gene (Supplementary Table S9). The elements which
were present in all the genes include ARR1AT, CAATBOX1,
CACTFTPPCA1, DOFCOREZM, EBOXBNNAPA, GATABOX,
GT1CONSENSUS, GTGANTG10, WBOXNTERF3, and
WRKY71OS. Few cis-regulatory elements were found to
be present in all except one or two genes and it includes
ACGTATERD1 (SiPAL2), CURECORECR (SiPAL2, SiPAL10),
and MYBCORE (SiPAL7, SiCCR16). Similar to CesA/Csl and
Gsl, no monolignol genes have superfamily specific regulatory
elements (Supplementary Table S9).

MicroRNAs and Molecular Markers of
Lignocellulose Pathway Genes
In silico scanning of lignocellulose pathway gene transcripts to
identify their targeting miRNAs showed that the transcripts of
SiCslC2, SiGsl10, and SiF5H2 could be targeted by the miRNAs
sit-miRn29, sit-miR114-npr and sit-miR395b, respectively
(Supplementary Table S10). SiGsl3 was predicted to be targeted
by two foxtail millet miRNAs, namely sit-miR156d-1 and
sit-miR156d-2. ThesemiRNAswould have a putative role in post-
transcriptional gene silencing for regulation of lignocellulose
pathway gene expression. Identification of previously reported
molecular markers in the genic and regulatory regions of
lignocellulose pathway genes revealed the presence of SSR and
ILP markers in 34 genes (Supplementary Table S11). Of these,
three genes have two and three markers each, and the remaining
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28 genes possess single markers. Among the markers, SSRs were
found to be predominant (∼81%) and the rest are ILPs (∼19%).

Expression Profile of Lignocellulose
Pathway Genes in Tissues and
Dehydration Stress
Expression of all the genes in four tissues and dehydration stress
was calculated using RPKM values derived from RNA-seq data.
Tissue-specific expression profile showed differential expression
pattern of all the genes with relatively lower expression in leaf
(Figure 5). In the case of CesA/Csl and Gsl superfamilies, higher
expression of SiCesA1, SiGsl2, SiGsl10, and SiGsl12was evidenced
in all the four tissues when compared to the other members
of the same gene family. Tissue-specific higher expression of
SiCslD1 in spica, and SiCslE4 and SiCslJ2 in leaf was also

observed. Many genes including SiCesA6, SiCesA8, SiCslA3,

SiCslC3, SiGsl3, and SiGsl7 were not expressed in these tissues
(Figure 5A). Tissue-specific expression profiling of monolignol
genes showed higher expression of SiPAL1, SiPAL2, SiPAL7,
SiC4H2, Si4CL1, Si4CL3, Si4CL6, SiHCT2, SiCOMT2, SiCCR11,

SiCAD1, and SiCAD5 in all the four studied tissues. Tissue-
specific higher expression was evidenced with SIPAL4, Si4CL10,
and SiCAD3 in root, and Si4CL9 and SiCAD12 in spica. Similar
to CesA/Csl and Gsl, monolignol genes also showed a relatively
lower expression in leaf tissue (Figure 5B). Expression profiling
of all the genes in response to dehydration stress showed almost a
uniform expression in both control and stress samples (Figure 5).
Comparison of expression patterns between tissues and stress
library revealed that the expression of predominant lignocellulose
pathway genes was unaltered. Only three genes, namely SiCslA8,

FIGURE 5 | Heat map showing the expression of (A) cellulose biosynthesis genes, and (B) monolignol biosynthesis genes in four different tissues and

dehydration stress library. The Illumina RNA-seq data were re-analyzed and the heat map was generated. Bar at the top with the values 0.0, 5.0, and 10.0

represent low, intermediate and high expression, respectively.
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FIGURE 6 | Comparative genome map showing homologous relationships between CesA/Csl and Gsl superfamilies of Setaria italica and (A) Panicum

virgatum, (B) Sorghum bicolor, (C) Zea mays, and between monolignol biosynthesis genes of Setaria italica and (D) Panicum virgatum, (E) Sorghum

bicolor, (F) Zea mays.

SiCslA9, and Si4CL4 showed a higher expression in dehydration
stress library compared to control, of which SiCslA8 and SiCslA9
were expressed only during stress and not in any of the
tissue-specific RNA-Seq libraries. Few genes which were highly
expressed in control were observed to be down regulated during
stress and this includes SiCslA5, SiCslA6, SiCslA7, SiCslF2, and
SiCCR26 (Figure 5).

Homologous Relationships of
Lignocellulose Pathway Genes with Other
Grasses
Homologs of foxtail millet lignocellulose pathway genes in
sequenced C4 panicoid genomes, namely switchgrass (Panicum
virgatum), sorghum (Sorghum bicolor), and maize (Zea mays)
were derived (Figure 6). A maximum lignocellulose pathway
gene-based homology was observed between foxtail millet and
switchgrass as 19 genes of foxtail millet showed homology
with 60 genes of switchgrass (Supplementary Table S12). Of
the 19 foxtail millet genes, six belonged to SiGsl, four
to SiCCR, three each to SiCsl and SiPAL, and one each
to SiHCT, Si4CL and SiCAD. Eighteen foxtail millet genes
showed orthologous relationship with 41 sorghum genes, of
which SiGsl11 had a maximum of 11 homologs, followed by
SiGsl7 (7 homologs) and SiGsl5 and SiCCR17 (3 homologs

each) (Supplementary Table S13). In the case of foxtail millet-
maize homology, 26 foxtail millet genes showed homologous
relationship with 38 maize genes (Supplementary Table S14).
Among the foxtail millet genes, SiGsl had a maximum of 7
homologs in maize, followed by SiGsl7 (3 homologs).

Among the lignocellulose pathway proteins, CADs and
COMTswere well characterized as they play key role in secondary
cell wall lignification (Saballos et al., 2009; Saathoff et al., 2011a,b,
2012; Sattler et al., 2012; Trabucco et al., 2013). Sequence analysis
of these proteins in several grasses identified the presence of
conserved motifs in few members, which distinguish them as
lignifying proteins from the rest of non-lignifying proteins.
Lignifying CADs possess additional 12 amino acids T49, Q53,
L58, M60, C95, W119, V276, P286, M289, L290, F299, and I300,
which are involved in substrate recognition and binding (Youn
et al., 2006). Of the 13 SiCAD proteins, SiCAD11 contains
11 of 12 conserved amino acid residues. Of note, the active
substrate-binding residues, W119 and F298, which determine
specificity for aromatic alcohols and, the NADP(H) binding
site, S212, were present in SiCAD11. Sequence-based homology
analysis showed higher percentage of identity between SiCAD11
and lignifying CADs of other grasses namely switchgrass
(Pavir.J34526; 91%), sorghum (Sobic.006G211900; 89%) and
maize (GRMZM5G844562; 85%). Similarly, the conserved amino
acids M130, N131, L136, A162, H166, F176, M180, H183, I319, M320,
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and N324, which function in substrate-binding and positioning
in COMTs (Sattler et al., 2012; Trabucco et al., 2013) are found
to be present in SiCOMT02 of foxtail millet. Sequence-based
homology with SiCOMT02 showed high percent identity to
sorghum (Sobic.007G047300; 94%), switchgrass (Pavir.Fa01907;
85%), and maize (AC196475.3; 89%).

Duplication and Divergence of
Lignocellulose Pathway Genes
The number of non-synonymous substitutions per non-
synonymous site (Ka) and synonymous substitutions per
synonymous site (Ks) was calculated for paralogous as well as
homologous gene pairs and Ka/Ks ratio along with time of
divergence (in million years ago; mya) were derived. The ratio
of Ka to Ks for tandemly duplicated gene-pairs ranged from
0.09 to 0.18 with an average value of 0.13, which suggested
that these genes were under strong positive purifying selection
(Ka/Ks > 1) and the duplication event was predicted to
occur around 25 mya (Supplementary Table S15). In the case
of Ka/Ks ratio of homologous gene-pairs, it was maximum
between foxtail millet-switchgrass (average Ka/Ks = 0.91;
Supplementary Table S12), whereas foxtail millet-sorghum and
foxtail millet-maize homologs showed an average ratio of 0.19
(Supplementary Tables S13, S14). Since these values were less
than 1, it signifies the intense positive selective pressure acted on
respective protein-coding genes. The time of divergence between
foxtail millet and switchgrass was predicted to occur around 4.7
mya, whereas the divergence of foxtail millet-sorghum and foxtail
millet-maize occurred around 27 mya. This demonstrates that
duplication and divergence have played a key role in shaping the
lignocellulose pathway multigene families in foxtail millet and
other C4 grass genomes.

Expression Profile of Candidate Genes
during Stress and Hormone Treatments
Expression patterns of sixteen candidate lignocellulose
biosynthesis genes, namely SiCesA5, SiCesA9, SiGsl2, SiGsl12,
Si4CL10, SiPAL2, SiPAL7, SiC4H2, SiHCT1, SiCCoAOMT3,
SiF5H2, SiCOMT2, SiCCR7, SiCCR22, SiCAD1, and SiCAD6 in
response to stress (dehydration, salinity, cold) and hormone
(abscisic acid, salicylic acid, methyl jasmonate) treatments
was performed at two time points (1 h, early; 24 h, late).
These candidates were chosen based on; (i) expression profiles
deduced in silico using RNA-seq data, (ii) representing the
nine chromosomes of foxtail millet, and (iii) their function in
secondary cell wall formation such as SiCOMT2 in lignification
Overall, the study demonstrated differential expression pattern
of these genes during stress and hormone treatments except
SiCCR22 which was found to be down-regulated under all
conditions (Figure 7). SiGsl2 and SiGsl12 were found to be
highly expressed during all the three stress conditions, whereas
SiCAD6 was up-regulated during both salinity and dehydration
stress. Dehydration stress has been observed to induce the
expression of all the genes except SiCCoAOMT3, SiCOMT2,
SiCesA5, SiCCR22, SiPAL7, SiCCR7, and SiCesA9, though the
degree of expression varied between the genes. Salinity stress

showed an induction in expression of SiC4H2, SiCAD6, SiF5H2,
SiGsl12, and SiGsl2, while SiPAL2 was induced during early
salt stress and SiCAD01, Si4CL10, and SiCCR7 were found to
be up-regulated in late phase salinity stress, thus suggesting
a significant higher expression among the members of SiGsl
and SiCAD family. Significant up-regulation of SiGsl2, SiGsl12,
Si4CL10, SiHCT1, and SiCCR7 during cold stress suggests the
putative involvement of these genes in strengthening the cell
wall for tolerance to low temperature. Higher expression of
these genes was also found during both early and late phases of
treatment with salicylic acid and methyl jasmonate. Differential
expression of candidate genes was observed during the treatment
of all the hormones except abscisic acid, which showed no effect
on the expression of majority of candidate genes except SiGsl2,
which was induced at early phase of ABA treatment, SiCCR7 and
SiCes9, which were induced at late phase of ABA treatment, and
SiC4H2,which was induced at both the phases of ABA treatment.
In addition, expression of SiCCoAOMT3, SiCOMT2, SiCCR22,
SiPAL7, SiCAD1, and SiCAD6 was found to be down-regulated
during hormone treatments, while SiF5H2was up-regulated only
under late phase of salicylic acid treatment.

DISCUSSION

Cellulose, hemicelluloses and lignin constitute the complex
polymeric structure of secondary cell wall and the lignocellulose
biosynthesis pathway involves the action of cellulose synthase
(CesA), cellulose synthase-like (Csl), glucan synthase-like
(Gsl), phenylalanine ammonia lyase (PAL), trans-cinnamate
4-hydroxylase (C4H), 4-coumarate CoA ligase (4CL),
hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl
transferase (HCT), p-coumaroyl shikimate 3′-hydroxylase
(C3H), caffeoyl CoA 3-O-methyltransferase (CCoAOMT),
ferulate 5-hydroxylase (F5H), caffeic acid O-methyltransferase
(COMT), cinnamoyl CoA reductase (CCR), and cinnamyl
alcohol dehydrogenase (CAD) genes, which are well studied
in several crop plants as well as trees for understanding
and improving biofuel traits (Zhong and Ye, 2015). In
the present study, all these gene families in foxtail millet
were systematically identified and characterized using in
silico approaches, and expression profiling of chosen genes
was performed in response to several stress as well as
hormonal treatments for identifying target genes for functional
characterization.

A total of 13 CesA and 36 Csl genes were identified in foxtail
millet, and all the SiCesA proteins were found to possess the
characteristic cellulose synthase (CS) domain and 12 SiCesA
had an additional zinc finger (ZF) structure. Similarly, 11 CesA
proteins have been reported in rice, of which 9 contained both
CS and ZF domain, and 2 lacked ZF domain (Wang et al.,
2010). Role of CesA proteins in cellulose biosynthesis in both
primary and secondary cell walls has been well dissected in
Arabidopsis. In this plant, 10 CesA genes have been identified
(Richmond and Somerville, 2000), of which AtCesA1, AtCesA3,
and AtCesA6 were reported to be involved in primary cell wall
cellulose synthesis (Persson et al., 2007), AtCesA4, AtCesA7,
and AtCesA8 in secondary cell wall development, and AtCesA2,
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FIGURE 7 | Relative expression of candidate lignocellulose biosynthesis genes analyzed using qRT-PCR under dehydration (PEG), salinity (NaCl) and

cold stress (CS) as well as abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MJ) treatments for 0 (Control: CTL), 1 and 24h. Act2 was

used as an internal control to normalize the data. The error bars representing standard deviation were calculated based on three technical replicates for

biological triplicates. Statistical analysis between treatment and control using Tukey-Kramer multiple comparisons test has been performed and the differences in the

effects of stress treatments in all the genes were considered statistically significant at *P < 0.05, **P < 0.01, ***P < 0.001.

AtCesA5, AtCesA9, and AtCesA10 in tissue-specific cellulose
biosynthesis processes (Gardiner et al., 2003; Taylor et al., 2003).
Recent functional characterization of AtCesA proteins led to
the identification of unidirectional movement of these protein
complexes in seed coat epidermal cells, which deposit cellulose
that are involved in mucilage extrusion, adherence and ray
formation (Griffiths et al., 2015). In flax (Linum usitatissimum),
14 distinct CesA genes were identified and were targeted for
silencing using virus-induced gene silencing (VIGS) approach,
which showed impacts on outer-stem tissue organization and
secondary cell wall formation (Chantreau et al., 2015). A genome-
wide association study of single nucleotide polymorphisms
(SNPs) developed through re-sequencing of diverse chickpea
accessions revealed a superior haplotype and favorable natural
allelic variants in the upstream regulatory region of a CesA
gene, denoted as Ca_Kabuli_CesA3 (Kujur et al., 2015).
Interestingly, up-regulation of this superior gene haplotype
resulted in higher transcript expression of Ca_Kabuli_CesA3

gene in pollen and pod of high pod/seed number chickpea
accession, thus resulting in enhanced accumulation of cellulose
(Kujur et al., 2015). The specific allelic variant caused cellulose
changes specifically in pollen tubes of chickpea and therefore,
investigating the homologous gene of foxtail millet identified
in the present study will provide novel clues on its role, which
could be manipulated for achieving greater biomass yield and
bioconversion efficiency.

Physical map of SiCesA genes showed their distribution in
chromosomes 2, 3, 4, 5, and 9, with a maximum of 4 genes
in chromosome 4 and minimum of one gene in chromosome
3 (Figure 4). Extension of gene families is attributed to the
occurrence of three major duplication mechanisms, namely
segmental, tandem and retroposition (Cannon et al., 2004).
However, none of these duplications were found to be involved
in the expansion of SiCesA genes as revealed through MCScanX
analysis though both tandem and segmental duplication events
were reported in OsCesA family (Wang et al., 2010). Being a
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member of glycosyltransferase 2 (GT2) family, CesA proteins
have the conserved “DXD, D, QXXRW” motif (Somerville et al.,
2004) and conforming to this, all the SiCesA proteins except
SiCesA8 have a “DCD,D, QVLRW” consensus sequence, whereas
SiCesA8 had a unique “DYD, D” sequence and the motif
“QXXRW” was absent. Similar sequence variations have also
been reported byWang et al. (2010) in rice. Studies on CesA gene
family in crop plants have revealed the presence of a large family
of cellulose synthase-like (Csl) genes with sequence similarity
to CesA (Richmond and Somerville, 2000), and these genes are
shown to be involved in biosynthesis of hemicelluloses (Yin et al.,
2009). Similar to CesA, Csl proteins also belong to GT2 family
and possess the conserved “DXD, D, QXXRW”motif (Somerville
et al., 2004). In foxtail millet, 36 Csl genes were identified and
categorized as CslA, CslC, CslD, CslE, CslF, CslH, and CslJ in
accordance to the classification followed by Wang et al. (2010) in
rice. Interestingly, 2 CslJ genes were identified in foxtail millet,
which were reported to be specific to cereals though they are
not present in rice and Brachypodium (Fincher, 2009). Domain
analysis has shown the presence of GT2 domains in all SiCslA and
SiCslC proteins, whereas other SiCsl possess CS domain. Similar
reports in Arabidopsis and rice have shown the presence of
characteristic GT2 domain in CslA and CslC proteins (Yin et al.,
2009; Wang et al., 2010). Studies have shown that CslA and CslC
subgroups are the most divergent proteins, which have evolved
through duplication and divergence from a common ancestral
gene (Yin et al., 2009; Del Bem andVincentz, 2010), and therefore
share similar structural and physicochemical properties (Youngs
et al., 2007). Nevertheless, membrane topology and enzymatic
function of these proteins are contrastingly different (Davis et al.,
2010; Liepman and Cavalier, 2012). In addition, predominant
SiCslD family proteins have an additional RING/Ubox like zinc-
binding domain, which contains a C3HC4 motif capable of
binding to zinc cations.

Molecular processes and biological functions of Csl genes
have been less explored when compared to CesA genes
though Csl proteins are equally important in cell structuring.
Numerous reports have supported the involvement of CslA
protein in the synthesis of 1,4-β-mannan and glucomannan
backbones (Dhugga et al., 2004; Liepman et al., 2005; Suzuki
et al., 2006; Goubet et al., 2009; Gille et al., 2011) and
heterologous expression of CslA genes has shown the activity
of single enzyme in integrating mannose and glucose into
glcomannan chains (Suzuki et al., 2006; Liepman et al.,
2007; Gille et al., 2011). Similarly, CslC genes encode for
xyloglucan glucan synthase, which are involved in xyloglucan
biosynthesis (Cocuron et al., 2007). Heterologous expression of
AtCslC4 in Pichia pastoris produced soluble 1,4-β-glucans with
a low degree of polymerization, whereas expression of AtCslC4
along with AtXXT1 (xyloglucan xylosyltransferase) produced
insoluble 1,4-β-glucans with a higher degree of polymerization
suggesting the cooperative action of both the enzymes in
xyloglucan biosynthesis (Liepman and Cavalier, 2012). Though
CslD proteins were speculated to be involved in xylan and
homogalacturonan synthesis (Hamann et al., 2004; Bernal et al.,
2008a,b; Li et al., 2009), Arabidopsis csld mutants have been
shown to possess severe phenotypic defects including deformed

root hairs (csld2; Bernal et al., 2008b), root hairs burst (csld3;
Bernal et al., 2008b), defective growth of pollen tube (csld1 and
csld4; Bernal et al., 2008b; Wang et al., 2011) and reduced plant
growth (csld5; Bernal et al., 2008a). These reports suggest the role
of CslD in normal growth and development of plants beyond
their function in xylan and homogalacturonan synthesis. The
present study identified 4 SiCslE genes, whose characterization
has not been performed yet in any crop species. One CslE
gene in Arabidopsis and two in rice were reported to date. CslF
family of genes were considered to be present among grass
species and they regulate the synthesis of mixed-linkage glucan
(β-1,3; 1,4, glucan) (Hazen et al., 2002; Burton et al., 2006).
Mutation of barley CslF6 gene resulted in reduction of (1,3;1,4)-
β-D-Glucan and had an impact on chemical composition of
barley grains (Hu et al., 2014), whereas overexpression of this
gene in Nicotiana benthamiana led to accumulation of (1,3;1,4)-
β-D-Glucan (Wong et al., 2015). Recently, Jin et al. (2015)
has demonstrated the role of OsCslF6 in affecting phosphate
accumulation altering the level of carbon metabolism in rice.
Similar to CslF, CslH and CslJ are also grass-specific gene
family involved in deposition of (1,3;1,4)-β-D-Glucan (Doblin
et al., 2009; Yin et al., 2009, 2014). In the present study,
two genes each belonging to CslH and CslJ family were
identified.

Similar to CesA/Csl, glucan synthase-like protein (Gsl) family
are also involved in polysaccharide biosynthesis, particularly in
synthesis 1,3-β-D-glucan callose (Li et al., 1999). Calloses are
deposited in developing cell walls of fiber cells, seed hairs and
plasmodesmatal canals. Moreover, deposition of callose is also
reported in response to pathogen invasion (Muthamilarasan
and Prasad, 2013) and abiotic stress including desiccation,
wounding and metal toxicity (Stone and Clarke, 1992). In spite
of the importance of Gsl genes, limited studies have been
performed on elucidating the molecular role of these genes
and their respective proteins. In Arabidopsis, 12 Gsl genes
have been identified (https://cellwall.genomics.purdue.edu/intro/
index.html) and mutating AtGSL5 has been found to confer
resistance to powdery mildew infection (Nishimura et al., 2003).
A similar report by Jacobs et al. (2003) has also shown that
silencing of AtGsl5 enhances the resistance of silenced lines
to Sphaerotheca fusca, Golovinomyces orontii, and Blumeria
graminis. In contrast to the role of callose in acting as a physical
barrier to prevent pathogen invasion, the reports by Nishimura
et al. (2003) and Jacobs et al. (2003) have demonstrated the
resistance of Arabidopsis to pathogens in the absence of callose.
These reports have proved the importance to study the molecular
and physiological roles of Gsl proteins in response to biotic as
well as abiotic stress, and the present investigation has identified
12 SiGsl genes which could serve as interesting candidates
for functional characterization as foxtail millet is tolerant to
environmental stresses.

In the case of monolignol biosynthesis, ten key enzymes
namely PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT,
CCR, and CAD have been identified and characterized in the
present study. Through systematic analysis, 10, 3, 17, 2, 2,
5, 2, 3, 26, and 13 proteins belonging to PAL, C4H, 4CL,
HCT, C3H, CCoAOMT, F5H, COMT, CCR, and CAD families,
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respectively were identified (Supplementary Table S6). These
numbers compared with the genes reported in Arabidopsis,
poplar and eucalyptus has shown that foxtail millet has higher
number of PAL genes (10) whereas other three organisms have
4, 5, and 9 genes, respectively (Raes et al., 2003; Shi et al., 2010;
Carocha et al., 2015). Both foxtail millet and poplar have 2 C4H
and 17 4CL genes, whereas Arabidopsis and eucalyptus have
lesser number of C4H and 4CL genes. Of note, foxtail millet
has a maximum of 26 CCR genes, while Arabidopsis has 7 and
eucalyptus has 2 genes (Raes et al., 2003; Shi et al., 2010; Carocha
et al., 2015). The identified monolignol biosynthesis genes were
distributed in all the nine chromosomes of foxtail millet, of
which two gene-pairs each of SiPAL (SiPAL4-SiPAL5; SiPAL8-
SiPAL9) and SiCAD (SiCAD2-SiCAD3; SiCAD8-SiCAD9), and
one pair each of Si4CL (Si4CL11-Si4CL12) and SiCCoAOMT
(SiCCoAOMT3-SiCCoAOMT4) were identified to be tandemly
duplicated (Figure 4). Phylogenetic analysis of foxtail millet
monolignol biosynthesis proteins with bona fide proteins of
eucalyptus, tobacco, poplar, Arabidopsis, maize, medicago and
grape revealed that predominant proteins of foxtail millet are
highly divergent (Figure 3).

Furthermore, promoter analysis has been performed for
foxtail millet lignocellulose biosynthesis genes, which revealed
the presence of diverse cis-regulatory elements that fall under
the following categories; (i) cis-elements which are universally
present in all the gene family members, (ii) cis-elements which
are present in all the gene family members except one gene,
and (iii) cis-element which is unique to any one gene of
its corresponding gene family (Supplementary Tables S8, S9).
These data suggest the transcriptional control of cell wall genes by
the action of network of transcription factors. This would assist
in understanding gene regulatory mechanism controlling the
expression of lignocellulose genes and fine tuning them to achieve
the optimal pattern of secondary cell-wall deposition. Since gene
expression is also regulated at post-transcriptional level through
miRNAs, the present study also identified foxtail millet miRNAs
which target the transcripts of lignocellulose biosynthesis
genes (Supplementary Table S10). Moreover, different kinds of
molecular markers including SSRs, eSSRs, and ILPs present in
both upstream and genic region of lignocellulose biosynthesis
genes have been identified (Supplementary Table S11), which
could be useful for conducting genomics-assisted breeding for
biofuel traits in foxtail millet. In silico expression profiles
of all the lignocellulose biosynthesis genes in four tissues as
well as dehydration library revealed the differential expression
of these genes in these tissues and during stress, thus
signifying their putative involvement in biological functions
other than cell wall structuring. This is supported by the
reports on mutants of studied genes in Arabidopsis and
other plants in which severe phenotypic defects have been
observed.

In addition to being potential targets for biofuel traits, the
lignocellulose biosynthesis genes have also been reported to play
vital role in abiotic stress responses. Chen et al. (2005) have
shown that Arabidopsis CesA8 mutants accumulate increased
levels of ABA, proline and sugars, and express higher levels
of stress-related genes, and thus possess enhanced tolerance

to drought and osmotic stress. Considering this, Guerriero
et al. (2014) analyzed the expression of nine putative CesA
genes in response to cold, heat and salt stress in Medicago
sativa and identified a salt/heat-induced and a cold/heat-
repressed group of genes, which suggest the putative involvement
of cellulose synthases in conferring abiotic stress tolerance.
Similar to CesA genes, Csl genes have also been shown to
participate in stress responsive machinery. Characterization of
the salt-overly sensitive6 allele of AtCslD5 has demonstrated
reactive oxygen species-based signaling mechanism in response
to osmotic stress in Arabidopsis (Zhu et al., 2010). Similarly,
accumulation of callose in response to environmental stimuli
through overexpression of Gsl genes has been extensively studied
(Nedukha, 2015). Stass and Horst (2009) have reported the
production of abiotic stress-induced callose in all the plants
through a highly conserved signaling pathway. Lignification has
also been reported to be induced during abiotic stresses (Moura
et al., 2010). In view of these, expression profiling of candidate
genes in response to dehydration, salinity and cold stress as
well as ABA, SA, and MeJA treatments was performed, which
showed significant higher expression of SiGsl2 and SiGsl12 in
all the stress conditions. Few genes including SiCAD6, SiC4H2,
SiPAL2, SiF5H2, Si4CL10, SiHCT1, and SiCCR7 were evidenced
to be up-regulated either at early or late or both the phases of
stresses. Similarly, differential expression patterns were observed
for all the genes during hormone treatments and of note, ABA
treatment has no significant impact on the expression of the
majority of genes.

Noteworthy, the expression profiles of candidate
lignocellulose biosynthesis genes were in correlation with
the cis-regulatory elements present in the promoter regions
of respective genes. The genes which are up-regulated during
dehydration and salinity stress including SiGsl2, SiGSl12,
SiPAL2, SiC4H2, Si4Cl10, SiF5H2, SiHCT1, SiCAD1, and
SiCAD6 have one or more “response to dehydration stress”
cis-motifs ABRELATERD1, ACGTATERD1 and MYCATRD22
in their promoter regions (Vandepoele et al., 2009; Yan et al.,
2014). Similarly, SiGsl2, SiGSl12 and Si4Cl10 that showed
higher expression under cold stress have CACGT motif, which
was reported to be responsible for response to cold stress
(Vandepoele et al., 2009). In case of hormonal treatments, methyl
jasmonate responsive cis-element BOXLCOREDCPAL (Yan
et al., 2014) was found in the promoter regions of SiCesA5,
SiGsl2, SiGSl12, Si4Cl10, SiPAL2, SiC4H2, and SiCCR7. These
genes showed significant up-regulation at either early or late
or both the phases of methyl jasmonate treatment. Similarly,
ABA-responsive genes such as SiC4H2, SiCCR7, SiGsl2, and
SiCesA9 have both MYCCONSENSUSAT and MYCATRD22
cis-motifs, which have been reported to be MYC recognition
site in the promoter of dehydration responsive rd22 gene which
in turn was ABA-dependent (Yan et al., 2014), suggesting that
these genes were activated in response to ABA. Thus the present
study demonstrates that the interaction of cis-elements and
transcription factors has resulted in differential gene expression
through activation or repression respective genes in response
to various environmental stresses and hormone treatments (Lee
et al., 2002; Benitez et al., 2013). The findings and potential
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correlation between the cis-elements to response to a specific
elicitor condition are indirect. It is possible that they are
linked, but such primary evidence is not provided here. It is
also not known if there were any changes to cell walls in the
plants used for expression analyses. Altogether, the present
investigation suggests the putative involvement of these genes in
strengthening the cell wall for tolerance to abiotic stresses, and
they could serve as potential candidates for further functional
characterization.

CONCLUSIONS

The present study has identified the genes belonging to
CesA/Csl, Gsl, PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H,
COMT, CCR, and CAD superfamilies in foxtail millet and
the genes were mapped onto nine chromosomes. In silico
analyses of putative protein properties and gene structures
revealed diverse characteristic features of these proteins and
their gene duplication analysis showed that few gene family
members underwent tandem duplication. Phylogenetic analysis
of respective proteins demonstrated that except CesA/Csl and
Gsl superfamily, the monolignol biosynthesis proteins are highly
diverse. Promoter analysis showed the presence of various
unique and common cis-regulatory elements in the upstream of
lignocellulose biosynthesis genes and potential miRNAs of foxtail
millet were identified to target few genes for post-transcriptional
gene silencing. In addition, three types of molecular markers
were found in lignocellulose biosynthesis genes, which could
be used in genomics-assisted breeding. Comparative genome
mapping of foxtail millet lignocellulose biosynthesis genes with
the sequenced C4 panicoid genomes revealed higher homology
with switchgrass, followed by sorghum and maize. Evolutionary
analysis showed that both paralogous and homologous gene-
pairs underwent intense positive purifying selection, and
duplication occurred ∼25 mya, whereas divergence of foxtail
millet and switchgrass occurred ∼4 mya. Similarly, divergence
of foxtail millet from sorghum and maize was predicted to
occur ∼27 mya. In silico expression analysis of all the identified
genes in four tissues and dehydration stress library of foxtail
millet revealed their differential expression pattern, and also
suggested the putative biological function of these genes in
processes other than cell wall biosynthesis. Expression profiling
of candidate genes in response to dehydration, salinity and cold
stress along with ABA, SA and MeJA treatments supported the
differential expression of these genes with significant higher
expression of SiGsl12, SiHCT1, and SiCAD6 genes. The results
suggested that these genes could be used as potential candidates
for functional characterization for biofuel traits. Though similar
studies have already been completed in switchgrass, sorghum
and maize, the present study conducted in biofuel model foxtail
millet would facilitate improving the crop for efficient biofuel
production.
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