'.\' frontiers
in Plant Science

REVIEW
published: 09 December 2015
doi: 10.3389/fpls.2015.01052

OPEN ACCESS

Edited by:

Lin Xu,

Shanghai Institutes for Biological
Sciences, China

Reviewed by:

Javier Palatnik,

Instituto de Biologia Molecular y
Celular de Rosario, Argentina

Patricia Springer,

University of California, Riverside, USA
Long Mao,

Chinese Academy of Agricultural
Sciences, China

*Correspondence:

Shelley R. Hepworth
shelley_hepworth@carleton.ca;
Véronique A. Pautot
veronique.pautot@versailles.inra.fr

Specialty section:

This article was submitted to
Plant Cell Biology,

a section of the journal
Frontiers in Plant Science

Received: 29 July 2015
Accepted: 12 November 2015
Published: 09 December 2015

Citation:

Hepworth SR and Pautot VA (2015)
Beyond the Divide: Boundaries

for Patterning and Stem Cell
Regulation in Plants.

Front. Plant Sci. 6:1052.

doi: 10.3389/fpls.2015.01052

CrossMark

Beyond the Divide: Boundaries for
Patterning and Stem Cell Regulation
in Plants

Shelley R. Hepworth'* and Véronique A. Pautot?*

" Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada,  Institut Jean-Pierre Bourgin,
Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France

The initiation of plant lateral organs from the shoot apical meristem (SAM) is closely
associated with the formation of specialized domains of restricted growth known as
the boundaries. These zones are required in separating the meristem from the growing
primordia or adjacent organs but play a much broader role in regulating stem cell activity
and shoot patterning. Studies have revealed a network of genes and hormone pathways
that establish and maintain boundaries between the SAM and leaves. Recruitment of
these pathways is shown to underlie a variety of processes during the reproductive
phase including axillary meristems production, flower patterning, fruit development,
and organ abscission. This review summarizes the role of conserved gene modules
in patterning boundaries throughout the life cycle.

Keywords: meristem, lateral organ boundary, organ separation, inflorescence architecture, fruit patterning,
flower patterning, abscission, dehiscence

INTRODUCTION

The shoot apical meristem (SAM) plays a crucial role in plant development as a continuous source
of founder cells for provision of new leaves, shoots, and internodes throughout the life cycle.
The SAM is organized into a central zone composed of slowly dividing stem cells, a peripheral
zone where lateral organs initiate, and a rib zone that provides cells for internodes (Aichinger
et al,, 2012). The maintenance of meristems depends on the balance between two antagonistic
activities: propagation of stem cells at the center of the meristem and the initiation of organs
at the periphery. Boundaries are domains of restricted growth that maintain this balance by
separating the meristem from the growing primordia and by forming an interface between organs
(Zédnikov4 and Simon, 2014). These interfaces play a critical role by influencing cell fate in
adjacent tissues. The best-characterized boundary is the domain that separates leaves from the
SAM during the vegetative phase. How principles governing the activity of this boundary apply
to other developmental contexts is an important question. For example, boundaries in the leaf
control shape and complexity whereas boundaries in the inflorescence have specialized functions
such as axillary meristem (AM) production, fruit dehiscence, and organ abscission. Thus, many
aspects of plant architecture are dependent on the boundary. In this review, we first describe the
genetic control of boundaries during the vegetative phase, and then focus on elaboration of these
pathways for specialized functions during the reproductive phase focusing on the model plant
species Arabidopsis thaliana (Arabidopsis).
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SAM INITIATION, SAM MAINTENANCE
AND COTYLEDON SEPARATION

The NAM-ATAF-CUC (NAC)-type CUP-SHAPED
COTYLEDONI1 (CUCI1), CUC2, and CUC3 transcription
factors confer boundary identity in higher land plants (Maugarny
et al,, 2015). These factors initiate the SAM and establish
boundaries in conjunction with SHOOT MERISTEMLESS
(STM), a three-amino acid loop extension (TALE) class I
KNOTTED1-like (KNOX) homeodomain protein [(Figure 1A)
and (Hamant and Pautot, 2010; Hay and Tsiantis, 2010)]. CUC-
STM forms a conserved module in development that was first
identified in embryos (Aida et al., 1999; Takada et al., 2001; Aida
et al,, 2002). During the globular stage of embryogenesis, CUCI
and CUC2 genes are activated in a narrow band between the
presumptive cotyledons (Aida et al., 1999; Takada et al., 2001),
where auxin is depleted (Benkova et al., 2003) based on positional
cues provided by WUSCHEL-RELATED HOMEOBOX (WOX2)
and WOXS8/STIMPY-LIKE (Lie et al., 2012). CUC1/2 factors
activate STM at late globular stage to initiate the meristem
and separate the cotyledons (Aida et al., 1999). STM in turn
maintains CUC expression (Aida et al.,, 1999). More recently,
STM has also been identified as a direct regulator of CUCI
(Spinelli et al., 2011). This pattern is reinforced by two SWI/SNF
chromatin remodeling ATPase complexes BRAMHA (BRM)
and SPLAYED (SYD) acting independently of STM: BRM is
a positive regulator of all three CUC genes whereas SYD is
required for CUC2 expression (Kwon et al,, 2006). By late
torpedo stage, STM marks the central region of the meristem
and is slightly detected in boundaries while expression of CUC
genes is restricted to boundaries (Long and Barton, 1998; Aida
et al., 1999). Double mutant analyses show that contributions of
the different CUC genes are partially redundant. For example,
CUCI/2 are essential for meristem initiation while CUC3 plays
a more prominent role in organ separation (Vroemen et al,
2003) and AM production (Hibara et al., 2006). CUCI and
CUC2 transcripts are targeted by microRNA164 (miR164) to
restrict their expression domain while CUC3 from a different
subclade does not contain a miR164 binding site (Laufs et al.,
2004; Mallory et al., 2004).

Other three-amino acid loop extension (TALE) homeodomain
transcription factors contribute redundantly with STM in SAM
initiation and maintenance. The TALE superfamily is divided
into KNOX and BELL classes, whose members function as
heterodimers (Hamant and Pautot, 2010; Hay and Tsiantis,
2010). Formation of KNOX-BELL heterodimers regulates nuclear
localization (Cole et al., 2006; Rutjens et al., 2009; Kim et al., 2013)
and influences binding site selection (Smith et al., 2002). Within
the KNOX subclass, BREVIPEDICELLUS (BP)/KNOTTEDI-
LIKE FROM A. THALIANAI (KNATI) is expressed in the
peripheral and rib zones of the SAM (Lincoln et al., 1994)
whereas KNAT6 is expressed in boundaries (Belles-Boix et al.,
2006). Mutation in BP enhances only the meristem defect of
weak stm mutants (Byrne et al., 2002) whereas knat6 mutation
also impairs cotyledon separation showing a specific role for
KNATG6 in boundaries (Belles-Boix et al., 2006). KNAT2, the
fourth KNOX class I member is expressed at the base of the

meristem and in lateral organ boundaries but its inactivation does
not enhance the meristem defects of weak strn mutants (Byrne
et al., 2002; Belles-Boix et al., 2006). KNAT2 role in the SAM
remains undetermined.

At least three BELL homeodomain proteins encoded by
PENNYWISE  (PNY), POUND-FOOLISH (PNF), and
ARABIDOPSIS THALIANA HOMEOBOX GENEI (ATHI)
interact with STM to maintain the SAM (Byrne et al., 2003;
Kanrar et al., 2006; Rutjens et al., 2009). PNY is expressed in the
central zone of the SAM (Smith et al., 2004); PNF is expressed in
the central and rib zones of the SAM (Smith et al., 2004), whereas
ATHI is more broadly expressed in the SAM, young leaves,
and boundaries and is shown to control patterning in the basal
region of shoot organs (Proveniers et al., 2007; Gémez-Mena
and Sablowski, 2008). PNY and ATHI contribute redundantly
with STM in SAM initiation and maintenance (Byrne et al., 2003;
Kanrar et al., 2006; Rutjens et al., 2009). PNY and PNF maintain
the integrity of the central zone since the expression domain of
STM is narrower in pny pnf double mutants (Ung et al., 2011).
Meristem termination defects in this mutant are attributed to
depletion of nuclear localized BELL-STM complexes (Rutjens
et al., 2009), but recent data show that PNY and PNF negatively
regulate lateral organ boundary genes including ATHI and
KNAT6 expression to maintain SAM function (Khan et al.,
2015).

TALE transcription factors repress cellular differentiation
in the meristem in part by regulating the abundance of
hormones including gibberellins (GA), cytokinins (CK), and
brassinosteroids (BR) (Figures 2A,B). A WUSCHEL-CLAVATA
(WUS-CLV) feedback loop functions in parallel to keep the stem-
cell niche constant in size (Schoof et al., 2000). A high CK: low
GA ratio promotes meristem maintenance since high CK sustains
cell division and low GA inhibits cell differentiation (Aichinger
et al, 2012). Accordingly, meristem activity in strn mutants
can be restored by elevating CK biosynthesis and inhibited
by elevating GA abundance or signaling or by reducing CK
content (Hay et al., 2002; Jasinski et al., 2005; Yanai et al., 2005).
KNOX proteins raise CK levels by activating ISOPENTENYL
TRANSFERASE7 for CK biosynthesis (Jasinski et al., 2005;
Yanai et al.,, 2005) and lower GA levels by directly inhibiting
biosynthetic genes encoding GA20-oxidases (Sakamoto et al.,
2001) and activating catabolic genes encoding GA2-oxidases
(Bolduc and Hake, 2009). Genes encoding GA2-oxidase are
expressed at the boundary between the SAM and leaves confining
GA to leaves where growth is taking place (Jasinski et al., 2005;
Bolduc and Hake, 2009). WUS contributes to this network
by lowering the abundance of ARABIDOPSIS RESPONSE
REGULATOR ARR7 and ARRI15 (Leibfried et al., 2005) thus
increasing sensitivity to CK in the central zone and promoting its
own expression (Gordon et al., 2009). BR are a class of growth-
promoting hormones recently shown to play a role in meristem
maintenance (Tsuda et al., 2014). New work in rice and maize
show that KNOX factors in the SAM maintain indeterminacy
in part via direct activation of BR catabolism genes thereby
downregulating BR signaling in the meristem. Inactivation
of three rice orthologs of Arabidopsis catabolic gene BASI
(PHYTOCHROME B ACTIVATION TAGGED SUPPRESSORI)
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FIGURE 1 | Continued
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FIGURE 1 | Continued

Homologous boundary gene networks controlling biogenesis of shoot apical meristem (SAM), axillary meristems (AMs), and floral meristems (FMs).
(A) SAM initiation (gray). Early heart stage is shown. CUC genes are activated in a narrow band of auxin-depleted cells located between the presumptive cotyledons
at globular stage. Activation of CUCs in this domain is partly dependent on chromatin remodeling ATPases and various other factors not depicted. Once activated,

CUC1 and CUGC2 are redundantly required for STM expression to form the presumptive SAM. STM in turn, directly maintains expression of CUC7 and indirectly
promotes CUC2 and CUCS in establishing a feedback loop that ultimately restricts CUC expression to the axils of cotyledons. Reciprocally, STM expression is
restricted to the SAM and slightly detected in boundaries. LBD family member JLO promotes PINT expression required for formation of auxin maxima and represses
STM and KNOX members to allow cotyledon outgrowth. Green arrows, direction of auxin flow. Green, auxin maxima at the cotyledon primordia. (B) SAM
maintenance and AM formation (yellow). STM represses BOP1/2 to maintain indeterminacy in the SAM. Conversely, BOP1/2 restrict KNOX expression in the
proximal region of leaves to control patterning. Formation of an AM requires depletion of auxin from the leaf axil followed by a burst of CK. CUC1-3 are redundantly
required for AM initiation functioning downstream of LFY and RAX1 to promote LAS. LOF1/2 contribute to RAXT promotion. CUC1, LAS, and ROX activities are
required for sustained expression of STM and establishment of the AM. Green arrows, direction of auxin flow. (C) IM activity. PNY and PNF restrict
BOP1/2-ATH1-KNAT6 expression to boundary domains flanking the IM essential for meristem maintenance and flowering. FMs (pink). FMs are AMs with
determinate fate that form in the axil of leaves whose development are repressed (cryptic bract). Auxin responsive transcription factor MP directly activates ANT and
LFY to initiate FM formation. LFY directly promotes the expression of RAX7T and AP7 and CAL whose products confer floral fate. BOPs facilitate establishment of
FMs via promotion of LFY expression, activation of AP7, and repression of IM identity genes. UFO is a LFY co-activator also required for formation of boundaries in
the flower. Later, CUC factors are required to separate floral organs and maintain boundaries between whorls in association with numerous stage-specific factors
including PTL, RBE, and SUP required for localized repression of growth. Inflorescence architecture. BP and PNY are expressed in the stem cortex where they
collectively promote internode elongation, stem differentiation, phyllotaxy, and pedicel angle by restricting boundary genes BOP1/2 and downstream effectors ATH1
and KINATE to the pedicel axil (blue). Misexpression of these genes in the BP-PNY domain restricts growth, disrupts vascular patterning, and causes ectopic
lignification. CUC2 expression is restricted by miR7164 to the pedicel axil to maintain internode patterning. FM, floral meristem; IM, inflorescence meristem. P,
primordia; stages as indicated. Red lettering, SAM-leaf boundary genes. Red arrows, direct regulation. Dashed line, putative interaction.

results in the premature differentiation of meristematic cells
(Tsuda et al., 2014).

BOUNDARY FORMATION

The boundary that separates the SAM from the primordia is a
domain of restricted growth. This feature relies on depletion of
auxin and BR from boundary cells thereby maintaining a low rate
of growth relative to surrounding tissues (Figures 2A,C). Spatial
regulation of polar auxin transporters establishes a minimum for
auxin. This is accomplished in part by PIN-FORMED1 (PIN1)
transporters oriented outwardly along the long axis of cells in
the plane of the groove such that auxin is drained away from the
boundary into the adjacent organ and meristem compartments
(Heisler et al., 2010). Striking images of auxin depletion from the
adaxial boundary domain of leaf primordia are observed using
the auxin concentration sensor DII-Venus or auxin-responsive
reporter gene DR5:VENUS (Wang et al, 2014a,b). ABC/PGP
(ATP-binding cassette/P-glycoprotein) pumps are a secondary
type of auxin transporter. ABC19 in this family depletes auxin
from the boundary creating a low-auxin niche necessary for
promotion of CUC2 and LOF2 expression (Zhao et al., 2013).
An auxin minimum is essential in several boundary-related
processes including AM formation (Tian et al., 2014; Wang et al.,
2014a,b), differentiation of valve margins in the fruit (Sorefan
etal,, 2009), and timing of floral organ abscission (Estornell et al.,
2013).

The boundary is also a minimum for BR (Bell et al., 2012;
Gendron et al, 2012). The LATERAL ORGAN BOUNDARY
DOMAIN (LBD) transcription factor LATERAL ORGAN
BOUNDARIES (LOB) maintains low levels of BR to inhibit
growth at boundaries. Ectopic expression of LOB reduces growth
similar to BR defective mutants, while loss of LOB function
causes overgrowth of the boundary region and organ fusion (Bell
et al,, 2012; Gendron et al., 2012). A feedback loop is required in

establishing this pattern. Auxin-induced BR in the leaf activates
LOBI (Chung et al., 2011) which in turn directs activation of
cytochrome P450 gene BASI to inhibit BR accumulation at the
boundary (Bell et al., 2012). Two BTB-ankyrin transcriptional co-
activators, BLADE-ON-PETIOLE1 (BOP1) and BOP2, reinforce
this pattern by promoting LOB expression in the boundary
domain (Ha et al., 2007). Fluorescent reporters show that BR-
activated transcription factor BRASSINOZOLE-RESISTANT1
(BZR1) fails to accumulate in the nuclei of boundary cells thereby
allowing expression of CUC genes which in turn repress growth
at the boundary (Gendron et al., 2012).

Emerging data suggest that KNOX activity provides a
positional cue in establishing the SAM-leaf boundary (Bolduc
et al., 2012; Johnston et al., 2014; Tsuda et al., 2014). Several
mechanisms are identified. One study shows that rice KNOX gene
Oryza sativa homeobox1 (OSH1) expressed in the meristem and
base of emerging leaves facilitates SAM function and boundary
formation by lowering BR abundance (Tsuda et al, 2014).
Transcriptomic studies in maize focusing on the blade-sheath
boundary of leaves further reveal that CUCs, TALEs, and BOPs
are downstream targets of KNOTTED1 (KN1) under positive
regulation (Bolduc et al,, 2012; Johnston et al., 2014). Grasses
have a blade-sheath boundary containing hinge-like auricles
that control leaf angle and a fringe of epidermal tissue called
the ligule whose formation is under the control of boundary
genes. Barley UNICULME4 is a BOP homolog required for
ligule outgrowth (Tavakol et al., 2015). Maize genes required
for ligule development include LIGULELESS2 (LG2) which
encodes a TGA bZIP factor (Walsh et al., 1998), LG3/LG4 which
are closely related genes to Arabidopsis KNAT2 and KNATG6;
and KNOTTEDI/ROUGH SHEATHI homologs of STM or BP
(Bolduc et al., 2012; Johnston et al., 2014). Pre-ligule tissue is
enriched for homologs of CUC2, BOP1/2, KNAT6, and two BELL
genes, whose loci in several cases are bound directly by KN1
as identified through chromatin immunoprecipitation assays
(Bolduc et al., 2012; Johnston et al., 2014). These data support
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FIGURE 2 | Summary of hormone profiles and genetic interactions that
maintain the leaf-SAM boundary. (A) The shoot apex contains: the
meristem, the initium, boundaries, and organ primordia. The predicted
distribution of key hormones are summarized (see text for details). Meristem,

high CK/IAA ratio and low GA/BR ratio promotes indeterminate

growth.

Primordia, high IAA activates BR and represses CK biosynthesis and GA
increases to promote determinate growth. Boundary, depletion for
growth-promoting hormones IAA, GA, BR, and CK inhibits cell division

allowing separation of meristem-organ compartments. 1, Initium;

CK,

cytokinin; BR, brassinosteroid; GA, gibberellin; and IAA, auxin. (B) Summary
of gene networks at the meristem-boundary interface. Meristem, STM
maintains indeterminate growth by promoting CK and repressing GA/BR
accumulation (black gradient indicates hormone abundance). Auxin, shown in
green, marks the site of primordia initiation and distal blade of emerging leaf.
(1) KNOX proteins initialize the boundary through promotion of BR catabolic

genes (BAST) and boundary transcription genes including CUC

and BOP2

(blue arrows). CUC factors confer boundary identity required for activation of
other classes of boundary regulators including BOP, KNAT-BELL, LOF1,

(Continued)

FIGURE 2 | Continued

ALOG, and LBD members that collectively restrict growth, modulate
meristematic activity, and pattern the boundary. PIN1 auxin efflux carriers
(green circles) are orientated facing outward such that auxin is drained away
from the boundary. Green arrows indicate direction of auxin flow. (2) Boundary
genes contribute to meristem maintenance (see text). (3) STM-BELL meristem
factors preserve meristem integrity by restricting BOP1/2 and KNAT6 to
boundaries. BR-activated transcription factor BZR1 represses CUC/LOF1 in
the meristem domain. (C) Summary of interactions at the leaf-boundary
interface. (1) Polar auxin transport establishes auxin maxima in the peripheral
zone where leaf initiation takes place. Auxin response factor MP initiates
primordium formation by repressing KNOX genes, activating ANT members
and leaf identity genes including AS1 and stimulating synthesis of BR where
BZR1 binds to the ANT promoter as a positive regulator. Boundary genes
BOP1/2 and JLO expressed in the organ initial contribute to organ polarity and
stable repression of KNOX genes. (2) Primordium outgrowth coincides with
synthesis of auxin and repolarization of PIN transports toward the leaf base,
which becomes a low IAA/BR domain. BOPs and JLO now restricted to the
boundary reinforce this pattern in hormones via regulation of LOB and PIN1,
respectively. CIN-TCPs and BZR1 in leaves maintain repression of CUC/LOFT.
JAG in the distal blade represses BOPs. BOPs expressed in the proximal
petiole domain of leaves maintain organ polarity and repress KNOX and JAG
genes required for simple leaf shape indirectly in part via activation of AS2.
YAB contributes to the repression of KNOX and CUC in the abaxial domain.

a model in which KNOX accumulation at the base of the leaf
primordia and auxin accumulation in the distal portion of the
primordia provide opposing positional cues in demarcating the
blade-sheath boundary (Bolduc et al., 2012; Johnston et al., 2014).
Arabidopsis studies showing that STM directly activates CUCI
and indirectly promotes CUC2, CUC3, and BOP2 expression
(Spinelli et al., 2011) support this model.

Genetic studies show that CUC genes play a central role in
maintaining growth repression in boundaries. Inactivation of
any two CUCs leads to ectopic growth at cotyledon boundaries
causing fusion along their margins (Aida et al., 1997; Vroemen
et al, 2003). GROWTH-REGULATING FACTORS (GRFs)
which act as broad regulators of cell proliferation function
synergistically with CUCs in this role. Leaf fusion defects in
grfl grf2 grf3 triple mutants are dramatically enhanced by
inactivation of GRF4 or CUC genes resulting in cup-shaped
cotyledons and embryos that lack a functional SAM (Lee
et al, 2015). Two ALOG (Arabidopsis LSH1 and Oryza GI)
family members ORGAN BOUNDARYI1/LIGHT-DEPENDENT
SHORT HYPOCOTYL (OBO1/LSH3) and OBO4/LSH4 are direct
targets of CUC1 and thought to repress differentiation of
boundary cells (Cho and Zambryski, 2011; Takeda et al., 2011).
Another regulator is the MYB transcription factor LATERAL
ORGAN FUSION1 (LOF1), which promotes organ separation
and meristem maintenance. Inactivation of LOFI enhances stm-
10 meristem termination and organ fusion defects (Lee et al,
2009).

ORGAN INITIATION

One of the earliest steps in initiation of lateral organs is down-
regulation of STM at sites of auxin maxima in the peripheral
zone of the meristem. Boundary and leaf identity genes are
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transiently expressed in the same compartment undergoing
differentiation. Various studies show that organ initiation and
boundary formation are interconnected processes (Heisler et al.,
2005; Besnard et al.,, 2011). Auxin in the distal portion of the
primordia controls the localization of boundary genes ultimately
restricting their expression to the base of the emerging leaf
(Figures 2A,C). In brief, cotyledons and leaves are initiated
at auxin maxima generated by polar auxin transport. Polar
auxin distribution is dependent on a family of efflux carriers
including PIN1 whose membrane localization is controlled by
the serine/threonine kinase PINOID. Threshold levels of auxin
trigger activation of the auxin-responsive transcription factor
MONOPTEROS (MP), which down-regulates STM and activates
AINTEGUMENTA (ANT), ANT-like (AIL), and ASYMMETRIC
LEAVESI (AS1) genes to initiate leaf development (Long and
Barton, 1998; Besnard et al.,, 2011; Yamaguchi et al., 2013). As
the primordium emerges, PIN1 polarity reverses to generate new
auxin peaks coinciding with a narrow band of cells marked
by CUC expression (Heisler et al., 2005). Mutations in PINI,
PID, or MP that disrupt auxin transport or signaling lead to
expansion of STM and CUC expression to the periphery where
they suppress cotyledon outgrowth (Aida et al., 2002; Furutani
et al.,, 2004; Schuetz et al., 2008). Proper distribution of auxin
in forming this pattern is dependent on SEUSS and SEUSS-like
components of the LEUNIG repressor complex although the
mechanism is still unknown (Lee et al.,, 2014). Auxin in the leaf
initial further alters the balance of hormones to favor growth and
determinacy. In particular, auxin stimulates BR (Chung et al.,
2011) and GA synthesis (Frigerio et al, 2006) and represses
CK production (Nordstrom et al., 2004; Besnard et al., 2011).
Primordium outgrowth also depends on physical changes in cell
wall stiffness (Besnard et al., 2011; Peaucelle et al., 2011). Auxin
stimulates the active transport of protons into the extracellular
space required in activating enzymes that relax the cell wall
and promotes the transcription of remodeling factors including
expansions, pectin methylesterase, and hydrolases (Besnard et al.,
2011; Peaucelle et al., 2011). These changes are coupled with a
shift toward growth isotropy, which facilitates organ outgrowth
(Sassi et al., 2014).

LEAF DIFFERENTIATION

Leaf differentiation requires the maintenance of KNOX
repression and the restriction of CUC2/3 expression along the
leaf margin. KNOX repression is accomplished by an interacting
network of leaf and boundary factors (Figure 2C). A key player
in this network is the MYB transcription factor AS1, which acts
in a trimeric complex with the LBD transcription factors AS2
and JAGGED LATERAL ORGANS (JLO) (Guo et al., 2008; Rast
and Simon, 2012). AS1 and AS2 bind to distinct sites in the BP
and KNAT2 promoter where they interact through looping to
induce silencing via recruitment of the histone chaperone HIRA
and Polycomb-repressive complex2 (Guo et al,, 2008; Lodha
etal., 2013). STM is also a target of PRC but how this complex is
recruited to the promoter is unknown (Lodha et al., 2013). JLO is
transiently expressed at sites of organ initiation and resolves to

the leaf-meristem boundary during outgrowth. Loss-of-function
mutations in JLO impair organ outgrowth and enhance the
margin patterning defects of as2 mutants. This phenotype is
caused in part by ectopic expression of BP and STM at the base
of leaf primordia combined with defects in auxin distribution
(Rast and Simon, 2012). JLO promotes PIN expression for
auxin build-up at organ initiation sites and later for auxin efflux
from the boundary (Bureau et al., 2010; Rast and Simon, 2012;
Z4dnikova and Simon, 2014).

BOP1/2 activity in organ initials partially overlaps with JLO
and likewise resolves to the boundary of emerging leaves and
petiole domains during outgrowth (Ha et al., 2004; Hepworth
et al., 2005; Norberg et al., 2005; Borghi et al., 2007). BOP1/2
have a dual function. They repress genes that confer meristem cell
fate and induce genes that promote lateral organ fate and polarity
(Ha et al., 2007). BOP1/2 transcripts are first detected in the
boundaries of torpedo stage embryos consistent with a function
downstream or in parallel with CUCs (Ha et al.,, 2004). STM
represses BOP1/2 to maintain indeterminacy and conversely,
BOP1/2 restrict KNOX expression to pattern the leaf (Jun et al.,
2010). A prolonged phase of morphogenetic competence in
bopl bop2 petioles coupled with KNOX reactivation results in
initiation of ectopic leaflets reminiscent of development in a
compound leaf (Ha et al., 2003, 2007; Khan et al., 2014). BOP1
binds directly to the promoter of AS2 likely recruited by a TGA
factor (Jun et al., 2010). Synergistic enhancement of meristematic
activity in bopl bop2 asl and bopl bop2 as2 petioles shows that
BOP1/2 repression of KNOX genes is not entirely via AS1-AS2
and is likely indirect. Leaf patterning defects in bopl bop2 are
also attributed to misexpression of abaxial/adaxial organ polarity
determinants and the C2H2 zinc finger transcription factor
JAGGED (JAG) which promotes cell proliferation (Norberg et al.,
2005; Ha et al., 2007, 2010). JAG is normally restricted to the
distal blade where it represses BOP2 to allow extension of the leaf
margin (Schiessl et al., 2014).

CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYC-
LOIDEA/PCF (TCP) factors are another class that contribute
to negative regulation of CUC and KNOX activity in leaves
to promote organ outgrowth and simple leaf shape (Koyama
et al., 2007, 2010). Consistent with this view, CIN-TCPs are
predominantly expressed in leaves and depleted from the
boundary (Tian et al., 2014). Several mechanisms are identified.
First, TCP3 directly promotes miR164, which targets CUCI and
CUC2 transcripts for cleavage. Second, TCP3 directly promotes
ASI whose product represses CUC3 and KNOX expression
(Koyama et al., 2010). In addition, TCP3 targets auxin inducible
genes that repress SAM function and cause cotyledon fusion
when overexpressed (Koyama et al.,, 2010). Lastly, TCP4 binds
to CUC2 and inhibits its activity by blocking the formation of
homo-dimers and hetero-dimers with CUC3. TCP4 also impairs
CUCS3 transactivation ability (Rubio-Somoza et al., 2014).

LEAF SHAPE

Variations in the KNOX-PIN-CUC module play a central role
in controlling leaf shape and complexity. The leaf margin, due
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to its meristematic feature, is particularly sensitive to alterations
in this module. In simple leaf species such as Arabidopsis,
CUC2, and CUC3 expression is restricted to the sinus of
serrations along the leaf margin while CUCI expression is not
detected (Nikovics et al., 2006; Hasson et al., 2011). The balance
between CUC2 and miRNA164 transcripts controls the degree
of leaf serration (Nikovics et al., 2006). CUC3 contributes to
leaf shape at a later stage (Hasson et al, 2011). Similar to
the primordia initiation, the formation of serrations depends
on auxin. To explain how serrations form on a leaf margin,
Bilsborough et al. (2011) proposed a model in which two feedback
loops work in concert. In the first loop, PIN1 convergence in
the leaf margin generates an auxin maximum, reinforced by
auxin feedback on PIN1. In the second loop, CUC2 acts non-
cell autonomously to promote growth through the generation
of PIN1-dependent auxin maxima and contributes to tooth
outgrowth (Kawamura et al., 2010). Auxin in turn downregulates
CUC2 restricting expression to regions between serrations where
growth is repressed.

The rachis of a compound leaf is likewise sensitive to
alterations in KNOX-PIN-CUC expression. While simple leaves
have a single undivided blade in which KNOX repression is
continuous, compound leaves have a divided blade consisting of
pairs of leaflets attached to a central rachis. This morphology
is associated with an extended primary morphogenesis phase
during which reactivation of KNOX genes begins the cycle by
promoting auxin accumulation thereby directing leaflet initiation
on the rachis (Di Giacomo et al, 2013). Down-regulation of
tomato BOPa (one of three homologs) further enhances leaf
complexity by extending the window for rachis responsiveness
to auxin (Ichihashi et al., 2014). BOPa fulfills this function in
part by forming a complex with LIGHT-DEPENDENT SHORT
HYPOCOTYL3b (an ALOG family member) that represses
tomato KNATM encoded by KD1/PETROSELINUM to modulate
KNOX activity (Ichihashi et al., 2014). KNATM, a mini-KNOX
lacking the homeodomain, modulates KNOX-BELL activity by
competing for BELL binding partners (Kimura et al., 2008;
Magnani and Hake, 2008). Analysis of the maize KN1 cistrome
confirms that a majority of directly regulated genes are involved
in auxin signaling, biosynthesis, and transport including PIN1
(Bolduc et al., 2012). Several legume species such as Medicago
truncatula and pea use orthologs of Arabidopsis LEAFY (LFY) as
an alternate source of meristem activity but remain reliant on
CUC2 function for creation of auxin peaks required in leaflet
initiation (Nikovics et al., 2006; Blein et al., 2008; Efroni et al.,
2010). These data illustrate that variations in the KNOX-PIN-
CUC module cause diversity in leaf patterning. Recruitment
of this same module at later stages governs AM formation,
gynoecium, and ovule development (Ishida et al., 2000; Hibara
et al., 2006; Scofield et al., 2007; Raman et al., 2008).

NEW FRONTIERS

In the next part of the review, we examine the role of
boundary genes during the reproductive phase. Boundaries
in the inflorescence determine plant architecture through the

separation of organs and the distribution of flowers on the
stem but also constitute a source of AM for production of
branches and flowers. Boundaries are also sites where abscission
and dehiscence take place. A number of genes are recurrently
expressed in these boundaries including KNOX-BELL, BOP, and
CUC/miR164 regulators. Similar to the role of TALE factors in
the SAM, PNY and PNF preserve meristem integrity essential
for flowering by excluding BOPI1/2/KNAT6-ATHI from the
meristem. Inflorescence architecture is likewise controlled by
restricting CUC2 and BOP1/2-KNAT6/ATHI1 to boundaries at the
base of floral shoots. CUC-STM factors play a conserved role
in formation of new meristems, including AMs that give rise to
lateral branches and flowers and meristematic tissues internal
to the fruit. CUC factors also play a critical role in separation
of floral organs and ovules in developing flowers. TALE factors
including BP and PNY preserve formation of meristematic
replum tissue in fruits whereas BOP1/2-KNAT6/2, which are
expressed in adjacent valve margin boundary tissues potentially
contribute to dehiscence. This same network of TALE and BOP
factors regulates abscission. How these conserved modules are
integrated during reproductive development is now discussed.

AXILLARY MERISTEMS

The boundary located between the stem and the leaf base
constitutes a source of AMs, which can remain dormant or
produce secondary inflorescences and flowers (Figure 1B). The
specification and the development of AMs involves numerous
transcription factors and is modulated by hormones such as
auxin, CK, BR, and strigolactones (Janssen et al., 2014). Other
hormones may also be involved based on specific patterns
of enrichment for abscisic acid and ethylene or depletion of
jasmonic acid (JA) responsive genes in the boundary domain
(Tian etal., 2014). Similar to the SAM, formation of AMs requires
CUC-STM factors whose activity at the boundary is dependent on
auxin and CK.

Recent studies in Arabidopsis and tomato show that the
establishment of a stem cell niche in leaf axils requires auxin
depletion followed by pulse of CK (Wang et al., 2014a,b).
Manipulation of the auxin gradient using chemical inhibitors
of auxin transport or mutations in auxin transport machinery
including PIN1 or PID showed that disruption of auxin minima
strongly inhibits AM initiation (Wang et al., 2014a,b). STM,
which is a marker of AMs in the mature leaf axil (Grbic and
Bleecker, 2000; Long and Barton, 2000), fails to accumulate in a
strong pid-9 mutant indicating that its expression is dependent
on an auxin minimum (Wang et al., 2014a). CK perception and
signaling is enhanced in leaf axils prior to AM initiation and
the TCS::GFP (two-component output sensor) synthetic reporter
used to visualize CK response indicates that a pulse of CK follows
the auxin minimum and is required to stimulate AM production
(Wang et al., 2014b). STM may contribute to this pulse based
on its CK promoting activity in the SAM (Jasinski et al., 2005;
Yanai et al., 2005). Arabidopsis mutants affected in CK perception
(histidine kinase receptor mutants) or CK signaling (ARR-B
type transcription factor mutants) show reduced AM production
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whereas overproduction of CK restores AM initiation in a raxI
mutant (Wang et al., 2014b).

REGULATOR OF AXILLARY MERISTEM1 (RAX1)isa MYB
transcription factor that specifies AMs in redundancy with RAX2
and RAX3 (Keller et al., 2006; Muller et al., 2006). One regulator
of RAXI is the MYB transcription factor LOF1 which also
functions to promote AM and organ separation (Lee et al., 2009).
RAX1 acts through CUC2 and is required in conjunction with
CUC3 and the GRAS-domain protein LATERAL SUPPRESSOR
(LAS) to maintain STM expression in AMs. RAX1 maintains
the boundary zone through the repression of GA similarly to
STM in the SAM (Keller et al., 2006; Muller et al., 2006). LAS
and RAXI promote AMs via the bHLH transcription factor
REGULATOR OF AM FORMATION (ROX; Yang et al., 2012).
LFY, which is involved in flower specification has recently been
shown to promote AM proliferation through its direct target
RAX1 and potentially others (Chahtane et al., 2013). Redundant
pathways mask this role as mutations in LFY combined with
mutations affecting various pathways including meristem, auxin
signaling, floral transition and patterning, or boundary genes
such BOP1/2 show defects in AM formation (Chahtane et al.,
2013). LFY further contributes to meristem emergence via CK
signaling potentially through its interaction with WUS. The
negative regulator of CK signaling, ARABIDOPSIS RESPONSE
REGULATOR7 (ARR7), was found to be up-regulated in Ify-
12 inflorescences, and LFY interacts directly with the ARR7
promoter (Moyroud et al., 2011; Winter et al., 2011; Chahtane
et al,, 2013). LFY may also act through CUC2 and the auxin
signaling pathway as genes from this pathway are bound by LFY
(Moyroud et al., 2011; Winter et al., 2011; Yamaguchi et al., 2013).
Thus, meristem emergence results from the convergence of LFY
and LAS pathways.

Genetic studies show that CUC genes contribute redundantly
and differently to AM initiation and boundary maintenance with
CUC3 playing a prominent role (Hibara et al., 2006). Inactivation
of CUCI and CUC2 has no effect on AM initiation and an effect
in cuc2 mutants is seen only in the absence of CUC3 (Hibara
et al., 2006). Further studies show a contribution of CUC1/2
to AMs. Overexpression of miR164 dramatically reduces the
initiation of AMs in the cuc3-2 mutant, and reciprocally, miR164-
resistant versions of CUCI and CUC2 form extra accessory
side shoots (Raman et al., 2008). Key downstream targets of
the CUC pathway include STM and LAS required in AM
establishment (Raman et al., 2008), with LAS being a direct
target of CUC2 (Tian et al., 2014). STM expression is missing
in the adaxial boundary domain of cuc3-2 mutants and LAS
expression is reduced in miR164 overexpressing lines, which
diminishes STM expression (Greb et al., 2003; Raman et al,
2008).

Translatome analysis of LAS-expressing boundary and ASI-
expressing leaf primordia cells coupled with genome-scale
mapping of transcription factor binding sites reveals that CUC2
and LAS are regulatory hubs for AM initiation (Tian et al., 2014).
This work identifies the auxin-induced APETALA2 domain
transcription factor DORNROSCHEN as a direct activator of
CUC2. This work also identifies SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE9 and 15 as repressors of LAS

and CUC2 that regulate AM initiation likely in response to
environmental signals (Tian et al., 2014).

Separation of axillary shoots from subtending leaves and
formation of accessory side shoots requires LOF1 and LOF2
acting downstream of CUC genes (Lee et al., 2009; Gendron et al.,
2012). Lof1 defects in organ separation are enhanced by mutation
of the closely related LOF2 whose expression is more widespread
but dependent on LOFI at the boundary (Lee et al., 2009). STM
expression in AMs is reduced in lofI lof2 double mutants (Lee
et al,, 2009). Overexpression of a cysteine-rich signaling peptide
TAXIMINI mimics the phenotype of lofI lof2 double mutants
(Colling et al., 2015). Interestingly, this phenotype is not due to
a reduction of LOF1/2 or other boundary transcripts suggesting
an independent mechanism (Colling et al, 2015). A peptide
signaling cascade has not been previously linked to formation of
boundaries in plants.

Studies in other species show this hierarchy to be highly
conserved (Janssen et al., 2014). Tomato GOBLET (GOB) encodes
a NAC-domain transcription factor similar to CUC2 (Berger
et al., 2009); LAS is an ortholog of LAS (Schumacher et al.,
1999; Greb et al., 2003); and BLIND is an ortholog of RAX1I
(Schmitz et al., 2002). Remarkably these same genes are regulators
of leaf complexity. Homologous genes have also been identified
in cereals as regulators of tillering and panicle architecture. LAX
PANICLE] in rice and BARREN STALK in maize encode bHLH
proteins orthologous to ROX in Arabidopsis. Mutants in these
genes show a reduction in panicle branches and spikelets and fail
to form AMs during the vegetative phase resulting in a reduction
in tillers (Komatsu et al., 2003; Gallavotti et al., 2004; Oikawa
and Kyozuka, 2009). These proteins sustain early proliferation
of the AM by forming a boundary between the meristem and
axillary bud (Oikawa and Kyozuka, 2009; Yang et al.,, 2012).
Barley CUL4 is a BOP homolog required for tiller formation
(Tavakol et al., 2015). BOP1/2 are required for production of
various determinate axillary shoots including stipules, nectaries,
and flowers in dicots (Khan et al, 2014). BOP expression is
down-regulated at an early stage of indeterminate IM formation
and moves to the boundary between the meristem and AM
demonstrating a transient role similar to ROX (Xu et al., 2010;
Yang et al., 2012). The contribution of CUL4 in AMs production
suggests a partial conservation of BOP function in monocots and
dicots.

INFLORESCENCE ARCHITECTURE

The maintenance of boundaries during stem growth is critical
in preserving plant architecture. Ectopic expression of boundary
genes prevents the elongation and proper differentiation of stem
internodes resulting in aberrant phyllotaxy. This is illustrated by
clustering of flowers on the stems of plants expressing a miR164-
resistant version of CUC2 (Peaucelle et al., 2007). The restriction
of CUC2 expression to the floral stem axil by miR164 in the
IM is required to maintain the boundary between the pedicel
and the stem (Figure 1C). The TALE transcription factors BP
and PNY constitute another set of architecture determinants
(Figure 1C). These factors are required to maintain internode
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patterning during stem growth and radial patterning in both
primary and secondary phases of stem development (Smith and
Hake, 2003). BP and PNY are expressed in the stem cortex and
adjacent vascular tissues and form a boundary between the IM
and lateral organs (Smith and Hake, 2003). Mutations in BP lead
to short compact internodes, downward pointing siliques, and
precocious outgrowth of paraclades (Douglas et al., 2002; Venglat
et al., 2002). Vascular bundles in bp mutants are often irregular
in size and/or spacing. Bundles tend to be underdeveloped
with xylem elements reduced or lacking in lignin (Smith and
Hake, 2003). Mutations in PNY cause shortened internodes and
clusters of flowers on stems and partial loss of apical dominance
(Byrne et al.,, 2003; Smith and Hake, 2003). These phenotypes
are enhanced in the double mutant showing that BP-PNY have
partially overlapping functions in specification of boundaries
during internode growth (Smith and Hake, 2003). Genetic and
transcriptome studies indicate that PNY modulates the activity of
plant cell wall modifying enzymes required in loosening cell walls
to allow organ initiation and internode elongation (Peaucelle
et al,, 2011; Etchells et al., 2012). BP regulates an overlapping
set of genes and prevents premature deposition of lignin in
elongating stems by direct repression of genes in the lignin
biosynthetic pathway (Mele et al., 2003; Wang et al., 2006).

Genetic and expression studies show that bp and pny
inflorescence defects are caused by the localized misexpression
of lateral organ boundary genes KNAT6, ATHI, BOPI/2 and
to a lesser extent KNAT2 in stems (Ragni et al, 2008; Khan
et al., 2012a,b). Inactivation of BOP1/2 or KNAT6 or ATHI fully
rescues pny defects to restore wild type inflorescence architecture.
Similarly, inactivation of BOP1/2 or KNAT6 in combination with
KNAT2 or ATHI rescues bp defects in internode elongation
and pedicel orientation. The regular pattern of vascular bundles
and the pattern of lignin deposition in stems during secondary
growth are reestablished in these mutants (Khan et al., 2012a,b).
BOP1/2 require the functions of these downstream genes to
exert changes in inflorescence architecture suggesting a linear
pathway (Khan et al., 2012a,b). Further analysis of this module
shows that BOP1 directly activates ATHI whereas activation of
KNAT6 is indirect (Khan et al, 2015). BP/STM are recently
shown to promote xylem differentiation in the cambium through
the repression of BOPI and BOP2 (Liebsch et al., 2014). Thus,
restriction of the BOP1/2-ATHI-KNAT6 boundary module by
BP-PNY is critical for plant architecture. Recent data reveal that
BP directly represses KNAT2 and KNAT6 expression by recruiting
the chromatin remodeling ATPase BRAHMA to the promoter
(Zhao et al., 2015).

FLOWER INITIATION AND PATTERNING

Floral inductive signals acting on the SAM cause restructuring
to form the IM. Completion of this process requires the
PNY and PNF BELL members. In pny pnf mutants, apices
support the production of leaves, but internode elongation
and flower initiation are blocked (Smith et al., 2004; Kanrar
et al., 2008; Lal et al., 2011). Recent data show that this
block is due to misexpression of BOP1/2 and its downstream

effectors KNAT6 and ATH1 which prevent accumulation of floral
meristem identity genes including LFY, CAULIFLOWER (CAL),
and APETALAI (API) required for flower production (Khan
et al,, 2015). PNY in this network directly represses BOP1/2
to maintain its expression at boundaries. One study shows
that ectopic BOP1/2 expression reduces responsiveness to FT
by lowering the abundance of its binding partner FD (Andrés
et al,, 2015). Transcript profiling of BOPI overexpressing plants
further identifies promotion of JA as a potential mechanism
for inhibiting accumulation of SQUAMOSA PROMOTER
BINDING-LIKE PROTEINS and counteracting responsiveness
to GAs (Khan et al., 2015). Thus, the setting of lateral boundaries
by PNY and PNF via the restriction of BOP1/2-ATHI-KNAT6
expression is critical for meristem integrity and specification of
flowers.

The floral meristem constitutes an AM whose rapid
proliferation represses outgrowth of the subtending leaf (Long
and Barton, 2000). Initiation of flowers is an auxin-dependent
process similar to that in leaves (Figure 1C). Mutations in
MP or PINI result in naked IM “pins” lacking flowers due to
misexpression of meristem/organ/boundary markers including
STM, LFY, CUC, and ANT throughout the peripheral zone
(Vernoux et al., 2000; Hay et al., 2006; Schuetz et al., 2008).
MP integrates auxin and floral signals by directly activating
ANT/AIL6 which triggers proliferation in combination with
LFY which activates flower development (Yamaguchi et al.,
2013). Interestingly, MP does not bind to the LFY promoter
during the vegetative stage indicating that binding is stage-
specific (Yamaguchi et al., 2013). LFY reinforces this loop
via direct activation of genes in the auxin pathway, direct
activation of RAXI, and direct activation of API and CAL
whose products confer floral fate (Wagner et al, 1999;
William et al., 2004; Winter et al., 2011; Yamaguchi et al,
2013).

BOPI/2 and UNUSUAL FLORAL ORGANS (UFO) are
boundary regulators that facilitate LFY function. Genetic studies
reveal that BOPs play a supporting role in the promotion of
LFY expression (Karim et al., 2009), proliferation of the floral
meristem, and determinacy in part through direct activation
of AP1 (Xu et al., 2010). Several of these functions are shared
with UFO (Norberg et al,, 2005; Xu et al., 2010; Risseeuw
et al,, 2013). Outgrowth of the floral meristem is delayed in
bopl bop2, ufo-1, and Ify mutants or absent in bopl bop2 Ify-1
triple mutants resulting in barren axils (Levin and Meyerowitz,
1995; Wilkinson and Haughn, 1995; Norberg et al., 2005; Xu
et al, 2010). Inactivation of BOPI/2 or UFO CAL greatly
enhances the floral branching defect in apl mutants caused
by derepression of CK biosynthesis in sepal axils leading to
ectopic FM initiation and loss of shoot determinacy (Levin and
Meyerowitz, 1995; Xu et al., 2010; Han et al, 2014). UFO is
the F-box subunit of an SCF-based E3 ubiquitin ligase complex
which binds to LFY and functions as a transcriptional co-
activator (Lee et al., 1997; Chae et al., 2008). Paradoxically,
UFO stimulates LFY activity by directing ubiquitination of its
transcriptional activation domain thus marking the protein for
turnover which is required for maximal induction of target genes
(Chae etal., 2008). Similar functions are shown for BOP and UFO
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orthologs in a variety of species (Khan et al., 2014; Vlad et al.,
2014).

Arabidopsis flowers are composed of sepals, petals, stamens,
and carpels arranged in four concentric whorls. LFY is
responsible for this patterning by activating three sets of
homeotic genes that function combinatorially according to the
ABC model (Lohmann and Weigel, 2002). In ufo mutants, petals
and stamens are reduced or absent and organs are fused or
chimeric indicating disrupted boundaries in the flower (Levin
and Meyerowitz, 1995; Wilkinson and Haughn, 1995). In bopl
bop2 mutants, sepal-to-petal conversions and sepal-whorl organ
fusions are localized to the abaxial side of flowers where BOP1/2
are transcribed during late stage 2 (Hepworth et al., 2005; Xu
et al, 2010). Inactivation of BOPI1/2 or UFO in a weak Ify
background creates a strong Ify phenotype indicating closely
related functions for these genes (Levin and Meyerowitz, 1995;
Wilkinson and Haughn, 1995; Xu et al., 2010). UFO is activated
in the dome of stage 2 flowers and resolves to a cup-shaped
domain around STM-expressing cells in the central zone of
stage 3 flowers (Lee et al., 1997; Samach et al, 1999) and is
possibly involved in creating a boundary. Embryo expression of
UFO is dependent on STM (Long and Barton, 1998) but the
mutant has no obvious defects during this stage due to genetic
redundancy.

Boundaries in the flower are maintained by various other
boundary genes and stage-specific factors including the zinc-
finger repressors RABBIT EARS (RBE; Takeda et al, 2004),
and SUPERMAN (SUP; Sakai et al., 1995; Nibau et al,
2011) and HANABA TARANU, a GATA3-type transcriptional
repressor (Zhao et al, 2004; Nawy et al, 2010). CUC genes
are expressed between organ primordia and at the edges
of whorls where they repress growth required to separate
the floral organs and maintain boundaries between whorls
(Ishida et al., 2000; Takada et al., 2001). ATHI controls
basal floral organ boundaries and functions downstream
of CUC genes (Gomez-Mena and Sablowski, 2008). LOFI
(Gomez et al, 2011), OBOI/LSH3, and OBO4/LSH4 (Cho
and Zambryski, 2011) functioning downstream of CUCI are
likely to contribute based on their expression patterns or
overexpression phenotypes in the flower. Floral boundary defects
are also observed in bopl bop2 and jlo flowers (Hepworth
et al., 2005; Rast and Simon, 2012). Analogous to leaves, AS1-
AS2, and JAG repress boundary genes including CUCI and
CUC2 to promote sepal and petal development (Xu et al,
2008).

PETAL LOSS (PTL) encodes a stage-specific trihelix
transcription factor that represses growth in inter-sepal
boundaries. In ptl mutants, petals are often absent, or show
changes in shape, polarity, and fusion with sepals (Griffith et al,,
1999). Sepal fusion is increased in pt cuc mutants consistent with
analysis showing that CUCs suppress upward growth of inter-
sepal tissue at the boundary whereas PTL limits overgrowth of the
inter-sepal zone required for petal initiation (Lampugnani et al.,
2012, 2013). Petal initiation is highly sensitive to perturbations
in growth and auxin distribution because primordia arise from
2 to 3 founder cells located in close proximity to the inter-sepal
boundary (Lampugnani et al., 2012, 2013).

FRUIT PATTERNING AND DEHISCENCE

The Arabidopsis fruit is derived from the gynoecium, which
consists of two fused carpels representing modified leaves
(Ferrdndiz et al, 2010). The carpels (termed valves after
fertilization) are joined to a central replum whose internal surface
or carpel margin meristem provides ovules and a septum with
transmitting tract. Valve margins are a specialized lateral organ
boundary that forms at the valve/replum interface. They ensure
the release of the seeds. Thus, three patterning elements define
the transverse axis of the mature fruit: valves, valve margins,
and replum. Many interactions defining the SAM-leaf boundary
are conserved in ovule and fruit development (Ferrdndiz et al.,
2010; Reyes-Olalde et al., 2013; Arnaud and Pautot, 2014) and
(Figures 3 and 4).

The carpel marginal meristem (CMM) forms internally at
the junction between fused carpels, which is homologous to the
marginal meristem of leaves (Pautot et al, 2001). The CMM
produces two outgrowths fused centrally to form the septum and
is flanked on both sides by the placenta that gives rise to ovules.
CUC genes promote fusion of the carpel margins and CMM
initiation via the activation of STM similar to their role in SAM
(Kamiuchi et al., 2014). Defects in either of these genes impair
placental function leading to a reduction in ovules (Endrizzi et al.,
19965 Ishida et al., 2000; Scofield et al., 2007). CK also plays an
important role in promoting meristematic activity. Visualization
of CK using the synthetic TCS::GFP reporter shows CK in the
CMM of young gynoecia. Increased levels of CK enhance replum
size while decreased levels reduce replum size (Marsch-Martinez
et al., 2012). Following establishment of the CMM, CUCI1/2
transcripts are detected in the placenta where together with CK
they control the localization of PIN1 transporters in creating
auxin maxima required for ovule initiation (Bencivenga et al.,
2012; Galbiati et al., 2013; Cucinotta et al., 2014). In mutants
that overexpress CK, the number of ovules increases (Bartrina
et al,, 2011). Conversely, where there is a reduction in CK
response or defects in auxin synthesis, transport or signaling,
the number of ovules decreases (Galbiati et al., 2013). This
process is comparable to formation of serrations on the leaf
margin (Bilsborough et al., 2011). Once an ovule is initiated,
auxin and BR converge to activate ANT for proliferation of
the ovule primordia (Galbiati et al., 2013; Huang et al., 2013).
Auxin accumulation in the distal tip of the ovule ultimately
restricts CUCI/2 expression to boundaries in the ovule (Ishida
et al,, 2000). CUC3 and CUC2 are later expressed between ovule
primordia overlapping in a few cells where they are redundantly
required for ovule separation (Goncalves et al., 2015). Cuc3 single
mutants show rare fused ovules with defects more severe in the
cuc3 cuc2 double mutant. LOF1 may also play a role based on its
expression pattern in the inner medial ridges, the placenta, and
at the base of the ovules marking these domains as lateral organ
boundaries (Gomez et al., 2011). MADS-box transcription factors
AGAMOUS, SHATTERPROOF1/2 (SHP1/2), and SEEDSTICK
(STK) confer ovule identity (Ishida et al., 2000; Pinyopich et al.,
2003; Galbiati et al., 2013).

After fertilization, the ovules develop into seeds and the fruit
enlarges. At maturity, the valve margins undergo secondary
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Stage 9

(Cucinotta et al., 2014). Red lettering, SAM-leaf boundary genes.
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FIGURE 3 | Homologous networks for ovule initiation by the carpel marginal meristem (CMM) and patterning of leaf margin. Two fused carpels in the
center of the flower form a tubular structure that constitutes the gynoecium (stages 8 and 9). The inner fused surfaces of the carpels (equivalent to an adaxial leaf
surface) form a ridge of meristematic tissue called the CMM that gives rise to ovules and septum. Ovules are initiated in a process that resembles creation of
serrations on the leaf margin where CUC2 is required for leaf serration and CUC3 promotes serration growth (see text). (1) CUC1/2 in the placenta together with CK
promote the formation of an auxin maximum. (2) Auxin positive feedback reinforces flow of auxin to the primordia tip. (3) Auxin negative feedback restricts CUC1/2
expression to the base of the ovule. (4) Once auxin reaches threshold levels, it switches on ANT which promotes outgrowth of the shoot and MADS box genes
SHP1/2 and STK which confer ovule identity. CUC2/3 expression overlaps between ovule primordia and is required for ovule separation (not shown). Adapted from

leaf serration initiation

differentiation to form the dehiscence zone where the fruit opens.
The dehiscence zone has two cell layers: a separation layer
adjacent to the replum and a lignified layer. The separation layer
produces enzymes that break down the middle lamella, a layer
of pectin that cements cell walls together. The lignified layer is
continuous with the inner layer of the fruit and is required for
spring-like opening of the fruit (Ferrandiz et al., 2010).

The valve margin expresses a pair of stage-specific MADS-
box transcription factors encoded by SHP1/2 and boundary genes
KNAT2/6 and BOP1/2 that are activated later during carpel
development (Liljegren et al., 2000; Ragni et al., 2008; Khan et al.,
2012b). SHP1/2 confer valve margin identity via activation of
downstream bHLH transcription factors INDEHISCENT (IND)
and ALCATRAZ (ALC) (Liljegren et al., 2004). IND is required
for differentiation of lignified and separation layers of the
valve margin whereas ALC/SPATULA (SPT) are required for
differentiation of the separation layer (Rajani and Sundaresan,
2001; Liljegren et al., 2004; Girin et al., 2011; Groszmann et al,,
2011). IND leads to the depletion of auxin in valve margins
by relocating PIN1 transporters (Sorefan et al., 2009). IND also
promotes GA production, which releases ALC and SPT proteins
from DELLA repression allowing formation of a productive
complex to specify the separation layer (Arnaud et al., 2010). The
auxin and GA pathways seem to be independent, since the auxin
minimum is maintained in GA deficient mutants. Visualization
of CK in mature gynoecium shows CK in valve margins, and
this localization depends on IND and SHP1/2 activity (Marsch-
Martinez et al., 2012). Interestingly, CK restores valve margins
in shpl shp2 and ind mutants indicating that CK functions
downstream of these regulators. In contrast, a complementary
pattern is observed for auxin with a synthetic DR5 reporter
detected only in replum and valves. Thus, CK promotes valve
margins. CK may contribute to the depletion of auxin in

valve margins via the localization of PIN transporters (Marsch-
Martinez et al., 2012) but it is unknown if the depletion of auxin
is required for the accumulation of CK in valve boundaries or
if the valve margin regulators IND and SHP1/2 activate this
pathway.

The formation and relative size of external domains in
the fruit: valves, valve margin, and replum are governed by
antagonistic interactions analogous to those at the leaf-boundary-
SAM interface (Gonzélez-Reig et al, 2012). JAG and YABBY
(YAB) members FILAMENTOUS (FIL)/YAB3 also found in
leaves activate the MADS-box gene FRUITFULL (FUL), which
is required for elongation and differentiation of the valves, and
SHP1/2, which confer valve-margin identity (Dinneny et al.,
2005). FUL in turn represses SHP/IND/ALC to set the valve
margin boundary. Fruits in a ful mutant are constricted and
ectopically lignified due to the misexpression of valve margin
genes (Ferrandiz et al., 2000; Liljegren et al., 2004). AS1-AS2
and JAG/FIL/YAB3 reprise their roles in the leaf by restricting
BP expression to the replum. In asI or as2 mutants or in jag
fil yab3 triple mutants, valve width is reduced and the replum
is expanded due to an increase in BP expression (Alonso-
Cantabrana et al., 2007; Gonzalez-Reig et al., 2012). BP, which
interacts with PNY, also known as REPLUMLESS (Roeder et al.,
2003), activates its expression, and contributes redundantly
with PNY in maintaining the replum in part by repressing
valve and valve-margin identity genes (Alonso-Cantabrana et al.,
2007). Thus, inactivation of JAG/FIL/YAB3 or SHP/IND genes
partially rescues replum formation in a pny mutant (Roeder
et al., 2003; Dinneny et al., 2005; Alonso-Cantabrana et al,
2007). Other factors identified are APETALA2 which prevents
overgrowth of the replum and valve margin by repressing
BP/PNY and valve margin identity genes (Ripoll et al., 2011)
and the zinc finger transcription factor NO TRANSMITTING
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FIGURE 4 | Schematic of an Arabidopsis fruit and summary of
networks for fruit patterning compared to the SAM-leaf boundary.

(A) The Arabidopsis fruit derived from two fused carpel valves that represent
modified leaves. Valve margins are a lateral organ boundary specialized for
dehiscence that joins the carpels to a meristematic tissue called the replum.
The internal surface of the replum or CMM provides septum and placenta that
gives rise to ovules that develop into seeds at fertilization. Differentiation of the
valve margins requires GA, CK, and depletion of auxin (see text). When the
fruit is mature, the valve margin differentiates to form the dehiscence zone (D2)
comprising two layers: a separation layer (SL) where the fruit will open and a
lignified layer (LL) continuous with the lining of the fruit that provides tension
required in spring-like opening of the fruit for seed dispersal. (B) Similar to
their role in leaves, JAG and YAB factors together with AS1-AS2 are required
in restricting expression of meristematic genes BP and PNY to the central
replum domain and in restricting valve margin identity genes to the boundary
junction. FUL is a stage-specific factor that confers valve identity and
functions similarly to AS1-AS2 and JAB/YAB to correctly position the replum
and valve margin identity domains. Red lettering, SAM-leaf boundary genes:
CUC1/2 activate STM required in formation of the CMM and BOP1/2 and
KINAT2/6 expressed in the valve margin of fruit are predicted to antagonize
BP-PNY activity in the replum. Dashed arrows, hypothetical interactions.

TRACT which promotes replum development by activating BP
(Marsch-Martinez et al., 2014).

The role of boundary genes in fruit patterning and dehiscence
is worth exploring. Mutations in SHP1/2 or the different stage-
specific bHLH genes block dehiscence (Ferrdndiz et al., 2010)
but this is not case for KNAT2/6 or BOPI/2. Nevertheless,
inactivation of these genes restores replum formation in pny
mutants showing that the antagonistic interaction between
BOP1/2- KNAT6/2 and PNY also control fruit patterning (Ragni
etal.,2008; Khan et al., 2012b). Based on the role of this module in
other boundary contexts, BOP1/2 and KNAT2/6 likely contribute

to repression of BP/PNY to control replum size, specialization of
cells in the separation layer, and formation of lignified cell layers
(McKim et al., 2008; Khan et al., 2012a,b). Similar interactions
among meristem and boundary genes regulate abscission.

ABSCISSION

Abscission zones (AZs) are typically located at lateral organ
boundaries in the plant at the base of leaves, floral organs, or
seeds [(Estornell et al., 2013) and Figure 5]. In Arabidopsis,
AZs comprised of small, densely cytoplasmic cells form
simultaneously with the boundary for detachment of floral organs
and seeds (McKim et al., 2008). At anthesis, AZ cells acquire
competence to respond to abscission signals and secrete cell-
wall modifying and hydrolyzing enzymes that degrade the middle
lamella between two adjacent cell files. Ethylene, JA, and abscisic
acid are promotive signals for abscission whereas auxin, GA, and
BRs are inhibitory (for reviews: Estornell et al., 2013; Niederhuth
et al,, 2013; Kim, 2014). Depletion of auxin from the AZ is
shown to improve sensitivity to ethylene in controlling the
timing of abscission (Estornell et al., 2013) reminiscent of other
boundaries.

Boundary genes are required for both differentiation and
separation phases of abscission. A variety of plant species lacking
BOP activity fail to form an AZ (McKim et al., 2008; Wu et al,,
2012; Couzigou et al.,, 2015). BOP1/2 quite possibly perform
this function via ATH1 and KNAT2/KNAT6. Inactivation of
ATHI has a mild abscission defect in which formation of the
stamen AZs is delayed. A functional AZ eventually develops and
organs detach (Gomez-Mena and Sablowski, 2008). Reprising its
role in leaves, AS1 positions the medial sepal and petal AZs in
Arabidopsis via restriction of BP activity, which in turn restricts
expression of the HAESA receptor-like kinase (Gubert et al.,
2014). This was discovered through isolation of a new allele,
as1-22, which shows a delayed abscission defect (Gubert et al.,
2014).

The activation of floral organ abscission involves the peptide
INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the
receptor like kinase HAESA and HAESA-LIKE2 (HAE-HSL2)
signaling pathway. Low levels of IDA and HAESA transcripts
are also expressed in the mature dehiscence zones of the fruit
(Stenvik et al., 2008). Activation of cell separation by IDA-
HAE/HSL2 signaling antagonizes BP activity leading to up-
regulation of KNAT2 and KNAT6 and accumulation of cell-wall
modification and hydrolytic enzymes that mediate separation
(Shi et al., 2011). Waxes, suberin, lignin, and pathogenesis-
related genes are also induced in protecting exposed cells from
dehydration and pathogen attack (Estornell et al., 2013; Kim,
2014). Plants overexpressing BOPI show significant enrichment
for genes involved in lignin biosynthesis, stress and pathogen
resistance (Khan et al., 2012a, 2015) suggesting a potential role
in post-abscission events at the boundary.

Not all AZs form at a lateral organ boundary (Estornell et al.,
2013). The pedicel AZ in tomato is a well-studied example in
which a small groove in the floral pedicel leads to differentiation
of a “joint” where abscission takes place. Two MADS box
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proteins JOINTLESS and MACROCALYX form a complex that
regulates formation of the pedicel AZ together with LAS required
in AM production (Schumacher et al., 1999; Nakano et al., 2012).
CUC2 homolog GOB has been proposed to be involved in the
regulation of the onset of abscission based on its expression
in tomato pedicel AZs (Nakano et al., 2013). Tomato KNAT6
(TKN3), KNAT2 (TKN4), and the KNATM homolog KD1 are all
highly expressed in pedicel AZs similar to Arabidopsis. Silencing
of KDI delays abscission by increasing auxin content and
overexpression of KD1 has the opposite effect (Ma et al., 2015).
Hormonal control and transcript profiling of activated AZs in
Arabidopsis and tomato are very similar despite these apparent
differences (Estornell et al., 2013; Ito and Nakano, 2015).

An AZ at the base of the seed allows detachment from the
funiculus. In Arabidopsis, specification of this AZ requires the
MADS-box protein SEEDSTICK and the bHLH factor HECATE3
(Pinyopich et al., 2003; Ogawa et al., 2009). BOP1/2 do not seem
to be expressed in the ovule nor is there an obvious requirement
for the IDA-HAE/HLS2 signaling pathway (Estornell et al,

2013). This suggests a greater alignment with processes that
control dehiscence. The role of PNY has yet to be investigated
in seed dehiscence. Interestingly, domesticated japonica rice is
selected for a promoter mutation in the PNY/RPL homolog
qSHATTERINGI that depletes expression from the abscission
layer to inhibit seed shatter (Konishi et al., 2006). gSHI and a
related gene SH5 are required for development of the pedicel
AZ and inhibition of these genes reduces shatter by promoting
lignin biosynthesis (Yoon et al., 2014). Overexpression of wheat
TagSHI in Arabidopsis delays abscission and down regulates
abscission-promoting genes suggesting that TaqSH1 can function
as an upstream regulator of the IDA-HAESA-KNAT pathway
(Zhang et al., 2013). Remarkably, the same mutation in gSH1
was found in Brassica rapa which exhibit a narrow replum
compared to Arabidopsis (Arnaud et al., 2011). Collectively,
these data show remarkable overlap between separation processes
involved in pod shatter, floral organ abscission, and seed
dehiscence in which lateral organ boundary genes play a key
role.
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CONCLUDING REMARKS

In this review, we illustrate the importance of boundaries
throughout development. Studies have revealed a number of
genes including CUCs, TALEs, and BOP that play a recurring
role thoughout the life cycle. During the reproductive phase,
their activities are embedded within specialized networks
required for inflorescence, flower, and fruit development.
How these pathways are integrated is only partly understood.
Many questions also remain concerning the role of these
genes in the SAM. Molecular links between CUC genes that
confer boundary identity and BOP-TALE factors are not well-
established. Recent studies in monocots have shed light on the
role of KNOX transcription factors in initiating boundaries
but application of this model to dicots is not yet confirmed.
While significant progress has been made in understanding
how KNOX factors regulate hormone abundance, such links
are still largely missing for CUC and BOP factors at the
boundary. These factors also repress growth and cell division
but few targets have been identified to date and their hierarchy
is unclear. Identification of transcriptional targets is key
to understanding how these factors pattern the boundary.
Understanding how these networks translate to boundaries
during reproductive development is still in its infancy. In
particular, the influence of BR and the role of JLO is not yet
explored. The function of BOP and TALE factors in fruit and
in abscission is also unclear. Finally, the contribution of these
networks to the activity of lateral meristems responsible for
secondary growth in stems and roots is only partly understood.
Transcriptome analysis and further exploration of these factors
in boundaries in other species will establish the extent to
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