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Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological
functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18–24
nucleotides in length that originates from long self-complementary precursors. Besides
their direct involvement in developmental processes, plant miRNAs play key roles in
gene regulatory networks and varied biological processes. Alternatively, long ncRNAs
(lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed
that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases,
showing diverse structural features. Plant lncRNAs also are important regulators of
gene expression in diverse biological processes. There has been a breakthrough in
the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced
short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade.
CRISPR loci are transcribed into ncRNA and eventually form a functional complex
with Cas9 and further guide the complex to cleave complementary invading DNA.
The CRISPR-Cas technology has been successfully applied in model plants such as
Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all
these studies are focused on protein coding genes. Information about targeting non-
coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively
used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively
unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-
Cas technology in human and animals, this review essentially elaborates several
strategies to overcome the challenges of applying the CRISPR-Cas technology in editing
ncRNAs in plants and the future perspective of this field.
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MICRO RNAs AND LONG NON-CODING RNAs

MicroRNAs (miRNAs) are small endogenous non-coding RNAs (ncRNAs; Ambros, 2001) of 20 to
24-nucleotide in length, originating from long self-complementary precursors (Bartel, 2004; Nithin
et al., 2015). Mature miRNAs regulate gene expression in two ways; (i) by inhibiting translation or
(ii) by degrading coding mRNAs by perfect or near-perfect complement with the target mRNAs
(Carrington and Ambros, 2003; Djuranovic et al., 2011; Nithin et al., 2015). The majority of
plant target mRNAs contain a single miRNA-complementary site where corresponding miRNAs
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perfectly complement, thereby cleaving the target mRNAs
(Kidner and Martienssen, 2005; Nithin et al., 2015). During
the last decade, several studies have confirmed that plant
miRNAs are directly involved in the developmental processes
such as root development, seed germination, morphogenesis,
vegetative and reproductive phase change, and flowering
initiation (Jones-Rhoades et al., 2006; Jung et al., 2009;
Nodine and Bartel, 2010; Wu et al., 2011; Yang et al.,
2011; Nithin et al., 2015). Moreover, plant miRNAs are the
key players of gene regulatory networks, regulating diverse
biological processes like metabolism, biotic and abiotic stress
response, signal transduction, protein degradation, siRNA
pathway feedback regulation, and maintenance of genome
integrity (Mallory and Vaucheret, 2006; Bushati and Cohen,
2007), (Figure 1).

In contrast, long ncRNAs (lncRNAs) are a large and
diverse class of transcribed ncRNAs whose length exceed
that of 200 nucleotides, localized within the nucleus with
few exceptions in the cytosol (Louro et al., 2008; Mercer
et al., 2008). Compared to coding mRNAs, lncRNAs have
shorter length, lower abundance, are restricted to particular
tissues or cells and less frequently conserved between species

(Derrien et al., 2012). Generally, lncRNA biogenesis is very
similar to coding mRNAs (Dieci et al., 2007). LncRNAs
can originate from intronic, exonic, intergenic, intragenic,
promoter regions, 3′- and 5′ UTRs, enhancer sequences and
can transcribe bidirectionally (Nie et al., 2012). LncRNAs
also possess post-transcriptional modifications (Consortium
et al., 2005). LncRNAs play a key role in regulating important
biological processes (Figure 1) by one of the following ways;
enhancing the accessibility of target site to RNA polymerases,
binding to the promoter DNA of the target gene forming a
RNA-dsDNA triplex, inhibiting RNA polymerase activities and
regulating transcription factors (Lipshitz et al., 1987; Nguyen
et al., 2001; Willingham et al., 2005; Martianov et al., 2007;
Hirota et al., 2008; Mariner et al., 2008). Moreover, lncRNAs
play a role in post-transcriptional modulations of mRNA
processing. Distinct classes of lncRNAs in multiple species
are increasingly being recognized, emerging as important
regulators of gene expression in various biological processes
(Zhu and Wang, 2012; Fatica and Bozzoni, 2014). Plant
lncRNAs are transcribed by different RNA polymerases
showing diverse structural features (Mercer and Mattick,
2013).

FIGURE 1 | Classification and major functions of various non-coding RNAs.
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THE CRISPR-Cas TECHNOLOGY

In the last decade, development of sequence-specific nucleases
like zinc finger nucleases (ZFNs) and transcription activator-
like effector nucleases (TALENs) have revolutionized the process
of conventional plant breeding by successfully generating
efficient genetic variants of crop plants (Kim et al., 1996;
Christian et al., 2010; Miller et al., 2011). These nucleases
modify the genome by generating double strand breaks (DSBs),
which are then repaired through non-homologous end joining
(NHEJ) or homologous recombination (HR; Bibikova et al.,
2003; Carroll, 2011; Reyon et al., 2012; Belhaj et al., 2015).
ZFNs and TALENs are composed of programmable, sequence-
specific DNA-binding modules fused with FokI nuclease domain
(Urnov et al., 2010; Joung and Sander, 2013). However, it is
quite painstaking and expensive to design and construct large
modular proteins and it is also associated with a high rate of
failure. Recently, another breakthrough technology for genome
editing, the clustered regulatory interspaced short palindromic
repeats/CRISPR-associated (CRISPR-Cas) technology, has been
developed (Barrangou et al., 2007; Horvath and Barrangou,
2010; Cong et al., 2013). CRISPR loci are variable short
spacers separated by short repeats, which are transcribed into
ncRNAs and eventually form a functional complex with CRISPR-
associated protein 9 (Cas9) and further guide the complex to
cleave complementary invading DNA (Figure 2), (Mali et al.,
2013; Hsu et al., 2014; Belhaj et al., 2015). The guide RNA/Cas9
nuclease complex overcomes some of the limitations of previous
tools. 20 base pair guide RNAs (gRNA) are easy to design
and can target the Cas9 protein to almost any desired region
in the genome to bind to its DNA target by Watson-Crick
base-pairing (Gilbert et al., 2013; Bortesi and Fischer, 2015).
Target recognition is dependent on the so-called ‘protospacer
adjacent motif ’ (PAM), for which the consensus sequence, NGG,
is adjacent to the 3′ end of the 20 bp target (Anders et al., 2014;
Sander and Joung, 2014; Bortesi and Fischer, 2015). After the
initial development of a programmable CRISPR-Cas technology,
it has been rapidly applied to achieve efficient genome editing in
human cell lines, zebrafish, mouse, rice, and Arabidopsis (Hwang
et al., 2013a,b; Doench et al., 2014; Jiang et al., 2014b; Zhou et al.,
2014; Ho et al., 2015). The small size of the guide RNA (20 bp)
allows the co-delivery of multiple ‘single guide’ RNAs (sgRNA)
with Cas9 to the cell, making it feasible to simultaneously edit
more than one target sequence at the same time. The ease and
robustness of this technology makes it an attractive genome
editing tool for plant biology.

The CRISPR-Cas technology has been successfully applied
in model plants Nicotiana benthamiana, N. tabacum, and
Arabidopsis, and crops, such as wheat, maize, rice, sorghum,
tomato, and sweet orange (Jiang et al., 2013; Brooks et al., 2014;
Feng et al., 2014; Jia and Wang, 2014; Shan et al., 2014; Gao
et al., 2015). In both Arabidopsis and rice, the percentage of
regenerated plants containing a CRISPR/Cas9 transgene with
detectable mutation, has been reported as high as 90% (Miao
et al., 2013; Feng et al., 2014). Several studies demonstrated
the Mendelian heritability of CRISPR-Cas-induced mutations in
Arabidopsis, rice, and tomato (Brooks et al., 2014; Feng et al.,

2014; Jiang et al., 2014b). However, all these studies are focused
on protein coding genes. Information about targeting non-coding
RNAs is scarce. Hitherto, the CRISPR-Cas technology has been
exclusively applied in human cell lines, mouse, or zebrafish to
knockout miRNA genes or lncRNA genes (Xiao et al., 2013;
Han et al., 2014; Zhao et al., 2014). However, there is no report
of engineering miRNA or lncRNA genes in plants using the
CRISPR-Cas technology.

APPLICATION OF THE CRISPR-Cas
TECHNOLOGY IN TARGETING
NON-CODING GENES IN ANIMALS AND
HUMAN CELL LINES

Jiang et al. (2014a) applied the CRISPR-Cas technology to
investigate the function of a specific human miRNA, miR-
93. Generally, the 5′ end of the miRNA is precisely cleaved
by Drosha and contains the seed region, which is critical for
target recognition. Accordingly, Jiang et al. (2014a) targeted
the 5′ region of human miR-93 genes in HeLa cells. Several
small indels were induced in the targeted region containing the
Drosha processing site and seed sequences. Surprisingly, it was
found that even a single nucleotide deletion led to the complete
knockout of the target miRNA with high specificity (Jiang et al.,
2014a). Phenotype analysis confirmed the functional knockout
while structural analysis revealed the impaired biogenesis process
(Jiang et al., 2014a). Furthermore, qRT-PCR confirmed the
absence of mature miR-93 in mutated cells (Jiang et al., 2014a).
Using the CRISPR-Cas as a novel tool, Jiang et al. (2014a) showed
the depletion of a single miRNA by introducing indels at the 5′
end of its mature sequence and confirmed that the alteration of a
single or a few nucleotides in the specific genomic sequence not
only depletes miRNA, but also retards Drosha processing.

Ho et al. (2015) carried out the knockdown of non-coding
genes using the CRISPR-Cas technology in human cell lines.
Two miRNAs, miR-21 and miR-29a, and three lncRNAs UCA1,
lncRNA-21A, and AK023948 were selected. Either a single gRNA
or three gRNAs together were used to target miR-21 (Ho et al.,
2015). It was found that each of the three individual gRNAs or
their combination, produced mismatched bands with targeting
frequency of 17–39%, suggesting that this approach is robust and
miR-21 sequence is altered (Ho et al., 2015). One of the challenges
for knocking out of non-coding genes is that a small deletion or
insertion generated by the standard CRISPR-Cas technology may
not necessarily lead to functional loss of a given non-coding gene
due to absence of an open reading frame, especially in polyploidy
human cell lines (Ho et al., 2015). To overcome this challenge, Ho
et al. (2015) adopted a selection system that allows the integration
of marker genes into the genome through HR, and showed that
HR-mediated targeting efficiency can be further improved by
suppression of the NHEJ pathway.

Zhao et al. (2014) reported a convenient and efficient miRNA
inhibition strategy employing the CRISPR-Cas technology to
knock out the non-coding genes in murine cells. Two miRNAs,
miR-21 and miR-30a, were targeted. Specifically designed gRNAs
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FIGURE 2 | Series of events to generate a clustered regulatory interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas)
mutagenised plant. CRISPR-Cas mediated genome engineering in plants requires ‘single guide’ RNA (sgRNA) and CRISPR-associated protein 9 (Cas9). Specially
designed sgRNA are expressed under a small RNA promoter and transfected along with a Cas9 expression plasmid, to form a complex which targets
complementary DNA adjacent to the protospacer adjacent motif (PAM). sgRNA:Cas9 complex generates a double strand break (DSB) that may either be repaired
precisely (without any effect) or imperfectly leading to a mutation (indel) in the genomic target sequence.

were used to cut the miRNA genes at a single site by Cas9,
resulting in knockdown of the miRNAs in murine cells (Zhao
et al., 2014). Zhao et al. (2014) established that inactive Cas9 can
reversibly prevent the expression of both monocistronic miRNAs
and polycistronic miRNA clusters when a modified CRISPR
interference system (CRISPRi) is used. CRISPR-CRISPRi is also
capable of suppressing the genes in porcine cells.

Pefanis et al. (2015) applied the CRISPR-Cas technology
to ablate the RNA-degradation machinery in B-cells and
embryonic stem cells by conditional mutagenesis of the

RNA-exosome, resulting in the identification of numerous
lncRNAs and enhancer-RNAs (eRNAs) with promising
functionality. Surprisingly, it was found that the RNA-exosome
regulates the levels of divergently transcribed eRNAs by
promoting co-transcriptional silencing, thereby preventing the
persistence of detrimental chromatin structures that can lead
to genomic instability (Pefanis et al., 2015). Moreover, Pefanis
et al. (2015) discovered a distal divergent eRNA-expressing
element (lncRNA-CSR) which is engaged in long-range DNA
interaction and regulate super-enhancer function. It was found

Frontiers in Plant Science | www.frontiersin.org 4 November 2015 | Volume 6 | Article 1001

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Basak and Nithin Targeting Plant ncRNAs with CRISPR-Cas

that CRISPR-Cas9-mediated ablation of this lncRNA-CSR
transcription decreases its chromosomal looping-mediated
association with super-enhancer (Pefanis et al., 2015). Thus, the
CRISPR-Cas technology was successfully applied to understand
the mode of long-range chromatin regulation.

CHALLENGE OF THE CRISPR-Cas
TECHNOLOGY IN TARGETING
NON-CODING GENES IN PLANTS

Hurdle I: Quest for an Effective Delivery
System in Plants
Precise modification of plant genomes, a basic requirement
for gene function studies and crop improvement programs,
can be achieved by introducing targeted DSBs, which thereby
activate two main repair pathways; NHEJ and HR. NHEJ
repair mechanism is imprecise. It generates indels at the cut
site, resulting in endogenous gene disruption or mutagenesis
(Lloyd et al., 2005; Zhang et al., 2010; Baltes et al., 2014;
Belhaj et al., 2015). Alternatively, HR uses sister-chromatid
or homologous-chromosome for template-directed repair. With
an exogenous supply of repair template, gene replacement,
or targeted gene insertion in HR is likely to be perfect
(Bibikova et al., 2003; Baltes et al., 2014; Belhaj et al., 2015).
However, targeted modification of plant genomes is still a
challenge due to ineffective methods of delivery systems to
plant cells. Although Protoplast-transformation yields higher
gene targeting frequency compared to physical-method of genetic
transformation or Agrobacterium-mediated transformation, yet
the plant regeneration frequency is very low (Shukla et al., 2009;
Zhang et al., 2010).

To overcome this, Baltes et al. (2014) developed an efficient
and facile vector system using Geminiviruses. Geminiviruses
are a large family of plant viruses with circular, single-
stranded DNA genomes that replicate through double-stranded
intermediates. Baltes et al. (2014) used the model plant
Arabidopsis and established that a Geminiviral-sequence can
function as a template for homologous repairing of a DSB.
Deconstructed bean yellow dwarf virus was used to deliver
CRISPR-Cas through Agrobacterium-mediated transformation
and cells fixed the generated DSBs through NHEJ (Baltes et al.,
2014). Moreover, precise gene targeting was possible through
the delivery of CRISPR-Cas and deconstructed Geminiviruses
as repair templates and the generated DSBs were fixed by
cells through homology-dependent repair (Baltes et al., 2014).
Baltes et al. (2014) established that gene targeting and repairing
frequency is higher for Geminivirus-based delivery compared
to other methods and targeted cells rapidly regenerate into
plantlets with precise genomic modifications. Success of the
CRISPR-Cas technology largely depends on the effective delivery
of the components in plant. Thus, application of Geminivirus-
mediated delivery in this technology can improve its success rate.
Moreover, as Geminiviruses infect both monocots and dicots,
the CRISPR-Cas technology employing Geminivirus-mediated
delivery can engineer a vast range of crops.

Hurdle II: Off-target Mutations in Plants
In spite of being a powerful genome editing tool, the
CRISPR-Cas technology has several drawbacks, of which the
most alarming is the off-target mutation. Several strategies
were developed to reduce off-target genome editing; careful
designing of the gRNA being the most promising one. Target
recognition in the CRISPR-Cas technology takes place by
Watson–Crick base pairing, allowing off-target sites to be
predicted more accurately by sequence data analysis (Cho
et al., 2014; Bortesi and Fischer, 2015). Moreover, due to easy
reprogramming, gRNAs can be tested for off-target effects rapidly
and inexpensively (Bortesi and Fischer, 2015). Hsu et al. (2013)
parallely studied more than 700 sgRNAs to understand the
targeting specificity. Based on the study, the authors developed
a number of guidelines and online tools to facilitate the
selection of unique target sites as well as off-target analyses
in well-characterized organisms including several plants. The
length of the gRNA also plays a major role in off-target
mutation.

Cho et al. (2014) established that gRNAs with two additional
guanidine residues at the 5′ end can avoid off-target sites
more efficiently than normal gRNAs; however, elongated gRNAs
are slightly less active at on-target sites. In contrast, Fu
et al. (2014) showed that truncated gRNAs having shorter
regions of target complementarity (17 nucleotides in length)
can reduce undesired mutagenesis at some off-target sites
by 5,000-fold or more, without affecting on-target genome
editing efficiencies. Here, truncations make the RNA–DNA
complex more sensitive. Specificity can also be controlled
by optimizing nuclease expression, as high concentrations
of gRNA and Cas9 can advance off-target mutations (Fujii
et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013). To
improve DNA cleavage specificity, Guilinger et al. (2014)
generated fusions of catalytically inactive Cas9 and FokI
nuclease (fCas9). The authors showed that proper cleavage
of DNA by fCas9 requires union of two fCas9 monomers
that concurrently bind target sites which are ∼15 or 25
base pairs apart. A comparison between fCas9 and wild-type
Cas9 with efficiency similar to that of paired Cas9 ‘nickases’
(engineered variants that cleave only one DNA strand per
monomer) showed that fCas9 can modify target DNA sites
with >140-fold higher specificity (Guilinger et al., 2014; Tsai
et al., 2014). The specificity of fCas9 was at least fourfold
higher than that of paired nickases at loci with highly similar
off-target sites (Guilinger et al., 2014). Fu et al. (2014)
proved that combining the truncated gRNAs and Cas9 nickase
approaches together could potentially increase the specificity
even further.

Thus to overcome off-target mutations, the following
strategies should be considered; proper selection of
target sequence with high specificity, careful truncation
or elongation of gRNAs and construction of intelligent
mutations in Cas9. Moreover, on-target mutations often
precede off-target mutations, resulting in loss of novel
mutations after regeneration. Thus, a short selection period
for calli during redifferentiation can prevent off-target
mutations.
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Hurdle III: Targeting miRNAs and
lncRNAs in Plants
Knockdown or knockout of ncRNA genes compared to protein
coding genes using the CRISPR/Cas technology is a challenge.
Small non-coding gene knockdown/knockout is complicated
for CRISPR-Cas9 because of the limited design space for
targeting the non-coding genes without disturbing genes in
the vicinity (Barrangou et al., 2015). This is particularly a
problem for silencing miRNAs as many of them are encoded
within introns of protein-coding host genes. However, CRISPR-
Cas9-mediated knockout of miRNAs have the potential to
be more efficient by targeting miRNA genes at multiple
sites like promoter and hairpin (Barrangou et al., 2015).
Another way of promoter targeting can be done by using a
catalytically inactive Cas9 in combination with sgRNA (CRISPRi)
for precise interference of the transcriptional machinery
(Qi et al., 2013). Moreover, CRISPR-Cas can be designed
to target both the 5′ or 3′ arm of the mature miRNA.
Another avenue of the CRISPR-Cas technology is its successful
application in generating mutant miRNA binding sites in
target genes, thereby verifying miRNA targeting (Bassett et al.,
2014).

Even though lncRNAs have molecular weight comparable to
that of protein coding genes, lack of ORFs for translation makes
the commonly used approaches of the CRISPR-Cas technology
limited for targeting lncRNAs. Han et al. (2014) developed
an efficient one-step strategy to explore the potentiality of the
CRISPR/Cas9 technology to generate large genomic deletions of
lncRNAs in mice by targeting the maternally expressed lncRNA,
Rian, on chromosome 12 (Han et al., 2014). Paired sgRNAs can
be accurately used to generate large deletions amounting to 23 kb
and combination of multiple sgRNAs can increase this deletion
efficiency up to 33% (Han et al., 2014). In a similar manner, the

CRISPR-Cas technology can be designed for plant lncRNAs by
using paired sgRNAs or combining multiple sgRNAs.

CONCLUSION AND FUTURE
PERSPECTIVE

Based on the published reports on plant applications, the
CRISPR-Cas technology with its enormous potential as a
straightforward genome editing tool has been anticipated as a
routine technique for targeted gene knockdown/knockout in
plants. However, its application in editing non-coding RNAs in
plants is still nascent. Several strategies have been discussed to
overcome the challenges of applying the CRISPR-Cas technology
in editing ncRNAs in plant systems. The analysis of the
outcome of application of these strategies in plants, through real
experiments, will help in designing new improved strategies that
will further improvise the CRISPR-Cas technology to engineer
ncRNAs.

During the last decade, ncRNAs of all kinds have gained global
attention as potentially novel and vital regulators of biological
mechanisms, including developmental processes and diseases,
but knowledge of the modus operandi is still surprisingly limited.
Successful application of the CRISPR-Cas technology in editing
ncRNAs in plant systems will help interpret and decipher their
mode of action, thus opening a new avenue in science.
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