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In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with

soil fungi. Before this mycorrhizal interaction can be established however, plant roots

must be capable of detecting potential beneficial fungal partners and initiating the gene

expression patterns necessary to begin symbiosis. To predict a plant root—mycorrhizal

fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen

tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200

previously published transcriptomic experimental data sets, 159 experimentally validated

plant transcription factor binding motifs, and more than 120-thousand experimentally

validated protein-protein interactions to generate models of pre-mycorrhizal sensor

systems in aspen root. These sensor mechanisms link extracellular signaling molecules

with gene regulation through a network comprised of membrane receptors, signal

cascade proteins, transcription factors, and transcription factor biding DNA motifs.

Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with 15

transcription factors to regulate the expression of 1184 genes in response to extracellular

signals synthesized by Laccaria. Predicted extracellular signaling molecules include

common signaling molecules such as phenylpropanoids, salicylate, and jasmonic acid.

This multi-omic computational modeling approach for predicting the complex sensory

networks yielded specific, testable biological hypotheses for mycorrhizal interaction

signaling compounds, sensor complexes, and mechanisms of gene regulation.

Keywords: Laccaria bicolor, Populus tremuloides, mycorrhizae, metabolomics, transcriptomics, proteomics,

system modeling

INTRODUCTION

Terrestrial plants process about 15% of total atmospheric carbon dioxide each year, drawing
about 450 billion tons of carbon dioxide from the atmosphere (Beer et al., 2010). Depending on
conditions and on ecosystems, between 20% (Gamper et al., 2005) and as much as 40% (Drigo
et al., 2010) of that fixed atmospheric carbon is incorporated directly by subsurface mycorrhizal
fungi living in symbiosis with plant roots. From this, it can be estimated that mycorrhizal

Abbreviations: CBD, Cumulative Binomial Distribution; EC, Enzyme Commission; ECM, Ectomycorrhizal; GO, Gene

Ontology; JGI, Joint Genome Institute; KEGG, Kyoto Encyclopedia of Genes and Genomes; MMN,ModifiedMelin Norkan’s;

RPKM, Reads Per Killobase, per Million RNAseq reads; WPM, Woody Plant Media.
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symbiosis is a terrestrial sink of around 100 billion tons of
carbon dioxide annually. In exchange for this carbon, symbiotic
fungi provide access to nutrients otherwise inaccessible to the
plant and protect the roots from a variety of biotic and abiotic
stresses (Smith, 1974; Smith et al., 2003; Pozo and Azcón-Aguilar,
2007; Nehls, 2008; Bonfante and Genre, 2010). Ectomycorrhizal
interaction involves differentiation of specialized fungal tissues
and substantial reorganization of the root structure (Tagu
and Martin, 1995). These symbiotic relationships between
plant root and soil fungus depend on the activity of specific
sensor complexes that receive information about a plant root’s
environmental conditions and potential symbiotic partners
and use that information to initiate the molecular machinery
required to establish and maintain the mycorrhizal interaction.
Mycorrhizal-associated sensor complexes are likely comprised
of multiple components: transmembrane receptors that detect
specific signaling molecules in the extracellular environment,
signal cascades that conduct information to the extracellular
environment into the nucleus, transcription factors whose
activity is modified as a consequence of the signal, and
sets of genes regulated by those transcription factors whose
encoded proteins enable the cell to respond to the extracellular
environment. The inherent complexity of this sensor system
requires multiple forms of biological experimental datasets
to illuminate the full scope of system interactions. To infer
sensor complexes for establishing and maintaining mycorrhizal
symbiosis, we have combined archived transcriptomic data,
databases of high-throughput proteomic data, genomic sequence
analysis and metabolomic modeling with deep RNA sequencing
analysis of a laboratory in vitro system comprised of the tree
Populus tremuloides (aspen) and the ectomycorrhizal fungus
Laccaria bicolor (Laccaria).

Using Laccaria and aspen as model organisms for symbiotic
interactions provides a unique opportunity to investigate
the molecular mechanisms of mycorrhizal interaction. Aspen
and Laccaria are capable of forming mycorrhizae in the
laboratory, making themusefulmodels of plant-fungus symbiotic
interactions. The genomes for both Laccaria and the closely
related aspen species Populus trichocapra have been sequenced
through the efforts of the Joint Genome Institute (JGI) providing
a set of annotated gene models for use in transcriptomic analysis
(Tuskan et al., 2006; Martin and Selosse, 2008) (http://jgi.doe.
gov). The nature of the symbiosis that forms between aspen roots
and Laccaria is termed ectomycorrhizal (ECM) symbiosis. In
ECM interactions, the plant roots and fungus remain separated
by a narrow space called the apoplast, requiring that nutrients
and signaling molecules exchanged by plant and fungus be
transported across both fungal and plant cell walls by specific
transmembrane transporters and receptors.

We used several computational analysis approaches that
accommodate multiple “omics” data sources to predict aspen
mycorrhizal sensors. Using transcriptomics and metabolomic
modeling, we identified possible signal compounds synthesized
by Laccaria during pre-mycorrhizal interaction. Using
transcriptomic data and published databases of known
plant protein-protein interactions, we constructed possible
protein-protein interaction networks that link transmembrane

transporters to transcription factors via networks of signal
cascade proteins. These sensor complexes can be linked, using
transcriptomics data, to clusters of co-regulated genes that
share common regulatory motifs. Together, these predictions
can be combined into a system-scale model of pre-mycorrhizal
interaction that spans Laccaria signaling compounds to the
sensors that detect them, to the pre-mycorrhizal specific gene
expression patterns in aspen root. This predicted system-scale
interaction network model proposes molecular biological
experiments that can validate these predictions and demonstrate
the molecular mechanisms that mediate pre-mycorrhizal
interaction.

METHODS

The conceptual model of mycorrhizal sensor mechanisms used
as a framework for subsequent data analysis is represented in
Figure 1. In this model, extracellular ligands contain information
about potential symbiotic interactions (Figure 1A). The ligands
in this system are the metabolic products of Laccaria. Ligands
are detected and that information is conveyed to the nucleus
by protein sensor mechanisms (Figure 1B). These mechanisms
are comprised of three components. Transmembrane receptors
bind to extracellular ligands. Information about extracellular
conditions is relayed from themembrane receptors to the nucleus
via a network of signal cascade proteins. Finally, signal cascades
regulate the activities of transcription factors. By binding to
specific DNA motifs in the genome (Figure 1C), regulation
of transcription factor activity drives patterns of co-regulated
gene expression (Figure 1D). These patterns of gene expression
drive phenotypic changes in the aspen root. An approach
for generating this conceptual model from transcriptomic
experimental and previously collected transcriptomic, genomic,
and proteomic data is summarized in Figure 2.

Laboratory Biological System
The core component of this analysis is a laboratory experiment
in which aspen and Laccaria are co-cultured in the laboratory. A
crucial experimental aspect is the culturing of aspen and Laccaria
together, but separated by a permeable membrane preventing
direct contact between plant and fungus. In this condition, aspen
and Laccaria can only interact via small signaling molecules.
We hypothesize that observed changes in gene expression
patterns in aspen root under these conditions, relative to aspen
grown in monoculture, are potentially attributable to aspen
root responding to diffusible signals generated by Laccaria.
From laboratory cultures, RNA is extracted and sequenced.
Sequenced mRNA is used to generate gene expression data
for both Laccaria and aspen root. This transcriptomic data is
analyzed in the context of prior transcriptomic and proteomic
data sets, used to generate metabolomic models, and analyzed to
identify significant genomic features associated with mycorrhizal
interaction in later analysis steps.

Plant-Fungal Co-culture
Laboratory cultures of aspen and Laccaria were used to
identify gene expression patterns specifically associated
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FIGURE 1 | Model of environmental sensor mechanisms. In (A), extracellular molecules contain information about extracellular parameters. That information is

detected and conveyed to the nucleus by protein sensor mechanisms in (B). These mechanisms are comprised of transmembrane receptors (hexagons) that bind to

extracellular ligands. Information about extracellular conditions is relayed from the membrane receptors to the nucleus via signal cascade proteins (circles). Signal

cascade regulates activities of transcription factors (diamonds). By binding to specific DNA motifs in the genome (C), regulation of transcription factor activity drives

patterns of co-regulated gene expression (D). Patterns of gene expression drive observable phenotypic changes in the aspen root.

FIGURE 2 | Outline of analysis pipeline. This high-level diagram outlines the multi-omics data used in analysis, what individual analysis methods were applied, and

how those multi-omic data types were integrated. Box border colors reference the colors used for identifying components if sensor mechanisms from Figure 1.

with mycorrhizal interaction via diffusion of small signaling
molecules from Laccaria (Figure 3). There were three culture
conditions considered: Free living, interaction, and mycorrhizal
(Figure 3A). In free living states, aspen and Laccaria were
cultured alone. In interaction, aspen and Laccaria were

co-cultured, but separated by a membrane that permits diffusion
of small molecules but does not allow direct physical contact
between plant and fungus (Figure 3B). In mycorrhizal state,
Laccaria was allowed to fully form mycorrhizal interactions with
aspen roots (Figure 3C).
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FIGURE 3 | Outline of biological system experimental design. A typical example of laboratory aspen and Laccaria interaction cultures are pictured. (A) Aspen

seedlings grown in monoculture. (B) Aspen and Laccaria grown in co-culture after 96 h. In this co-culture condition, Laccaria mycelia are cultured on a membrane (C)

and transplanted onto surface of aspen seedling cultures, as in (B). The separating membrane permits exchange of diffusible signaling molecules between aspen

roots and Laccaria mycelia, but prevents physical contact between organisms. There were a total of nine experimental conditions that ranges from free-living aspen

seedling and Laccaria mycelium, to co-cultured but physically separated by a permeable membrane to fully formed mycorrhizae (D). In the cartoon, while Laccaria is

symbolized by mushroom shapes, no fruiting bodies were actually present in experimental design.

Laccaria (Maire) Orton (strain S238N) culture wasmaintained
onModifiedMelin Norkan’s (MMN)media at 20◦C, as described
in Kim et al. (1998). P. tremuloides seeds were surface sterilized
and germinated on McCown’s woody plant media (WPM) in
Petri dishes as previously described (Cseke, 2004). One week old
germinated seedlings were transferred toMagenta vessels (Sigma,
St. Louis, MO) containing the interaction medium (WPM with
1.5% of sucrose). The seedlings were grown under 16 h light
and 8 h dark cycles at 24◦C for 4–5 weeks until fine lateral
roots were developed. Laccaria mycelial plugs were transferred
to Magenta vessels on the surface of plant media or, for pre-
mycorrhizal interaction samples, on a permeable cellophane
membrane. Pre-mycorrhizal interaction aspen root tissue and
Laccaria mycelia were collected, snap frozen in liquid nitrogen,
and stored at −80◦C at six time points: 6, 12, 24, 48, 72, and
96 h after initial contact. For fully formed mycorrhizae, aspen
and Laccaria were co-cultured for∼6 weeks to form mycorrhizal
interactions.

There were a total of 18 sequenced transcriptomes: 2 replicates
of free living Laccaria, 2 replicates of free living aspen root, 6
interaction Laccaria (one sample per time point), 6 interaction
aspen root (one sample per time point), and 2 replicates of fully-
formed mycorrhizae. Fully formed mycorrhizae transcriptomes
are comprised of comingled aspen and Laccaria transcriptomes.
Of the 18 transcriptomes, 8 are Laccaria, 8 are aspen root, and 2
are mixed Laccaria and aspen root mycorrhizae.

RNA Extraction and Sequencing
Total RNA was extracted from samples by CTABmethod (Cseke,
2004) and RNA quality was assessed by gel electrophoresis prior

to library preparation. For mycorrhizal samples, extracted total
RNA was comprised of both plant root and mycorrhizal fungus.
Total RNA was treated with RQ-DNase (Promega, Madison,
WI). Procedures described for preparation of mRNA for the
mouse transcriptome analysis (Mortazavi et al., 2008) were
used with some modifications. Ten micrograms of total RNA
from each sample was hybridized to Sera-mag oligo (dT) beads
(Thermo Scientific) for mRNA purification. Purified mRNA was
fragmented by addition of 5X fragmentation buffer (Illumina,
Hayward, CA) and was heated for 5min at 94◦C. First strand
cDNA was synthesized using random primers to eliminate the
general bias toward 3′ end of the transcript. Second strand
cDNA synthesis was done by adding GEX second strand buffer
(Illumina, Hayward, CA), dNTPs, RNaseH and DNA polymerase
I followed by incubation for 2.5 h at 16◦C. Second strand cDNA
was further subjected to end repair, A-tailing, and adapter
ligation in accordance with the manufacturer supplied protocols.
Purified cDNA templates were enriched by PCR amplification
with Phusion DNA polymerase (Illumina, Hayward, CA) and the
samples were cleaned using QIAquick PCR purification columns
and eluted in 30µl EB buffer as per manufacturer’s instructions
(QIAGEN, CA). Purified cDNA libraries were quantified using
Nanodrop spectrophotometer and loaded onto Illumina flow
cells.

Determine Gene Expression from Short Read

Sequence Data
Using a strategy we have previously employed (Larsen et al.,
2010b, 2011b) and other investigators (Felten et al., 2009;
Payyavula et al., 2009; Grisel et al., 2010), we used gene models
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from the JGI sequenced and closely related P. trichocapra
as surrogates for P. tremuloides genes. Gene models and
their annotations were taken from the DOE JGI website
(www.jgi.doe.gov).

Gene model expression was detected in
the collected transcriptomics data using the
application “BowStrap” (Larsen and Collart, 2012)
(http://www.bio.anl.gov/molecular_and_systems_biology/BowS
trap.html). “BowStrap” performs a bootstrap analysis on the
output of the short sequence-aligning program “Bowtie” (http://
bowtie-bio.sourceforge.net/index.shtml) In “BowStrap,” both
unique and multiply aligned reads are considered to generate
a measure of gene model expression with an accompanying
confidence interval and statistical significance of expression.
Bowtie indexes were generated from sets of published JGI gene
models for L. bicolor and aspen For mycorrhizal samples, which
contain sequence derived from both plant root and fungal
transcriptomes, sequence reads were aligned to each set of
indexed gene models. The default Bowtie conditions were used
to generate alignments for all sets of sequence reads to gene
models, except for setting Bowtie to return all possible sequence
alignments. Ten thousand “BowStrap” iterations were used for
the calculation of average and standard deviations of RPKM
values. Significantly detected gene expression was defined as
a Cumulative Normal Distribution (CND) based, uncorrected
p < 0.0001.

Analysis of Aspen Transcriptomic Data
While transcriptomic data is collected from both the aspen
and Laccaria components of the biological system, that
data will be utilized very differently for aspen than for
Laccaria. From aspen transcriptomes, we identified groups
of co-regulated genes, found transcription factor binding
sites that are enriched in those gene clusters, and predicted
possible protein-protein interaction sensor complexes that
potentially link the ability to detect extracellular conditions
and use that information to drive changes in aspen root gene
expression.

Co-regulated Gene Clusters in Aspen Root
We anticipate that groups of genes that are co-regulated
in response to pre-mycorrhizal interaction conditions share
relevant common functions for symbiotic interaction. For aspen
root transcriptomes, gene models that were expressed in all
experimental samples and were highly variable in expression
across conditions were grouped into co-regulated sets of genes
using K-means clustering. K-means clustering is a method by
which multiple observations can be partitioned into a number of
clusters in which each cluster shares similar means. For inclusion
in clusters, genes were identified as significantly expressed in all
10 aspen root transcriptomes (2× free living, 6× interaction,
and 2×mycorrhizal transcriptomes) and differentially expressed
as identified by a coefficient of variation >0.33 (Coefficient of
variation is equal to the standard deviation of a measurement
divided by the average measurement). K-means clustering was
performed using Multiple Array Viewer (Saeed et al., 2003). The
number of clusters was empirically determined from analysis of

the data. A range of clusters sizes were tested and the resulting
patterns of clustered gene expression are considered in the
context of biological expectation: i.e., differentially expressed
in mon-culture, differentially expressed in interaction, and
differentially expressed in fully-formed mycorrhizae.

Statistically significantly (Cumulative Bionomical
Distribution calculated p < 0.05) enriched Gene Ontology
(GO) Biological Process annotations (Ashburner et al., 2000),
relative to the distribution of annotations in genome, were
identified in each gene cluster.

Identify Transcription Factor Binding Sites
Co-regulated genes in aspen root are expected to share
common regulatory genomic elements and those elements
are hypothesized to be associated with mechanisms of pre-
mycorrhizal interaction. We combined transcriptomic analysis
with genomic sequence analysis to identify possible transcription
factor binding sites that are enriched in the identified co-
regulated gene clusters.

Sequences 1000 bp upstream of co-regulated genes were
searched for all instances of known DNA binding motifs.
Possible transcription factor DNA binding sites were collected
from PLAnt Cis-acting regulatory DNA Elements (PLACE,
v30.0) (Higo et al., 1999), a publically available database of
469 experimentally validated plant transcription factor binding
motifs. If at least one instance of a motif was observed upstream
of a gene, then that motif was associated with that gene. While
the number of times a motif is present in an upstream region
is biologically relevant, only presence or absence of an upstream
motif was considered for this analysis.

Two methods were used to identify putative mycorrhizal-
associated transcription factor binding sites upstream of co-
regulated aspen genes.

Enriched motifs in co-regulated gene clusters
Cumulative Binomial Distribution (CBD) was used to calculate
statistical significance of enrichment for a transcription factor
biding motifM in co-expressed gene cluster C:

P − value = 1 −

xMC
∑

y= 0

(

nC
y

)

fM
nC (1− fM)(nC−xMC )

where:
nC = number of genes in co-regulated gene cluster C.
xMC = number of genes in co-regulated cluster C with motifM

in 1000 bp upstream region.
fM = frequency at which motif M is found in 1000 bp

upstream region for all differentially regulated genes.
A significance threshold 0.01 and a requirement that at least

10 genes in a cluster to be associated with a particular motif
were used to identify enriched motifs in co-regulated gene
clusters. These values for significance and number of genes were
empirically determined from the distribution of transcription
factor binding motifs in this data. A moderate significance level
of 0.01 was used due to the expectation that all genes in a co-
regulated cluster are not likely driven by the same transcription
factor. A minimum of 10 genes indicates that a potential motif
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regulates a cluster of genes actually differentially regulated in
this experiment and not just co-occurring in genes that share
biological function.

Transcription factors binding motifs in predicted sensor

complex
Known transcription factor binding motifs for transcription
factors present in predicted sensor complexes present in co-
regulated gene clusters were identified. The upstream regions for
co-regulated genes were searched for these motifs.

Predict Sensor Complexes in Aspen Root
Any signaling molecules synthesizes by Laccaria will have to be
detected by membrane-bound sensors in aspen roots, then that
signal relayed via signal cascade interactions to alter the activity
of specific transcription factors. While no direct proteomic
information was collected, the patterns of gene expression in
roots in conjunction with databases of known plant protein-
protein interactions will be used to identify possible sensor
complexes that have the ability to link the synthesis of signaling
molecules to resulting changes in aspen gene expression.

An integrated analysis of our in vitro transcriptomic
data, genomic annotations, previously reported aspen root
transcriptomes under a wide variety of growth conditions, and
tens of thousands of previously validated plant protein-protein
interactions was used to predict protein complexes in aspen
root. We required the following conditions for inferring the
existence of a Protein-Protein Interaction (PPI) involved in signal
detection and gene regulation:

1) All proteins in a PPI must be significantly expressed at every
time point.

2) Proteins in a PPI must be annotated with a function relevant
to environmental sensing and signal transduction (List of
annotations used us found in Table S1).

3) Proteins in a PPI complexmust be co-expressed across a range
of biological conditions.

4) The interaction network must follow a topology expected for
biological networks.

5) Proteins in PPI networks must be predicted co-occur in
sub cellular locations that are conducive to direct, physical
interactions.

6) Predicted PPIs are considered to occur only between proteins
within an organism and not between organisms.

To identify putative expressed sensor protein complexes, we
used the following computational approaches. We presume that
if a gene model is detected as significantly expressed, then its
protein product is present as well. Transcriptomic data archived
in the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) were used to identify sets of genes that are co-
expressed under multiple biological conditions. One hundred
and sixty three transcriptomes for Populus roots (GSE20118) and
14 tissue-specific transcriptomes (GSE21481) were collected for a
total of 188 aspen transcriptomic data sets.

To generate co-expression networks that follow topology
expected of biological networks (Chen et al., 2008; Larsen
et al., 2010a), we used the rank-based method Gene annotation
Restricted Value Neighborhood (GRV-N) (Larsen et al., 2010a)

with a constant neighborhood size equal to five and a
Pearson’s Correlation Coefficient significance threshold of
0.01. To distinguish between gene co-expression and possible
PPI interaction complexes, GRV-N identified networks were
further refined using Likelihood of Interaction (LOI) scores,
implementing the method as previously described (Larsen
et al., 2007) and summarized here briefly. LOI requires a
large set of previously identified PPI network and a set of
relevant annotations for all proteins in the set of interactions.
LOI generates a table of Z-scores, indicating the likeliness
or unlikeliness that two proteins will interact, based on their
annotations and the frequency of proteins with those same
annotations interact in a large database of known PPIs. Since
there is very little information available about interacting proteins
in either Laccaria or aspen, we used publically available data from
The Arabidopsis Information Resource (http://arabidopsis.org/)
for experimentally validated PPIs to build tables of LOI scores.
As we consider a requirement of PPIs that physically interacting
proteins must be co-localized in the cell into regions that
permit physical interactions, the annotation used in LOI-score
calculations was from cellular localization predictions by WoLF
PSORT (Horton et al., 2007) for all predicted proteins in aspen,
and Arabidopsis. This approach assigns the same set of sub-
cellular localization annotations, using the same criteria, to every
predicted protein for both the well-studied Arabidopsis as well as
the less well characterized aspen proteome. The highest WoLF
PSORT score was used to assign protein localization annotations.
In the event of a tie score between highest-scoring WoLF
PSORT annotations, both predicted localizations were assigned
to that protein. For those proteins assigned WoLF PSORT dual
localization annotations, that protein was assigned each, separate
localization. For example, if a protein was predicted to localize
for the WoLF annotation “nuclear:cytoplasm,” that protein
was assigned both the annotations “nuclear” and “cytoplasm.”
LOI scores were calculated using 10,000 random resampling
iterations. The complete table of LOI scores is available in
Table S2. An LOI-score >1 was considered the threshold for
allowed interactions.

Analysis of Laccaria Transcriptomic Data
The likely mechanism by which aspen roots detect Laccaria
in pre-mycorrhizal interaction is through signaling molecules,
synthesized, and exported by Laccaria into the extracellular
environment. Those extracellular signals are detected by aspen
root and cause aspen to alter its gene expression patterns in
response. While no metabolomic information was collected from
the biological system, a model of the Laccaria metabolome
can be generated from transcriptomic data. Predicted Relative
Metabolic Turnover (PRMT) is a computational method that
defines and enables exploration of metabolite-space inferred
from the transcriptome (Larsen et al., 2011a). PRMT scores
predict the change in turnover of metabolites (defined as the
potential for consumption or production) in an environmental
metabolome, given the relative abundance of genes for unique
enzyme functions (UEFs) detected in different metagenomes.
In this manuscript, we use the term “unique enzyme function”
to describe a specific annotation applied to an enzyme, i.e.,
“Phosphotransferases with an alcohol group as acceptor.” We
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use “enzyme reactions” to refer to metabolite transformations
catalyzed by an enzyme function, i.e., “ATP + D-Glycerate ↔

ADP+ 3-Phospho-D-glycerate.” A UEF may catalyze more than
one enzyme reaction and an enzyme reaction may be catalyzed
by more than one UEF. A metabolite is a molecular compound
that is a reactant or product in an enzyme reaction. In PRMT,
a metabolite is never the protein product of a gene in the
metagenome.

The PRMT method makes a number of assumptions. First,
as with many metagenomic analyses, it assumes that relative
abundance of genes for a UEF in metagenomic sequence is
proportionate to relative abundance of expressed functional
proteins. Second, PRMT assumes the rate of a reaction is
proportionate to the amount of enzyme, and not to the
concentrations of reactant or product. Finally, PRMT assumes
that the metabolome can be modeled as a well-mixed reaction,
disregarding compartmentalization of metabolites and activities.
All UEFs annotated to a set of metagenomes are compared
to reference databases of enzyme reactions to infer the set
of metabolites present. A positive PRMT score indicates a
greater predicted consumption of a metabolite and/or decreased
synthesis. A negative PRMT score indicates a greater predicted
synthesis of metabolite and/or decreased consumption.

Enzyme Commission (EC) annotations were used to define
UEFs for this analysis. UEF counts were calculated as the sum of
quantile-normalized RPKM expression levels of all gene models
with UEF. KEGG metabolic reactions were used to identify
all possible enzymatic transformations for EC annotations. The
sets of allowed enzymatic transformations were limited to those
present in KEGG pathways associated with aspen or Laccaria.
Lists of allowed KEGG pathways are found in Table S3.

We used Pearson’s Correlation Coefficient to identity
correlations between predictedmetabolomic turnover in Laccaria
and gene expression in aspen roots. For patterns of expression
in plant root, we used the average log2 fold change of all genes
in co-expressed gene clusters. The log2 fold change is equal
to the log2 for the average gene expression for a condition
minus the log2 average expression of a cgene over all conditions.
As a negative PRMT-score indicates a predicted increased
capacity for a metabolites synthesis, we considered a strong
negative correlation to be an indication of Laccaria metabolomic
activity associated with aspen root gene expression, i.e., increased
predicted synthesis of a metabolite (a negative PRMT-score)
correlating with increased expression of aspen genes (a positive
log2 fold change).

Combine-Omics Methods to Generate
System-Scale Model of Pre-Mycorrhizal
Interaction
The complete set of results from gene expression analysis, protein
complex prediction, transcription factor binding motif analysis,
and metabolomic model prediction can be assembled into a
single model of the regulatory systems of aspen pre-mycorrhizal
sensing. The following rules were used to combine multi-
omics models into a single model for plant-fungus mycorrhizal
interaction mechanisms.

1) Connect sensor complex to differentially regulated gene cluster:
When genes in a co-regulated gene expression cluster overlap
with genes for proteins in a predicted protein sensor complex,
then that sensor complex is presumed to regulate that gene
cluster.

2) Connect sensor complex to predicted Laccaria signal: When
the gene expression pattern of genes in a co-regulated
aspen gene expression cluster strongly correlated by Pearson
Correlation Coefficient with calculated PRMT-score for
Laccaria metabolites, then that Laccaria metabolite is
presumed to be a regulator of that co-regulated aspen gene
cluster. Strongly correlated is defined as being in the top
and bottom 0.001 percentile for all possible correlation
coefficients between gene expression patterns and PRMT-
scores. The mechanism of regulation of aspen genes by
Laccaria metabolite is presumed to be the aspen sensor
complex associated with that co-regulated gene cluster.

3) Connect sensor complex to differentially regulated gene
cluster transcription factor binding motifs: The transcription
factor binding motifs that link a sensor complex to its
regulated genes is derived from the known binding motifs
for transcription factors in the sensor complex and the
significantly enriched binding motifs present in the co-
regulated gene cluster.

4) Connect differentially resulted gene cluster to predicted
phenotype: The specific phenotypic response of a co-regulated
gene cluster is presumed to be found in the statistically
significantly enriched functional annotations in that gene
cluster (CBD derived p < 0.05).

RESULTS

Transcriptomic Data
Transcriptomic data, in the form of boot-strapped normalized,
log2-tranformed RPKM values, were collected for all aspen and
Laccaria biological samples. An average of 66.9% (SD 1.2%) of
aspen genes were detected as significantly expressed across all
samples. An average of 66.4% (SD 2.0%) of Laccaria genes were
detected as significantly expressed across all samples. The gene
expression values for aspen and Laccaria samples can be found in
Tables S4, S5 respectively.

Nine Clusters of Co-expressed Genes
Identified in Aspen Root Transcriptome
We examined gene expression changes at various plant-fungal
interaction time points to regulatory identify regulatory changes
associated with establishment of symbiosis. Aspen root gene
expression was grouped into co-regulated sets of genes using K-
means clustering (Figure 4). The specific genes present in each
Gene Cluster are found in Table S4. Each gene cluster was found
to be significantly enriched for a set of GO annotations (Table 1).

The majority of expression clusters in aspen roots showed
a gene expression change during interaction time points
and a constant level of gene expression for free living and
mycorrhizal samples (Down-regulated in interaction: clusters
1, 3, 4, 5, and 8. Up-regulated in interaction: clusters 2,
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FIGURE 4 | Gene expression K-means clusters. Aspen gene cluster co-expression for aspen was identified by K-means clustering. Y-axis is average gene

expression log2 fold change relative to average expression over all experiments. X-axis is growth condition: FL, free living; 0–96 h, pre-mycorrhizal interaction; Myc,

fully formed mycorrhizae. Error bars indicate ± one standard deviation. Blue bars below X-axis indicates gene expression data collected during root-fungus interaction

samples. Numbers of gene models associated with each cluster are given in parentheses.
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TABLE 1 | Enriched GO-biological process annotation in K-means

clusters.

Co-expression

cluster

Enriched GO-BP annotation

Cluster 1 Glucan metabolism GO:0006073

Carbohydrate metabolism GO:0005975

Regulation of transcription, DNA-dependent GO:0006355

Cluster 2 Electron transport GO:0006118

Cluster 3 Lipid metabolism GO:0006629

Cell wall catabolism GO:0016998

Oligopeptide transport GO:0006857

Carbohydrate metabolism GO:0005975

Regulation of transcription, DNA-dependent GO:0006355

Protein amino acid phosphorylation GO:0006468

Electron transport GO:0006118

Defense response GO:0006952

Cluster 4 Response to oxidative stress GO:0006979

Transport GO:0006810

Electron transport GO:0006118

Cluster 5 Apoptosis GO:0006915

Defense response to pathogen GO:0042829

Defense response GO:0006952

Amino acid transport GO:0006865

Aromatic compound metabolism GO:0006725

Electron transport GO:0006118

Protein amino acid phosphorylation GO:0006468

Cluster 6 Cell adhesion GO:0007155

Electron transport GO:0006118

Cluster 7 Fatty acid biosynthesis GO:0006633

Apoptosis GO:0006915

Defense response to pathogen GO:0042829

Defense response GO:0006952

Protein modification GO:0006464

Metabolism GO:0008152

Carbohydrate metabolism GO:0005975

Cluster 8 Defense response to pathogen GO:0042829

Defense response GO:0006952

Apoptosis GO:0006915

Protein amino acid phosphorylation GO:0006468

Metabolism GO:0008152

Regulation of transcription, DNA-dependent GO:0006355

Electron transport GO:0006118

Cluster 9 Glucan metabolism GO:0006073

Cell wall modification GO:0042545

Carbohydrate metabolism GO:0005975

Specific GO biological process annotations significantly enriched (p < 0.05) in K-means

clusters (from Figure 3), relative to distribution of annotations in genomic annotations.

6, 7). Half of these gene clusters (3, 5, 7, and 9) are
significantly enriched for annotations related to defense or
pathogen response, suggesting that gene expression patterns

differentially regulated during interaction may be associated
with a general response to the presence of a fungus and not
specifically associated with mycorrhizal interaction. Clusters 1
and 3 are enriched for regulation of transcription and are down-
regulated during interaction samples. Only aspen root cluster
9 demonstrates an expression pattern that can be described
as mycorrhizae-specific: up regulated in both interaction and
mycorrhizal samples. This gene expression cluster is enriched
for annotations of glucan metabolism, cell wall modification, and
carbohydrate metabolism. Glucan metabolism is associated with
plant-pathogen interactions (Flors et al., 2007; Rigano et al., 2007)
and cell wall modification suggests changes in cell wall and cell
wall permeability are required during mycorrhizal interaction.

Eight Transcription Factor Binding Motifs
Drive Gene Expression in Mycorrhizal
Interaction
Two methods were used for linking sensor complexes with the
genes they are predicted to regulate: identifying co-regulated
gene clusters that share a gene for a transcription factor
present in a sensor complex and identifying statistically enriched
transcription factor binding motifs present in co-regulated gene
clusters. The combination of these two approaches provide
complimentary information regarding possible mechanisms of
gene regulation (Table 2).

Transcription Factor Binding Motifs from Aspen

Sensor Protein Complexes
There are four transcription factor binding motifs identified
from transcription factors in predicted aspen sensor protein
complexes. Heat shock element (HSE), a transcriptional activator
of heat shock genes (Rieping and Schoffl, 1992; Haralampidis
et al., 2002;Wenkel et al., 2006) is found in co-regulated cluster 1.
E2F (E2FCONSENSUS) (Vandepoele et al., 2005) andMADS box
consensus sequence (CARGATCONSENSUS) (Hepworth et al.,
2002; Hong et al., 2003; Michaels et al., 2003; de Folter and
Angenent, 2006) are both present in putative pathogen defense
response-related aspen sensor protein complex C. Transcription
factor classes IAA-AUX and Pathogen ERF elements were
also present in predicted sensor protein complexes, but these
transcription factor types are not associated with specific DNA
binding motifs [e.g., for IAA-AUX (Ballas et al., 1993; Kim et al.,
1994; Ulmasov et al., 1997; Hagen and Guilfoyle, 2002; Goda
et al., 2004); and ERF (Terzaghi and Cashmore, 1995; Fujimoto
et al., 2000; Koyama et al., 2003)].

Transcription Factor Binding Motifs Statistically

Enriched in Co-regulated Gene Clusters
MYB1AT, dehydration response in Arabidopsis (Abe et al.,
2003), and MARTBOX, scaffold attachment region in drosophila
(Gasser et al., 1989), are transcription factor binding motifs
enriched in aspen co-regulated gene clusters 1 and 3. MARTBOX
suggests gene regulation by making changes to chromosomal
packing. Dehydration related MYB1AT, with HSE in gene cluster
1, suggests a general stress-response regulation. SURE1STPAT21,
sucrose responsive element identified in potato (Grierson et al.,
1994), is enriched in cluster 3. Binding motif BIHD1OS, linked to
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TABLE 2 | Transcription factor binding motifs linked to aspen co-regulated

gene clusters.

Co-

Regulated

Method TF Binding Motif Name Sequence #Genes

Cluster

Cluster 1

(106)

Enriched MYB1AT WAACCA 74

Enriched MARTBOX TTWTWTTWTT 69

Complex HSE CTNGAANNTTCNAG 1

Cluster 3

(199)

Enriched SURE1STPAT21 AATAGAAAA 18

Cluster 5

(180)

Complex CARGATCONSENSUS CCWWWWWWGG 7

Complex E2FCONSENSUS WTTSSCSS 28

Cluster 6

(140)

Complex CARGATCONSENSUS CCWWWWWWGG 3

Complex E2FCONSENSUS WTTSSCSS 16

Cluster 7

(268)

Enriched BIHD1OS TGTCA 189

Complex CARGATCONSENSUS CCWWWWWWGG 11

Complex E2FCONSENSUS WTTSSCSS 26

Cluster 8

(173)

Complex CARGATCONSENSUS CCWWWWWWGG 11

Complex E2FCONSENSUS WTTSSCSS 26

Cluster 9

(118)

Enriched MARTBOX TTWTWTTWTT 69

Enriched CAATBOX1 CAAT 118

Enriched CACTFTPPCA1 YACT 118

Enriched ARR1AT NGATT 118

Enriched RBCSCONSENSUS AATCCAA 33

Complex CARGATCONSENSUS CCWWWWWWGG 7

Complex E2FCONSENSUS WTTSSCSS 26

Numbers in parentheses after co-regulated cluster number is the total number of genes

associated with that cluster. “Method” refers to how TF binding motif was associated with

cluster: either from known TF binding motifs in regulating sensor complex, or if found to

be statistically, significantly enriched in set of co-regulated genes. “#Genes” indicates the

number of genes within the co-regulated cluster that have the TF binding motif at least

once within 1000 bp upstream region.

disease resistance in rice (Luo et al., 2005), in enriched in aspen
co-regulated gene cluster 7, which is also regulated by pathogen-
defense associated sensor C and enriched for genes annotated
as defense response. CAATBOX1, a tissue-specific promoter
in pea (Shirsat et al., 1989), ARR1AT, a cytokinin-regulated
transcription factor found in Arabidopsis and rice (Sakai et al.,
2000; Ross et al., 2004), and CACTFTPPCA1, a regulator of
phosphoenolpyruvate carboxylase of C4 dicots (Gowik et al.,
2004) are all not only enriched in co-regulated gene cluster 9, but
are also associated with every gene in the cluster. Additionally,
DNA binding motif RBCSCONSENSUS, previously reported as
light-sensitive transcription factor binding site (Manzara and
Gruissem, 1988; Donald and Cashmore, 1990) is enriched in
aspen co-regulated gene cluster 9.

FIGURE 5 | Predicted mycorrhizal sensor complexes. Connected

subnetworks are hypothesized to be sensor complexes expressed in aspen

root during mycorrhizal interaction, connecting extracellular sensory receptors

to transcription factors via signal cascades. Diamonds indicate a transcription

factor, triangles indicate a transmembrane receptor, circles indicate a signal

cascade protein, and octagons indicate a pathogen defense response protein.

Edges indicate a predicted physical interaction between expressed proteins.

Nodes highlighted with color are gene models that overlap gene co-expression

clusters (highlighting color uses same scheme as in Figure 3). (A–D) refer to

predicted Protein Sensor Complexes A–D described in text. The complete set

of predicted complexes is available in Table S6.

Five Mycorrhizal-Associated Sensor
Protein Complexes Predicted for Aspen
Root
An integrated analysis of transcriptomic data, genomic
annotations and previously validated plant protein-protein
interactions was used to predict protein complexes in aspen
root. There are 459 proteins and 536 edges in the predicted
aspen PPI network (Figure 5). All predicted protein interaction
pairs are available as Table S6. This network consists of a total
of 77 subnetworks, of which 44 are comprised of only a pair of
proteins (Larsen et al., 2011a). Four of the predicted subnetworks
contain genes for proteins that overlap with co-regulated gene
clusters, which are identified as complexes A–D in Figure 5. The
remaining protein complexes are also predicted to be present
in aspen roots, but are not predicted to be involved in the
mycorrhizal sensing network and are not further considered in
this analysis. Specific gene products in each predicted sensor
complex A–D are found in Table S3. Each predicted sensor is
described in greater detail by the annotations of its constituent
proteins.

Aspen Sensor PPI Complex A
Three of the four transcription factors in this sensor complex are
annotated as containing a pathogenesis-related transcriptional
factor and ERF (AP2/ERF) domains (Fujimoto et al., 2000). The
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fourth transcription factor is annotated as a Heat shock factor
(HSF)-type, DNA-binding (Clos et al., 1990).

Aspen Sensor PPI Complex B
Aspen sensor PPI complex B, contains two transmembrane
receptors, one of which contains a NB ARC domain, a signaling
motif found in plant resistance gene products (van der Biezen and
Jones, 1998). All of the transcriptions factors in this predicted
sensor complex are annotated as containing a pathogenesis-
related transcriptional factor and AP2/ERF domains (Fujimoto
et al., 2000).

Aspen Sensor PPI Complex C
Aspen sensor PPI complex C appears to be dedicated to pathogen
defense. Twenty six percent of its members are annotated as
defense response to pathogen (GO:006952). It contains two
MADS-box transcription factors and one Ethylene Response
Factor (E2F1) cell cycle transcription factor. The complex also
contains eight genes annotated as Curculin-like (mannose-
binding) lectin (IPR001480). Lectin synthesis has been observed
to occur in plants in response to specific environmental stresses
and lectins are involved in stress signaling (Van Damme et al.,
2004; Lannoo and Van Damme, 2010; Van Dammes et al., 2011)
and in plant symbiosis development (De Hoff et al., 2009).

Aspen Sensor PPI Complex D
Aspen sensor PPI complex D does not contain any transcription
factors. It does contain a receptor disease resistance protein
often correlated with a hypersensitive response and previously
reported to confer resistance to bacterial, viral, and fungal
pathogens (Staskawicz et al., 1995).

Laccaria Predicted to Signal Aspen Roots
with Plant Hormones, Terpenoids, and
Phenylpropanoids
We used the PRMT approach (Larsen et al., 2011a) to
derive metabolic models from the Laccaria transcriptome
and identify KEGG pathways with possible involvement in
mediating the establishment of plant symbiosis with the
plant. The complete Laccaria metabolic network contains 1269
enzyme-mediated reactions between 904 metabolites and 387
UEFs (Table S7 contains the metabolic network and Table S8

contains all calculated PRMT scores). The largest connected
subnetwork consists of 458 metabolites and 881 reactions.
A total of 39 Laccaria PRMT scores were found to have
strong correlations with observed patterns of aspen root gene
expression (Table 3). A strong negative correlation indicates
that when a compound is predicted to be synthesized by
Laccaria, there is a corresponding change in the expression
of genes in the aspen root transcriptome. KEGG pathways
indicated to be involved in synthesis of signaling compounds
are Biosynthesis of Plant Hormones (KEGG map07070),
N-Glycan Biosynthesis (map00510), Biosynthesis of Alkaloids
Derived from Shikimate Pathway (map01063), Biosynthesis
of Phenylpropanoids (map01061), and Biosynthesis of Plant
Secondary Metabolites (map01060). These identified KEGG
pathways correlate well with previously published observations

of mycorrhizal interaction. The Biosynthesis of Plant Hormones
(KEGG map07070) pathways include those for auxin, ethylene,
jasmonic acid, and brassinosteroids which have all been
previously reported as signaling compounds in plant-symbiote
interactions (Sun et al., 2006; Glick et al., 2007; Sukumar et al.,
2013). In addition, terpenoids have been linked to interactions
with plant roots and root morphology (Umehara et al., 2008).
N-linked glycans (N-Glycan Biosynthesis, map00510) play an
important role in cell-cell interaction (Van Damme et al., 2004;
Lannoo and Van Damme, 2010; Van Dammes et al., 2011)
and N-linked glycans are potentially associated with the sugar-
binding lectins in sensor protein complex A. The Biosynthesis
of Phenylpropanoids (map01061) includes compounds such as
catechin, epicatechin, and 4-hydroxybenzoate 4-OP-glucoside
which have been identified as crucial in plant-fungal interactions,
particularly for early mycorrhization (Campbell and Ellis, 1992;
Weiss et al., 1997). Salicylate, which correlates with aspen gene
co-expression cluster 1, is a plant hormone modulating inducible
plant defenses (Feys and Parker, 2000; Thaler et al., 2012).

Lipid are observed to correlate with aspen gene co-expression
cluster 5. Although lipids may not be good candidates for
diffusible signals in this experimental design due to the
unlikelihood that lipids can diffuse through the permeable
membrane, lipids can be signal molecules in that regulate
developmental processes, and response to pathogens (Howe
and Jander, 2008; Brodhun and Feussner, 2011). Also, Fatty
acid biosynthetic pathways, particularly Hexanoyl-CoA, are
precursors for jasmonate biosynthesis (KEGG map01070) and
jasmonic acid is a previously reported important mycorrhizal
signaling compound (Bari and Jones, 2009; Gutjahr and
Paszkowski, 2009).

Some strongly correlating metabolites are unlikely to be
directly involved in signaling, but may indicate corresponding
metabolic activities in Laccaria interacting with plant root. These
metabolites include pyruvate and dextrin, which are non-specific
to any particularmetabolic process but do occur in pathways such
as Biosynthesis of plant secondary metabolites and Biosynthesis
of plant hormones and may indicate general shifts in metabolic
and energy use priorities by pre-mycorrhizal Laccaria.

A Model of Fungus-Plant Signaling and
Regulation in Mycorrhizal Interaction
The complete set of results from gene expression analysis, protein
complex prediction, transcription factor binding motif analysis,
andmetabolomicmodel prediction can be assembled into a single
model of the regulatory circuitry of aspen mycorrhizal sensing
(Figure 6).

All of the predicted sensor complexes contain pathogen
or fungal-response related receptors or transcription factors,
indicating that they are relevant to interaction with the fungus
Laccaria. The predicted mycorrhizal sensor network is divided
into two main components. The first component is comprised
of sensor complexes A and B are predicted to detect N-glycans
and aromatics and control modification to aspen root cell walls.
There are three transcription factor binding motifs unique to
this regulatory mechanism. The second component, made up of
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TABLE 3 | Predicted Laccaria metabolism correlates with clustered aspen root gene expression.

Correlates with Aspen Gene Cluster Laccaria Metabolite Relevant KEGG Pathway

Cluster 1 Caffeoyl-CoA Biosynthesis of phenylpropanoids

Salicylate Biosynthesis of plant hormones

Pyruvate

trans-2,3-Dihydroxycinnamate Degradation of aromatic compounds

3-(2,3-Dihydroxyphenyl) propanoate

Hydantoin-5-propionate Histidine metabolism

Dolichyl beta-D-glucosyle phosphate N-Glycan biosynthesis

Dolichyl diphosphate

N-Hydroxyphenylacetate Phenylalanine metabolism

Dextrin Starch and sucrose metabolism

N-Hydroxyl-tryptamine

2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-

benzoquinone

Ubiquinone and other terpenoid-quinone biosynthesis

Aldoxime

4-Hydroxymandelonitile

Cluster 2 Pyruvate Biosynthesis of plant hormones

1-Phosphatidyl-D-myo-inositol N-Glycan biosyntesis

Dolichyl beta-D-glucosyle phosphate

Dextrin Starch and sucrose biosynthesis

Cluster 5 L-Gilonon-1,4-lactone Ascorabate and aldarate metabolism

beta-D-Fructose 1,4-bisphosphate Biosynthesis of plant secondary metabolites

Pyruvate

Ocanoyl-CoA

Lauroyl-CoA

Tetradecanol-CoA Fatty acid metabolism

Decanoyl-CoA

Hexanoyl-CoA

Cluster 6 Benzoate Biosynthesis of alkaloids derived from shikimate pathway

p-Coumaroyl-CoA Biosynthesis of phenylpropanoids

L-Asparagine Biosynthesis of plant secondary metabolites

Tryptamine

(Z)-4-Hydroxyphenylacetaldehyde-oxime Glucosinolate biosynthesis

4-Imidazolone-5-propanoate Histidine metaolism

Nitrile Nitrogen metabolism

Fe2+

3-Coumaric acid Phenylalanine metabolism

3-(3-Hydroxyphenyl)-propanoic acid Ubiquinone and other terpenoid-quinone biosynthesis

2-Hexaprenyl-6-methoxyphenol

2-Ocatprenyl-3-methyl-6-methoxy-1,4-benzoquinone

To identify potential signaling molecules and classes of signaling molecules synthesized by Laccaria and detected by aspen root, predicted differentially metabolized Laccaria molecules

were correlated with observed patterns of aspen root gene expression. Column “Aspen Gene Cluster” identifies the aspen co-expressed gene clusters from Figure 4. “Laccaria

Metabolite” lists the predicted Laccaria metabolites with PRMT-scores that strongly, negatively correlate (0.005/0.5th percentile of all correlations between gene expression patterns

and PRMT-scores) with aspen root gene co-expression patterns. While a metabolite might belong to multiple KEGG pathways (Ogata et al., 1999), the KEGG pathway predicted to be

most relevant to Laccaria-aspen signaling compounds is identified for each metabolite. Specific KEGG pathways likely to be relevant to mycorrhizal signaling are highlighted in bold.

Sensor complexes C and D, detect jasmonic acid and other plant-
like metabolites synthesized by Laccaria and drives root response
to pathogens. Sensor complex D does not include a transcription
factor, but may modulate gene expression of defense response
gene cluster 7 by interaction with complex C through its defense
response to pathogen associated protein kinase. There are seven

transcription factor binding motifs unique to this regulatory
mechanism.

In addition to the support for individual components of
the model prediction in the available literature as described
in previous sections, the system-scale network in Figure 6

is also supported by overlap with previously reported
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FIGURE 6 | Summary for predicted regulatory mechanisms of mycorrhizal sensing. Predicted classes of signaling molecules (Gray boxes) are collated from

Table 3. In this figure, as in Figure 4, transmembrane receptors are arrows, signal cascades are circles, and transcription factors are diamonds. Specific genes in

predicted sensor complexes (from Figure 4) are summarized by protein function. (A–D) refer to predicted Protein Sensor Complexes A–D described in text. Numbers

in parentheses are number of proteins associated with function present in predicted sensor complex. DNA binding motifs associated with sensor complex are

identified by known motifs from transcription factors in sensor complexes (highlighted red) or are identified as statistically significantly enriched in co-regulated gene

clusters (highlighted blue). Numbers in parenthesis indicate number of gene models in co-regulated gene cluster that have transcription factor DNA binding motif in

1000bp upstream region. Co-regulated gene expression clusters are highlighted using same scheme as in Figure 3. Predicted phenotype as a consequence of gene

regulation is summarized from Table 1. Numbers in parentheses indicate number of gene models associated with co-regulated gene cluster.

plant interaction sensor mechanisms. Predicted regulator
circuitry intersects with known KEGG pathways for Plant-
Pathogen Interactions (map04626) and Plant Hormone Signal
Transduction (map04075) (Figure 7). Of the 30 proteins in this
combined symbiote recognition pathway, 11 are coded for by
genes in the predicted interaction network. Of particular interest
from this overlap is the signal pathway connecting Laccaria-
synthesized plant hormones auxin and brassinosteroids to cell
elongation. Auxin synthesized by Laccaria has been previously
reported as driving root elongation phenotype (Sukumar et al.,
2013). Also, the fungal PAMP (pathogen-associated molecular
patterns) signal cascade is well represented in our predicted
regulatory model. Specifically, the signal pathway for down-
regulating defense-related gene induction is represented in our

predicted network, which we propose is the signaling pathway
by which Laccaria inhibits aspen root’s fungal pathogen response
in order to establish mycorrhizal interaction. While there is no
known aspen homolog for fungal PAMP receptor in the curated
regulatory network, we propose that the PAMP receptor is one
of the 10 transmembrane receptors in predicted sensor complex
C or D (Figure 3).

DISCUSSION

The complete set of results from gene expression analysis, protein
complex prediction, transcription factor binding motif analysis,
and metabolomic model prediction can be assembled into a
single model of the regulatory circuitry of aspen mycorrhizal
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FIGURE 7 | Predicted symbiote recognition pathways overlap with prior knowledge. The network combines portions of regulatory cascades from KEGG

pathways for Plant-pathogen interactions (Map 04626) and Plant hormone signal transduction (Map 04075). All highlighted nodes have homologs in P. trichocapra.

Red highlighted nodes are present in aspen sensor complexes, blue highlighted nodes are present in aspen co-regulated clusters, and the purple highlighted node is

present in both regulatory clusters and sensor complexes. Green highlighted ligands overlap predicted Laccaria metabolism. Fungal PAMP (Pathogen Associated

Molecular Patterns), highlighted by green dashed-circle, refers to a broad class of ligands and is not directly predicted by metabolic model but can be inferred to be

present in Laccaria-aspen interaction system.

sensing. The model predicts the class of signaling compounds
of terpenoids and the specific signaling molecules jasmonic acid
and salicylate are diffusible signals synthesized by Laccaria during
mycorrhizal interaction. There are four predicted aspen root
sensor protein complexes that detect these diffusible signals
through 13 transmembrane receptors and regulate the activity of
15 transcription factors. The transcription factors are predicted
to interact with 8 possible transcription factor DNA binding
motifs on the aspen genome to regulate the expression of 1184
genes. The phenotype controlled by these genes is predicted to
be the modulation of defense response to pathogenic fungus, the
modification of root cell walls, and the alteration to root structure
morphology.

Not every possible interaction implied by these results is
explicitly identified in this model, but there are secondary
regulatory mechanisms that can be inferred. For example, the
HSF transcription factor in aspen sensor protein complex A is
predicted, by analysis of DNA binding motifs, to regulate another
transcription factor (aspen JGI gene model 830963) present in
regulated gene cluster 3. This transcription factor is annotated
as DNA-binding WRKY (DNA binding motif, TTTGACY)
(Rushton et al., 1996; Eulgem et al., 2000). There are 33 gene
models in co-regulated clusters 3 and 16 and in cluster 1 that have
the WRKY DNA-binding motif within the 1000 bp upstream

of their coding sequences (16% of genes in both co-regulated
clusters, predicted to be regulated by sensor protein complex
A). DNA-binding WRKY regulation is associated with plant
developmental programs, including pathogen defense (Eulgem
et al., 2000). This suggests that there may actually be two
levels of interaction present in this system: HSF transcription
factor regulates the transcription factor 830963 which in turn,
regulates additional cell wall modification genes in response to
pathogens.

These predictions identify specific biological experiments to
validate the models, although performing even a small subset of
the possible experiments proposed by these results is beyond the
scope of this manuscript. For example, treating aspen roots with
predicted signaling compounds should produce a characteristic
gene expression pattern that is a predictable subset of the gene
expression changes observed in the interaction experiments.
Predicted transmembrane receptor proteins can be synthesized
and purified to validate their predicted binding ligands in vitro.
ChIPseq experiments using the predicted mycorrhizal sensing
mechanism transcription factors can validate predicted gene
regulatory mechanisms. We anticipate that the generated
model will yield ample opportunity for additional biological
experimentation. The computational modeling approach used
here also can be generalized to explore additional mechanisms
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of symbiotic interactions, provided that there is a similar body
of prior observations from which protein interaction networks
and gene expression patterns over a wide range of conditions are
available.
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