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Our understanding of plant–pathogen interactions is making rapid advances in order
to address issues of global importance such as improving agricultural productivity and
sustainable food security. Innate immunity has evolved in plants, resulting in a wide
diversity of defense mechanisms adapted to specific threats. The postulated PTI/ETI
model describes two perception layers of plant innate immune system, which belong
to a first immunity component of defense response activation. To better describe the
sophisticated defense system of plants, we propose a new model of plant immunity.
This model considers the plant’s ability to distinguish the feeding behavior of their many
foes, such as a second component that modulates innate immunity. This hypothesis
provides a new viewpoint highlighting the relevance of hormone crosstalk and primary
metabolism in regulating plant defense against the different behaviors of pathogens with
the intention to stimulate further interest in this research area.
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The plant immune system has been shaped by the complexity in feeding behaviors of pathogens
through co-evolution over millions of years (Brown and Tellier, 2011). Plant pathogens can be
divided into two wide classes accordingly to their lifestyle. Biotrophs rely on live host cells either
completely or partially for completion of their life cycle and cause relatively minor damage on the
host cell wall and maintain host viability to acquire nutrients. Necrotrophic microorganisms kill
their hosts during the infection and use a suite of cell wall degrading enzymes and toxins to kill
and macerate the host tissues to feed. Phytopathogens manipulate the host metabolism to induce
favorable nutritional conditions. Advances in analytical chemistry have allowed the generation of
extensive metabolic profiles highly specific for given plant–pathogen interactions (Balmer et al.,
2013). Resistance to biotrophs and necrotrophs may be induced by signal transduction routes that
share cross-talk and independent pathways (Glazebrook, 2005). Plants do not have an adaptive
immune system due to their lack of both a circulatory system and specialized immune cells (Kumar
et al., 2011). The plant innate immune system is based on a large number of surveillance-type
receptors that work to detect the presence of pathogens and to transmit the message of invasion.
Perception of extracellular signals requires Pattern-Recognition Receptors (PRRs) at the plasma
membrane of cells, whereas recognition of cytoplasmic danger signals depends on cytoplasmic
sensors like Nibblers (NB-LRR receptors) resistance proteins (Liu et al., 2009; Monaghan and
Zipfel, 2012).

The PTI/ETI model postulates two forms of plant innate immunity, whereas most of evidences
indicate the occurrence of an unique type. The basis of innate immunity in plants, as in the case of
innate immunity in vertebrates, is mediated through a single overarching principle, the perception
of signals of danger (Jones and Dangl, 2006). The evolutionary separation of innate immunity
described in the PTI/ETI model, based on the perception of pathogen-specific molecular classes
(PAMPs and effectors), is not sufficient to explain the modulation of resistance responses when

Frontiers in Plant Science | www.frontiersin.org 1 November 2015 | Volume 6 | Article 987

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00987
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2015.00987
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2015.00987&domain=pdf&date_stamp=2015-11-13
http://journal.frontiersin.org/article/10.3389/fpls.2015.00987/abstract
http://loop.frontiersin.org/people/258479/overview
http://loop.frontiersin.org/people/240158/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Andolfo and Ercolano Plant innate immune circular system

FIGURE 1 | Two different resistance directions are supposed to be activated in a multi-trophic interaction. Once a plant containing a R-gene (different
green shades) comes in contact with biotrophic or necrotrophic pathogens, only an incompatible interaction will activate the plant resistance. In this scheme, the
interaction spaces of plant resistance (green triangle) and of biotrophic and necrotrophic pathogens (blue and red rectangles, respectively), are indicated. The
intersections of interaction spaces identify three plant–pathogen interaction areas: two are pathogen lifestyle-related (small black triangles) and one is common (violet
circle). The synergic effect of immunity activation and of pathogen lifestyle-dependent components result in plant immunity to biotrophic or necrotrophic pathogens.

both molecule types can trigger plant nonspecific immunity
(Jones andDangl, 2006; McDowell and Simon, 2008). In addition,
there is often little effective resistance to necrotrophs that
produce nonspecific toxins, cell wall degrading and defense
suppressing enzymes, suggesting that these powerful virulence
functions may override PTI and ETI processes (Heil and Land,
2014).

For plants, the perception of endogenous elicitors or
Danger/Damage-Associated Molecular Patterns (DAMPs) may
trigger signals of pathogen invasion similar to PAMPs/effectors
as reported in others eukaryote organisms (Hein et al., 2009;
Heil and Land, 2014). The responses triggered by DAMPs
largely overlap with those activated by PAMPs. The surface-
localized receptors (PRRs) perceive DAMPs and thus activate
the resistance response. In plants, DAMPs can induce a set

of basal responses such as indirect and direct antimicrobial
effects (cell wall strengthening and anti-microbial agents) and
also serve as signals (prime defense responses). Therefore, the
defense activation may be considered as recognition of ‘non-self ’
(PAMPs or effectors) or ‘altered-self ’ (DAMPs) (Heil and Land,
2014).

PAMPs, DAMPs, and effectors are perceived by the plant as
signals of danger that alert the defense system. Different methods
of (pathogen) recognition are present in the extracellular space
or in the cytoplasm of the host (Boller and Felix, 2009). The
perception of all these signals appears to trigger the stereotypical
defense program, albeit with kinetic and quantitative differences
in induction (Wise et al., 2007). In their defense response,
plants seem not to discriminate between PAMPs or DAMPs and
effectors originating from bacteria, virus, fungi, or oomycetes.
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The response to effectors typically results in a hypersensitive
response, whereas PAMPs or DAMPs do not normally cause
cell death. However, this is not a general rule because some
PAMPs could induce a hypersensitive response (Ron and Avni,
2004; Takemoto et al., 2005; Thomma et al., 2011), whereas some
resistance genes provide protection without a hypersensitive
response (Lee et al., 2006).

The pathogen recognition genes (Nibblers, PPRs) seem
to be incapable of unequivocally distinguishing a specific
pathogen by its feeding behavior in order to modulate a
specific resistance response. They are involved in perception
of pathogen invasion and alerting the non-specific immune
system responses. Numerous cases have been reported in the
literature in which the same R-gene confers resistance to more
than one pathogen while different R-genes confer resistance
against multiple pathogens (Tai et al., 1999; Zhao et al., 2005;
Gururani et al., 2012). The innate immunity of vertebrates,
also known as a non-specific immune system, defends the
host from infection by other organisms in a non-specific
manner.

In all stages of plant growth and development phytohormones
play essential roles as signaling molecules that regulate cellular
processes locally but also systemically (Loake and Grant,
2007; Bari and Jones, 2009). They also play a crucial role
in the regulation of plant immune responses to microbial
pathogens (Shah, 2003; von Essen et al., 2010). Similar to
vertebrates, these hormones can act as immunomodulators,
altering the sensitivity of the immune system, and act as
mediators and regulators of immune processes (Schenk et al.,
2000). The balance of hormonal crosstalk strongly influences
the outcome of plant–pathogen interactions, including the
establishment of effective immunity. Rapid adaption to threats
from the biotic environment is regulated by an enormous
regulatory network of interconnect signal pathways. Several
studies have reported that plant–pathogen interaction, involving
biotrophic pathogens, requires salicylic acid (SA) signaling
modulation, whereas a combination of jasmonic acid (JA) and
ethylene (ET) signaling modulation is required in interactions
with necrotrophic pathogens (Glazebrook, 2005). However,
the new emerging picture indicates that complex crosstalk
among different classes of hormones might modulate the
disease resistance, with outcomes dependent on the pathogen
lifestyles and the genetic constitution of the host (Mur
et al., 2006; Robert-Seilaniantz et al., 2011; Kazan and Lyons,
2014).

Many phytopathogens are able to manipulate plant hormone
signaling pathways to counteract plant defense responses. Tactics
frequently employed by plant pathogens involve hijacking,
evading, or disrupting hormone signaling pathways and/or
crosstalk. This is achieved mechanistically via pathogen-
derived molecules (effectors), which target components
of phytohormone signaling pathways in the host plant.
Pathogens also use “phytohormone mimics,” molecules that
structurally and/or functionally resemble phytohormones
or phytohormone signaling components, to trick the host
into behaving inappropriately. In turn, plants have adopted
innovative strategies and diverse mechanisms to neutralize these

attacks, often relying on elaborate signaling networks regulated
by phytohormones (Bolton, 2009).

The attempted infection of biotrophs and necrotrophs
can activate plant immune responses, which include complex
histological, cellular, biochemical, and molecular events that the
pathogen proliferation or disease spread is limited. Lifestyle,
infection strategy and host defense responses vary greatly
between the two pathogen classes. The typology of damage signals
release from the injured host tissue (DAMPs and GLVs) can also
help to better regulate host response (Scala et al., 2013; Heil and
Land, 2014). The damaged-self recognitions (PRRs mediated)
inform the host on tissue disrupted and contribute to trigger both
JA- and SA-mediated responses (Scala et al., 2013; Heil and Land,
2014). Positive feedback loops, characteristic of DAMP-mediated
signaling, serve to prime the same cell or the surrounding tissue
for future injury or infection (Heil and Land, 2014).

It has been suggested that during plant–pathogen interactions
the role of primary metabolism is to support the cellular
energy requirements for plant defense response which establishes
a favorable energy balance for defense (Bilgin et al., 2010;
Kangasjarvi et al., 2012). Consistent with these notions, it
appears that the up-regulation of defense-related pathways is
compensated by the down-regulation of genes involved in
photosynthesis as well as pathogen-derived elicitors (Andolfo
et al., 2014; Rojas et al., 2014). Recently, several studies on the
role of primary metabolic pathways (photosynthesis, assimilate
partitioning, and source–sink regulation) in different plant–
pathogen interactions focused the attention on the role of
primarymetabolism in regulating the plant defense response after
pathogen attack (López-Gresa et al., 2010). Metabolic feedback
regulation triggered by pathogenetic factors and mediated by the
suppression of photosynthesis and sugar signals are indicated
as the most reliable system since pathways are reprogrammed
thanks to the metabolic effects induced by pathogen. The
different lifestyles of biotrophic and necrotrophic pathogens are
due to the need to complete their life cycle on living or dead
tissues, respectively. The comparison of the different changes
induced by biotrophic and necrotrophic pathogens revealed the
complexity and divergence of the responses of plant primary
metabolic pathway (Rolland et al., 2006; Duan et al., 2013). Thus
demonstrating, that the plant defense is preceded and facilitated
by a fundamental shift of primary metabolism (Scharte et al.,
2005).

Consistent with this notion, it is possible to conceive a
well-articulated model in which specific interactions, derived
by host and pathogen action overlapping spaces, generate
different defense responses (Figure 1) (Walley et al., 2007).
In this schema, the action spaces of resistance plant (green
triangle) and of biotrophic and necrotrophic pathogens (blue
and red rectangles, respectively) are indicated. The intersections
among action areas identify three plant–pathogen interaction
areas, two of which are specific to pathogen lifestyle (small
black triangles) and one is common (violet circle) to both the
lifestyle-dependent pathogen interactions. In the violet circle the
Immunity Activation Component (IAC), composed by PRRs-
Triggered Signaling (PTS), and Nibblers-Triggered Signaling
(NTS), it is independent of the pathogen feeding behavior and
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FIGURE 2 | The circular model. The model schematically shows the key points of activation and modulation of plant immunity. Plant resistance mechanism of an
incompatible interaction might be divided into three phases: (1) interaction, (2) activation/modulation, and (3) effective resistance (immunity). During the interaction
stage, two principal effects are detected: (A) modifications of virulence factor targets and (B) specific alterations of primary plant metabolism. In the activation stage:
the modifications of virulence factor targets induce the Nibblers Triggered Signaling (NTS) or PPRs Triggered Signaling (PTS), mediated by R-genes activation. These
metabolic alterations induce a feedback regulation of primary metabolic pathways resulting in a Hormone Tempered Resistance (HTR). In the effective resistance
stage, the NTS/PTS, and the HTR converge to confer a resistance specific to the lifestyle of pathogen (Pathogen lifestyle-Specific Resistance, PSR).

actives the plant defense-signaling. IAC makes it possible to
discern a biotic interaction from a physical or chemical form of
abiotic stress (Dodds and Rathjen, 2010). The transmembrane
and cytoplasmic receptors play a key role since they act as
sentinels for the recognition of pathogens in cellular specific
areas (cytoplasmic and extracellular spaces). The recognition
components contribute to making immediate the host response,
but it is not sufficient to explain the fine-tuning defense
signaling by the plant during the interaction with biotrophic or
necrotrophic pathogens (Dodds and Rathjen, 2010).

Once a plant comes in contact with a biotrophic or
necrotrophic pathogen, only an incompatible interaction will
create an exchange of information necessary to activate the
plant resistance. The feeding behavior of the pathogen also
influences the activation of a second immunity component
that is responsible for the differential modulation of the
resistance, which will drive the resistance in right direction
(Rolland et al., 2006). In Figure 1, two small black triangles
depict the overlapping areas between host (green triangle) and
biotrophic/necrotrophic pathogens (blue and red rectangles,
respectively), that initiate the IAC converging in the pathogen-
specific plant immunity.

Based on the observation of plant pathogen lifestyle-
dependent interaction (schema in Figure 1), we propose new
insights that contribute to a model of plant innate immune
system (Figure 2). Our circular model schematically illustrates
the key points of two components (activation and modulation)
plant immunity and the resultant of their combination. In
the circular model, the plant–pathogen interaction could be

synthetized in three phase: (1) interaction, (2) activation, and
modulation (3) effective resistance. During the interaction stage
when the pathogen (fungi, virus, bacteria, and oomycetes)
interacts with the host, two principal effects are detected: (A)
modifications of virulence factor targets (Bolouri-Moghaddam
and Van den Ende, 2012) and (B) specific alterations of primary
plant metabolism (López-Gresa et al., 2010; Duan et al., 2013).
These two biological responses determine the transition to the
activation stage of resistance. Direct and indirect perception of
virulence factors, mediated by pathogen recognition genes (NB-
LRRs; RLKs; RLPs) triggered the plant defense-signaling (Wise
et al., 2007; McDowell and Simon, 2008; Boller and Felix, 2009).

In plants, sugar signals are generated by photosynthesis and
carbon metabolism in source and sink tissues to modulate
growth, development, and stress responses. During the
recognition phase metabolic alterations induced from pathogen
attack initiate feedback regulation of plant primary metabolism,
mediated by sugar signals and genes involved in photosynthesis
and chlorophyll biosynthesis (Scharte et al., 2005; Rolland
et al., 2006). The various alterations of primary metabolism
induced by the feeding behavior of microbial pathogens
generate a calibrated hormone response. Several lines of
evidence illustrate the intimate cross-talk of JA, gibberellins
(GA), auxins (IAA), cytokines (CK), ET, and sugar signaling
pathways (Audenaert et al., 2002; Li et al., 2007). Interestingly,
there is extensive crosstalk between sugar-specific signaling
pathways and abscisic acid (ABA) signaling pathways. ABA
antagonizes SA (Asselbergh et al., 2008) but synergizes
with JA (Pieterse et al., 2009), suggesting a pivotal role for
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ABA between these two pathways. It has been shown that
the cross-talk among GA, JA, ABA, and sucrose in a
complex signaling network can modulate immune response,
and notably, sucrose signaling seems to be a primary and
essential component in this network (Roitsch, 1999). Feedback
regulation of metabolism stimulates hormone signaling crosstalk
that modulates the resistance response (Scharte et al., 2005). The
metabolic shift from source to sink further enhances the plant
hormone signaling, and the expression of defense-related genes
(Scharte et al., 2005; Scala et al., 2013).

It has been clearly shown that the production of three
major phytohormones (JA, ET, and SA) mediates the defense
response to different pathogen lifestyles (Glazebrook, 2005;
Loake and Grant, 2007; Bari and Jones, 2009). In our circular
model the hormone-regulated signaling defense pathways play
a central role in plant immunity modulation. The plant defense
system is fine-tuned and carefully modulated for responses
to the different feeding behaviors of microbial pathogens.
Recently, brassinosteroids (BR) and strigolactones (STR) have
been shown to interact antagonistically or synergistically with
the SA-JA-ET backbone of the plant innate immune signaling
network (Figure 2) (Glazebrook, 2005). In conclusion, the
specific lifestyle of pathogens requires a specific response. In the
effective resistance stage, the IAC and the Immunity Modulation
Component (IMC) converge in a unique response of resistance
specific to the lifestyle of pathogen (Pathogen lifestyle-Specific
Immunity, PSI). Our IAC/IMC model presents a schematic
representation of plant innate immune components in which
plant hormones play a leading role in determining the outcome.

The plant possesses an internal and external receptor repertoire
that can activate prompt pathogen recognition. Plant global
awareness requires a metabolic response directly bearing on the
established interaction. More studies are necessary to identify
additional components involved in defense responses as well as
a detailed characterization of the mechanisms underlying such
responses.

AUTHOR CONTRIBUTIONS

Conceived and designed the model and was centrally involved
in manuscript writing: GA. Elucidated the meaning and revised
the paper: MRE. Both authors read and approved the final
manuscript.

FUNDING

This research was carried out within the GenoPOM-Pro Project
funded by the Italian Ministry of Education, University and
Research.

ACKNOWLEDGMENTS

We thank Dr. Michael Van Oosten for language editing and Dr.
Paolo Iovieno for proofreading the manuscript and for assistance
with the figures.

REFERENCES

Andolfo, G., Ferriello, F., Tardella, L., Ferrarini, A., Sigillo, L., Frusciante, L., et al.
(2014). Tomato genome-wide transcriptional responses to Fusarium wilt, and
tomato Mosaic virus. PLoS ONE 9:e94963. doi: 10.1371/journal.pone.0094963

Asselbergh, B., De Vleesschauwer, D., and Hofte, M. (2008). Global switches
and fine-tuning: ABA modulates plant pathogen defence. Mol. Plant Microbe
Interact. 21, 709–719. doi: 10.1094/MPMI-21-6-0709

Audenaert, K., DeMeyer, G. B., and HöFte, M. M. (2002). Abscisic acid determines
basal susceptibility of tomato to Botrytis cinerea and Sugars and suppresses
salicylic acid-dependent signaling mechanisms. Plant Physiol. 128, 491–501.
doi: 10.1104/pp.010605

Balmer, D., Flors, V., Glauser, G., and Mauch-Mani, B. (2013). Metabolomics of
cereals under biotic stress: current knowledge and techniques. Front. Plant Sci.
4:82. doi: 10.3389/fpls.2013.00082

Bari, R., and Jones, J. D. (2009). Role of plant hormones in plant defence responses.
Plant Mol. Biol. 69, 473–488. doi: 10.1007/s11103-008-9435-0

Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R., and De Lucia, E. H.
(2010). Biotic stress globally downregulates photosynthesis genes. Plant Cell
Environ. 33, 1597–1613. doi: 10.1111/j.1365-3040.2010.02167.x

Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception
of microbe-associated molecular patterns and danger signals by
pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406. doi:
10.1146/annurev.arplant.57.032905.105346

Bolouri-Moghaddam, M. R., and Van den Ende,W. (2012). Sugars and plant innate
immunity. J. Exp. Bot. 63, 3989–3998. doi: 10.1093/jxb/ers129

Bolton,M. D. (2009). Primary metabolism and plant defense – fuel for the fire.Mol.
Plant Microbe Interact. 22, 487–497. doi: 10.1094/MPMI-22-5-0487

Brown, J. K. M., and Tellier, A. (2011). Plant-parasite coevolution: bridging the
gap between genetics and ecology. Annu. Rev. Phytopathol. 49, 345–367. doi:
10.1146/annurev-phyto-072910-095301

Dodds, P. N., and Rathjen, J. P. (2010). Plant immunity: towards an integrated
view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548. doi:
10.1038/nrg2812

Duan, G., Christian, N., Schwachtje, J., Walther, D., and Ebenhöh, O. (2013). The
metabolic interplay between plants and phytopathogens. Metabolites 3, 1–23.
doi: 10.3390/metabo3010001

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic
and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227. doi:
10.1146/annurev.phyto.43.040204.135923

Gururani, M. A., Venkatesh, J., Upadhyaya, C. P., Nookaraju, A., Pandey,
S. K., and Park, S. W. (2012). Plant disease resistance genes: current
status and future directions. Physiol. Mol. Plant Pathol. 78, 51–65. doi:
10.1016/j.pmpp.2012.01.002

Heil,M., and Land,W.G. (2014). Danger signals – damaged-self recognition across
the tree of life. Front. Plant Sci. 5:578. doi: 10.3389/fpls.2014.00578

Hein, I., Gilroy, E. M., Armstrong, M. R., and Birch, P. R. J. (2009). The zig-
zag-zig in oomycete-plant interactions. Mol. Plant Pathol. 10, 547–562. doi:
10.1111/j.1364-3703.2009.00547.x

Jones, J. D. G., and Dangl, J. L. (2006). The plant immune system. Nature 444,
323–329. doi: 10.1038/nature05286

Kangasjarvi, S., Neukermans, J., Li, S., Aro, E. M., and Noctor, G. (2012).
Photosynthesis, photorespiration, and light signalling in defence responses.
J. Exp. Bot. 63, 1619–1636. doi: 10.1093/jxb/err402

Kazan, K., and Lyons, R. (2014). Intervention of phytohormone pathways
by pathogen effectors. Plant Cell 26, 2285–2309. doi: 10.1105/tpc.114.1
25419

Kumar, H., Kawai, T., and Akira, S. (2011). Pathogen recognition
by the innate immune system. Int. Rev. Immunol. 30, 16–34. doi:
10.3109/08830185.2010.529976

Lee, S. W., Han, S. W., Bartley, L. E., and Ronald, P. C. (2006). Unique
characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications

Frontiers in Plant Science | www.frontiersin.org 5 November 2015 | Volume 6 | Article 987

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Andolfo and Ercolano Plant innate immune circular system

for plant innate immunity. Proc. Natl. Acad. Sci. U.S.A. 103, 18395–18400. doi:
10.1073/pnas.0605508103

Li, Y., Smith, C., Corke, F., Zheng, L., Merali, Z., Ryden, P., et al. (2007).
Signaling from an altered cell wall to the nucleus mediates sugar-responsive
growth and development inArabidopsis thaliana. Plant Cell 19, 2500–2515. doi:
10.1105/tpc.106.049965

Liu, J., Elmore, J.M., and Coaker, G. (2009). Investigating the functions of the RIN4
protein complex during plant innate immune responses. Plant Signal. Behav. 4,
1107–1110. doi: 10.4161/psb.4.12.9944

Loake, G., and Grant, M. (2007). Salicylic acid in plant defence—the players and
protagonists.Curr. Opin. Plant Biol. 10, 466–472. doi: 10.1016/j.pbi.2007.08.008

López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi,
Y. H., et al. (2010). Metabolic response of tomato leaves upon different plant–
pathogen interactions. Phytochem. Anal. 21, 89–94. doi: 10.1002/pca.1179

McDowell, J.M., and Simon, S. A. (2008).Molecular diversity at the plant-pathogen
interface. Dev. Comp. Immunol. 32, 736–744. doi: 10.1016/j.dci.2007.11.005

Monaghan, J., and Zipfel, C. (2012). Plant pattern recognition receptor
complexes at the plasma membrane. Curr. Opin. Plant Biol. 15, 349–357. doi:
10.1016/j.pbi.2012.05.006

Mur, L. A. J., Kenton, P., Atzorn, R., Miersch, O., and Wasternack, C. (2006).
The outcomes of concentration-specific interactions between salicylate and
jasmonate signaling include synergy, antagonism, and oxidative stress leading
to cell death. Plant Physiol. 140, 249–262. doi: 10.1104/pp.105.072348

Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., and Van Wees, S. C. M. (2009).
Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol.
5, 308–316. doi: 10.1038/nchembio.164

Robert-Seilaniantz, A., Grant, M., and Jones, J. D. G. (2011). Hormone crosstalk
in plant disease and defense: more than just jasmonate-salicylate antagonism.
Annu. Rev. Phytopathol. 49, 317–343. doi: 10.1146/annurev-phyto-073009-
114447

Roitsch, T. (1999). Source-sink regulation by sugar and stress. Curr. Opin. Plant
Biol. 2, 198–206. doi: 10.1016/S1369-5266(99)80036-3

Rojas, C. M., Senthil-Kumar, M., Tzin, V., and Mysore, K. S. (2014).
Regulation of primary plant metabolism during plant–pathogen interactions
and its contribution to plant defense. Front. Plant Sci. 5:17. doi:
10.3389/fpls.2014.00017

Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling
in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709.
doi: 10.1146/annurev.arplant.57.032905.105441

Ron,M., and Avni, A. (2004). The receptor for the fungal elicitor ethylene-inducing
xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16,
1604–1615. doi: 10.1105/tpc.022475

Scala, A., Allmann, S., Mirabella, R., Haring, M. A., and Schuurink, R. C. (2013).
Green leaf volatiles: a plant’s multifunctional weapon against herbivores and
pathogens. Intl. J. Mol. Sci. 14, 17781–17811. doi: 10.3390/ijms140917781

Scharte, J., Schon, H., and Weis, E. (2005). Photosynthesis and carbohydrate
metabolism in tobacco leaves during an incompatible interaction
with Phytophthora nicotianae. Plant Cell Environ. 28, 1421–1435. doi:
10.1111/j.1365-3040.2005.01380.x

Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville,
S. C., et al. (2000). Coordinated plant defense responses in Arabidopsis revealed
by microarray analysis. Proc. Natl. Acad. Sci. U.S.A. 97, 11655–11660. doi:
10.1073/pnas.97.21.11655

Shah, J. (2003). The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6,
365–371. doi: 10.1016/S1369-5266(03)00058-X

Tai, T. H., Dahlbeck, D., Clark, E. T., Gajiwala, P., Pasion, R., Whalen, M. C.,
et al. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial
spot disease in tomato. Proc. Natl. Acad. Sci. U.S.A. 96, 14153–14158. doi:
10.1073/pnas.96.24.14153

Takemoto, D., Hardham, A. R., and Jones, D. A. (2005). Differences in cell
death induction by Phytophthora elicitins are determined by signal components
downstream ofMAP kinase kinase in different species of nicotiana and cultivars
of Brassica rapa and Raphanus sativus. Plant Physiol. 138, 1491–1504. doi:
10.1104/pp.104.058388

Thomma, B. P. H. J., Nurnberger, T., and Joosten, M. H. A. J. (2011). Of
PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4–15. doi:
10.1105/tpc.110.082602

von Essen, M. R., Kongsbak, M., Schjerling, P., Olgaard, K., Odum, N., and
Geisler, C. (2010). Vitamin D controls T cell antigen receptor signaling and
activation of human T cells. Nat. Immunol. 11, 344–349. doi: 10.1038/ni.1851

Walley, J., Coughlan, S., Hudson, M. E., Covington, M. F., Kaspi, R., Banu, G., et al.
(2007). Mechanical stress induces biotic and abiotic stress responses via a novel
cis-element. PLoS Genet. 3:e172. doi: 10.1371/journal.pgen.0030172

Wise, R. P., Moscou, M. J., Bogdanove, A. J., andWhitham, S. A. (2007). Transcript
profiling in host-pathogen interactions. Annu. Rev. Phytopathol. 45, 329–369.
doi: 10.1146/annurev.phyto.45.011107.143944

Zhao, B., Lin, X., Poland, J., Trick, H., Leach, J., and Hulbert, S. (2005). A maize
resistance gene functions against bacterial streak disease in rice. Proc. Natl.
Acad. Sci. U.S.A. 102, 15383–15388. doi: 10.1073/pnas.0503023102

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Andolfo and Ercolano. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 6 November 2015 | Volume 6 | Article 987

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Plant Innate Immunity Multicomponent Model
	Author Contributions
	Funding
	Acknowledgments
	References


