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Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a
microbe/pathogen-associated molecular pattern that elicits plant defense responses.
As polymeric chitin is difficult to handle due to its insolubility in water, many studies
on chitin-induced immune responses have used water-soluble low-molecular weight
chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we
examined the elicitor activity of chitin nanofiber (CNF) of submicron thickness prepared
from polymeric chitin. CNF showed a high dispersing ability in water and induced both
reactive oxygen species (ROS) production and chitin-induced defense-related gene
expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor
kinase 1 (Atcerk1) mutant, which is impaired in chitin perception, also failed to respond
to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from
Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively
reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium
Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has
elicitor activity and will help define the role of polymeric chitin in plant immune responses.

Keywords: chitin, nanofiber, elicitor, Arabidopsis thaliana, rice, Alternaria brassicicola, Pseudomonas syringae
pv. tomato DC3000

INTRODUCTION

Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and arthropod
exoskeletons. As a biocompatible and biodegradable eco-friendly biopolymer, chitin has several
promising applications in various fields. Due to its high nitrogen content and low C/N ratio, chitin
can be used as a fertilizer or soil amendment to enhance crop growth. Moreover, chitin is expected
to improve crop yields due to its ability to induce plant defense systems against pests and pathogens
(Sharp, 2013).

Plant defense systems are activated in response to chitin in fungal (potential pathogen) cell
walls, which is perceived as a microbe- or pathogen-associated molecular pattern (MAMP/PAMP).
Bacterial flagellin, elongation factor Tu, lipopolysaccharides, and peptidoglycan are other examples
of PAMPs, which are often highly conserved, constitutively expressed, and essential components of
microbes (Antolin-Llovera et al., 2012). The recognition of PAMPs by pattern recognition receptors
(PRRs) present at the plant cell surface induces PAMP-triggered immunity (PTI) (Antolin-Llovera
et al., 2012).
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The first plant PRR for chitin was identified in Oryza sativa
(rice). Chitin elicitor binding protein (OsCEBiP) is a receptor-like
protein (RLP) that contains an extracellular chitin-binding lysin
motif (LysM) but lacks a known intracellular signaling domain
(Kaku et al., 2006). OsCEBiP forms a complex with chitin elicitor
receptor kinase1 (OsCERK1), a receptor-like kinase (RLK) that
contains an active intracellular kinase domain, to initiate chitin
signaling (Shimizu et al., 2010; Shinya et al., 2012). InArabidopsis,
AtCERK1 (also known as RLK1/LYK1) is essential for chitin
signaling (Miya et al., 2007;Wan et al., 2008). AtCERK1 is an RLK
that contains extracellular LysMs as well as an intracellular kinase
domain. Chitin induces dimerization of AtCERK1 and activates
immune responses, such as the generation of reactive oxygen
species (ROS), activation of mitogen-activated protein kinases,
and expression of defense-related genes (Miya et al., 2007; Wan
et al., 2008). The biological activity of chitin elicitor depends on
their size, with chitin heptamers to octamers showing high PAMP
activity (Liu et al., 2012).

While several studies have examined chitin-induced PTI
systems, chitins have not been widely used in practical
applications. Because polymeric chitin is not soluble in most
organic and inorganic solvents due to its high crystallinity (Pillai
et al., 2009), many studies of chitin-induced PTI are based
on water-soluble low-molecular weight chitin-oligosaccharides.
Chitin only becomes soluble in water once it is costly degraded
or chemically modified. Despite its huge availability, theses
handling difficulties of polymeric chitin is a major obstacle for
the utilization.

We recently developed chitin nanofiber (CNF) from
polymeric chitin extracted from crab shell and mushrooms
(Ifuku et al., 2009, 2011, 2012). Exoskeletons of crustaceans
consist of CNFs. Chitin nanofibrils (∼3 nm in diameter) are
embedded in a protein matrix and assemble into fibers (∼60 nm
in diameter), and further these fibers assemble into micro-size
bundles (Chen et al., 2008). Similarly, fungal cell walls consist
of CNFs, which form a complex with glucans (Zivanovic et al.,
2003). Extracted CNF has a highly uniform structure of 10–
20 nm thickness and shows high dispersing ability in water
due to its submicron size and high surface-to-volume ratio
(Ifuku et al., 2011, 2012). In this study, we demonstrated that
the polymeric CNF has elicitor activity in plants. We found
that CNF induced ROS production and expression of defense
genes and reduced pathogen infection in Arabidopsis and rice,
similarly to chitin-oligosaccharide elicitors. We show that
nanofibrillated chitin has useful applications for plant disease
control.

MATERIALS AND METHODS

Preparation of Chitin Nanofibers
Chitin powder from crab shell was purchased from Koyo
Chemical (Tottori, Japan). CNFs were prepared without acetic
acid as described previously (Ifuku et al., 2012). Briefly, dry
chitin powder was dispersed in water at 1 wt.% and passed
through a high pressure water-jet system (Star Burst Mini,
HJP-25001S, Sugino Machine, Toyama, Japan) equipped with

a ball-collision chamber for mechanical disintegration. Chitin-
oligosaccharides (GlcNAc)2−6 and purifiedN-acetylchitohexaose
(GlcNAc)6 were purchased from Yaizu Suisankagaku industry
(Shizuoka, Japan).

Plant Materials
Arabidopsis thaliana, ecotype Columbia (Col-8) and cerk1-2
(GABI_096F09) were used. For inoculation tests, Arabidopsis
plants were grown on sterilized soil [1:1 mixture of Supremix
A (Sakata Seed Co., Yokohama, Japan), vermiculite] under
controlled environmental conditions with 8 h light/16 h dark
cycles at 22◦C. For ROS assays and qRT-PCR, Arabidopsis
seedlings were grown in liquid MGRLmediumwith 0.1% sucrose
(Albert et al., 2006) at 22◦C under continuous light for 10 days.
Suspension-cultured rice cells derived from seed scutella ofOryza
sativa japonica ‘Nipponbare’ were used. The rice cells were
maintained using liquid L medium (Kuchitsu et al., 1993) on
a rotary shaker at 25◦C under dark conditions as described
previously (Nakagami et al., 2010).

Oligomeric Chitin Analysis
Oligomeric chitin in CNF was detected by HPLC analysis as
described by Sashiwa et al. (2003). The water-soluble fraction
from a suspension of chitin powder in water (10 mg/mL)
and the filtrate from a CNF dispersant (10 mg/mL) through a
Millex-HA filter (Merk Millipore, Darmstadt, Germany) were
analyzed. Chitin-oligosaccharides [(GlcNAc)2−6] (10 mg/mL)
were dissolved in water and used as a positive control.
HPLC analysis was performed using a Hitachi HPLC system
(Hitachi, Tokyo, Japan) equipped with a L-7100 pump, L-7200
autosampler, and D-7400 UV detector and conducted on a
Shodex Asahipak NH2P-50 column with CH3CN/H2O (7:3, v/v)
with the following settings: injection, 0.1 mL sample/CH3CN
(1:2, v/v); flow rate = 1.0 mL/min; and UV detection at
210 nm.

Chitinase Assay
Enzymatic degradation of chitin was analyzed by chitinase assay
with Schales’ method as described by Ferrari et al. (2014).
Un-nanofibrillated and nanofibrillated chitin (1 mg/mL) were
incubated with chitinase (1.2 U, Wako Pure Chemicals Industries
Ltd., Osaka, Japan) in 50 mM KPi buffer (pH6.0) at 30◦C.
Reactions were centrifuged at 4◦C and 100 µL supernatant was
mixed with 200 µL Schales’ regent (0.5 M sodium carbonate,
0.5 g/L potassium ferricyanide). The samples were incubated at
100◦C for 15 min under dark conditions, and absorbance was
then measured at 420 nm.

ROS Assay
Three 10-day-old Arabidopsis seedlings were incubated in liquid
MGRL medium supplemented with 0.1% sucrose containing
100 µM L-012 (Wako, Japan) for 2 h at 22◦C under darkness,
and then transferred to liquid MGRL medium containing 0.1%
sucrose and chitin-oligosaccharides or CNF. ROS production was
determined by counting photons derived from L-012–mediated
chemiluminescence using a TriStar LB942 microplate reader
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(Berthold technologies, Germany). Similarly, 40 mg rice cells
was incubated with liquid L medium containing 1 mM L-
012 for 2 h at 25◦C under dark conditions, and then with
liquid L medium containing chitin-oligosaccharides or CNF
and horseradish peroxidase (final conc. 1 unit, Sigma–Aldrich,
USA).

RNA Isolation and qRT-PCR Analysis
Arabidopsis seedlings (10-day-olds) were treated with 0.1 mg/mL
CNF or water. Samples were harvested 1 h after treatment
and frozen immediately. Total RNA was isolated using the
RNeasy Plant Mini Kit (Qiagen, Netherlands) and cDNA
was prepared using the ReverTra Ace Reverse Transcription
Kit (Toyobo, Japan). Quantitative real-time PCR (qRT-PCR)
was performed using the Mx3000P QPCR system (Agilent
Technologies, Santa Clara, CA, USA) with Thunderbird SYBR
qPCR Mix (Toyobo, Japan). Data were analyzed using an

FIGURE 1 | Characterization of chitin nanofiber. (A) Chitin nanofiber
consists of long polymeric chitin. The water-soluble fraction from chitin
powder suspension (chitin powder) and chitin nanofiber dispersant (CNF) were
subjected to HPLC analysis. Chitin-oligosaccharides (GlcNAc)2−6 (Chitin 2-6
mer) were used as the positive control. (B) Comparison of chitinolytic enzyme
sensitivity. Enzymatic degradation of chitin before (Chitin powder) and after
nanofibrillation (CNF) was analyzed using a chitinase assay. Similar result
obtained in four independent experiments and the data show one
representative.

FIGURE 2 | Generation of reactive oxygen species (ROS) by chitin
nanofiber treatment. ROS production was measured by
chemiluminescence mediated by L-012 after elicitor treatment. (A) ROS
production in 10-day-old Arabidopsis seedlings. Wild-type Col-8 or cerk1-2
mutant plants was treated with 1 mg/mL or 0.1 mg/mL chitin nanofiber (CNF)
or 1 mg/mL chitin-oligosaccharides (GlcNAc)2−6 (Chitin 2–6 mer). (B) ROS
production in suspension-cultured rice cells treated with 0.1 mg/mL CNF,
chitin-oligosaccharides (GlcNAc)2−6 (Chitin 2–6 mer) or N-acetylchitohexaose
(Chitin 6 mer). HRP: horseradish peroxidase. The values represent the
average and standard errors of six replicate experiments.

in-house script written in the R language as described by
Tsuda et al. (2013). The gene-specific primers used were
as follows: FRK1 (At2g19190) FW 5′-ACGGGCATAGTTC
CACAAAG-3′, FRK1 RV 5′-CGTCAAAAGAACGACGATGA-
3′; CYF81F (At5g57220) FW 5′-AATGGAGAGAGCAACACA
ATG-3′, CYF81F RV 5′-ATACTGAGCATGAGCCCTTTG-3′;
WRKY22 (At4g01250) FW 5′-TCCTTCGGAGAGATTCGAGA-
3′, WRKY22 RV 5′-CTGCTGCTACATGGCACACT-3′; ZAT10
(At1g27730) FW 5′-TGTCACGCAACTTCCTTCT-3′, ZAT10
RV 5′-TGGTGTCACTTTATGCTTATTC-3′; lectin-like protein
gene (At3g16530) FW 5′-ACAATGCAGATTCACAAACTC-
3′, lectin-like protein gene RV 5′-GCAAACGATACCTAGCC
AA-3′; Actin-2 (At3g18780) FW 5′-GTTGGTGATGAAGCA
CAATCCAAG-3′, Actin-2 RV 5′-CTGGAACAAGACTTCTGG
GCATCT-3′.

Pathogen Inoculation
Arabidopsis plants were sprayed with distilled water, 1 mg/mL
chitin-oligosaccharides [(GlcNAc)2−6], or 0.1 or 1 mg/mL CNF
(including 0.01% silwet L-77) 24 h before pathogen inoculation.
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FIGURE 3 | Chitin-responsive genes in Arabidopsis respond to chitin nanofiber. Ten-day-old seedlings of wild-type Col-8 or cerk1-2 mutant were treated with
water (DW) or 0.1 mg/mL chitin nanofiber (CNF). Expression of chitin-responsive genes was measured by qRT-PCR. Data represent means and standard errors of
two biological replicates calculated by the mixed linear model. Asterisks indicate significant differences from CNF-treated Col-8 (P < 0.01, two-tailed t-tests).

Alternaria brassicicola isolate O-264 was maintained on potato
dextrose agar medium. O-264 was incubated on V-8 juice agar
for 2–3 days at 25◦C in the dark and spores were obtained.
Droplets (10 µL) of O-264 spore suspension (104 spores/mL)
were placed on the leaf surface. Inoculated plants were kept
under high humidity conditions in a moist chamber with a 10-
h photoperiod at 22◦C and lesion formation was observed 4 days
post inoculation. Pseudomonas syringae pv. tomato DC3000 (Pst
DC3000) was grown on KB medium containing rifampicin
(50 µg/mL). Prior to inoculation, bacteria were suspended in
10 mMMgCl2 to a density of OD600 = 0.0002. Arabidopsis leaves
were syringe-infiltrated with bacterial suspension. Inoculated
plants were incubated in a moist chamber under a 10-h
photoperiod at 22◦C. To determine the bacterial population,
inoculated leaves were harvested and cut into 1-cm2 samples at
3 days post inoculation. Samples were homogenized in 10 mM
MgCl2 and a series of diluted samples were plated on KB
medium containing rifampicin and cycloheximide (50 µg/mL).
The number of colonies per plate were counted.

RESULTS

CNF Consists of Polymeric Chitin
We previously described the preparation of CNF using the Star
Burst system, which employs high-pressure water jet technology
(Ifuku et al., 2012). In this process, chitin powder dispersed
in water is passed through the Star Burst system under high
pressure and atomized via collision with a ceramic ball. After

these mechanical treatments, CNF of 10–20 nm thickness is
obtained in slurry form and is highly dispersed in water
(Supplementary Figure S1). We performed high-performance
liquid chromatography (HPLC) to assess whether chitin fibrils
were reduced in length as well as thickness during this mechanical
process. There were no obvious peaks of chitooligosaccharides
from the aqueous fraction of un-nanofibrillated chitin powder
(Figure 1A). Moreover, filtrate from CNF did not contain
oligomeric chitin (Figure 1A). These results confirm that chitin
was not disintegrated in length during preparation and that CNF
consisted of polymeric chitin.

CNF is Rapidly Degraded by Chitinase
The unique properties of nanofibers come from their nanoscale
size and high specific surface area, which provide greater access
to the constituent molecules. We conducted chitinase assays to
assess whether nanofibrillated chitin had increased sensitivity to
chitinolytic enzymes. Whereas un-nanofibrillated chitin powder
was not degraded over the course of 3 h, CNF was rapidly
degraded (Figure 1B). These results suggest that in contrast to
un-nanofibrillated chitin, which consists of chitin aggregates,
CNF is composed of loosened chitin fibers that provide increased
access to chitinase for degradation.

CNF Induces ROS Production
Chitin elicitor is known to elevate ROS levels in Arabidopsis
(Miya et al., 2007). As shown in Figure 2A, treatment with
chitin-oligosaccharides [(GlcNAc)2−6] induced ROS production
in Arabidopsis seedlings. We found that CNF was also capable
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of inducing ROS generation and that the induction was faster
and higher than with chitin oligomers in wild-type Col-8.
CNF-induced ROS generation was abolished in the cerk1-2
mutant, which is impaired in chitin recognition (Figure 2A),
indicating that CNF has elicitor activity mediated by the
chitin receptor CERK1 in Arabidopsis. Maximal activation
of innate immunity requires long-chain chitin oligomers
(Liu et al., 2012). Whereas purified N-acetylchitohexaose
(GlcNAc)6 induced the generation of more ROS than did
CNF at the same concentration (Supplementary Figure S2),
both CNF and (GlcNAc)6 induced ROS generation in a
dose-dependent manner. Chitin-oligosaccharide elicitor induces
biphasic generation of ROS in suspension-cultured rice cells
(Yamaguchi et al., 2005). Here, we found that treatment of
cultured rice cells with CNF induced biphasic ROS generation
(Figure 2B). In contrast to our findings in Arabidopsis, ROS
generation in cultured rice cells was higher for CNF than for
(GlcNAc)6. These results indicate that polymeric CNF can be
recognized by plants to trigger ROS production.

CNF Induces Chitin-inducible Gene
Expression
Expression of defense-related genes such as lectin-like protein
gene, Zat10, WRKY22, FRK, and CYP81F2 are up-regulated by
chitin-oligosaccharide treatment (Ramonell et al., 2002; Zhang
et al., 2002). To investigate whether long-chain polymeric chitin
induces the expression of defense-related genes, we examined
the expression of these genes in Arabidopsis seedlings 1 h after
CNF treatment by quantitative reverse transcriptase-PCR (qRT-
PCR). As shown in Figure 3, all selected chitin-responsive genes
were significantly up-regulated by CNF treatment in Col-8. By
contrast, the expression of these genes was not responsive to CNF
treatment in the cerk1-2mutant. These results indicate that CNF
is an active elicitor capable of enhancing defense-related gene
expression in a CERK1-dependent manner.

CNF Reduces Fungal and Bacterial
Disease Symptoms
Chitin treatment induces resistance in host plants against both
fungal and bacterial disease (Wan et al., 2008; Gimenez-Ibanez
et al., 2009). To assess the effect of pre-treatment with long-chain
polymeric CNF on pathogen infection, we inoculated Arabidopsis
with the fungal pathogen A. brassicicola or bacterial pathogen Pst
DC3000. Because of its high dispersing ability in water, we were
able to apply CNF homogenously by spraying. Necrotic lesion
formation upon A. brassicicola infection was reduced on leaves
that were pre-treated with chitin-oligosaccharides [(GlcNAc)2−6]
or CNF compared with control leaves (Figure 4A). Pre-
treatment with 1mg/mL or 0.1mg/mL CNF significantly reduced
lesion formation and the reduction was greater for the higher
concentration of CNF.

To examine resistance to bacterial pathogens, we pre-
treated Arabidopsis leaves with oligomeric chitin or polymeric
CNF before infiltrating them with bacterial suspension. The
population of Pst DC3000 at day 0 was not different and
increased in all leaves 3 days post inoculation. However, the

FIGURE 4 | Pre-treatment with chitin nanofiber reduces fungal and
bacterial disease in Arabidopsis. Plants were sprayed 24 h before
pathogen inoculation with chitin nanofiber (CNF) (1 or 0.1 mg/mL),
chitin-oligosaccharides (GlcNAc)2−6 (Chitin 2–6 mer) (1 mg/mL), or distilled
water (DW). (A) Pre-treated Arabidopsis leaves were inoculated with fungal
pathogen A. brassicicola. Lesion formation was observed 4 days after
inoculation. Data indicate the rate of diseased leaves per all inoculated leaves
and represent the mean and standard errors of six independent experiments.
Means with the same letter are not significantly different according to Tukey’s
test (P < 0.05). (B) Pre-treated Arabidopsis leaves were infiltrated with
bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Leaf disks
were collected 0 and 3 days after inoculation to determine bacterial growth.
Data represent the means and standard errors of three independent
experiments. Means with the same letter at 3 dpi are not significantly different
according to Tukey’s test (P < 0.1).

bacterial population in leaves pre-treated with chitin elicitors was
slightly, but significantly, lower than that in the control leaves
(Figure 4B). These results suggest that CNF is an effective elicitor
for reducing infection of both fungal and bacterial pathogens.
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DISCUSSION

Chitin elicitor triggers ROS generation, defense gene expression,
ion flux, phytoalexin production, and disease resistance in
both dicot and monocot plants (Shibuya and Minami, 2001).
In this study, we showed that polymeric CNF is capable of
inducing ROS generation and chitin-responsive gene expression
(Figures 2 and 3) as well as resistance against pathogen infection
in Arabidopsis (Figure 4). These results indicate that plants can
recognize and respond to long chain polymeric chitin. Previous
studies have reported that AtCERK1 binds to polymeric chitin
and plays an essential role in chitin signaling in Arabidopsis
(Petutsching et al., 2010; Wan et al., 2012). In our study, the
ROS generation and gene expression responses to CNF were
impaired in the cerk1-2mutant (Figures 2 and 3). These findings
demonstrate that CNF induces PTI through CERK1, similarly
to chitin-oligosaccharide. Although AtCERK1 was proposed to
function both in chitin perception and signaling, despite its low
chitin binding affinity (Liu et al., 2012; Cao et al., 2014), AtLYK5,
which has a higher chitin binding affinity, was recently shown
to be the primary chitin receptor (Cao et al., 2014). AtLYK5 is
required for AtCERK1 dimerization and phosphorylation in a
chitin-dependent manner (Cao et al., 2014). Polymeric chitin was
bound to AtLYK5 in vitro (Petutsching et al., 2010), and it will
be interesting to explore the use of CNF as a ligand in future
research.

Chitin-oligosaccharide elicitor induces resistance to the fungi
A. brassicicola and Erysiphe cichorasearum in Arabidopsis (Wan
et al., 2008) and to Magnaporthe grisea in rice (Kouzai
et al., 2014). Furthermore, chitin-oligosaccharide elicitor is also
effective against bacterial pathogens (Wan et al., 2008); even
though bacterial pathogens do not contain chitin, chitin elicitor
signaling through AtCERK1 has an apparent effect on PTI
against Pst DC3000 infection (Gimenez-Ibanez et al., 2009). We
showed here that CNF efficiently reduced both A. brassiciola
and Pst DC3000 infection (Figure 4). Despite the diversity of
PAMPs and its corresponding PRRs, PTI events are largely
overlapping (Antolin-Llovera et al., 2012). PTI is generally
effective against non-specific and wide range of pathogens.
Because public concern for environmental and biological systems
is growing, ideal disease management should be safe for human
and animals and eco-friendly. MAMPs are candidate substances
for sustainable crop protection (Burketova et al., 2015). We show
that nanofibrillated chitin could be practical material for plant
disease control.

While the ability of chitin to induce resistance in plants
is evident, chitin has not been widely used in agricultural
applications. There have been a few attempts to use chitinous
waste from edible mushrooms and crustaceans in agriculture for
nutrition or soil amendment to enhance crop growth (Sharp,
2013). However, the application of chitinous compost in open
fields had no discernable effect on disease control. Chitin
must first be released from complex with protein or glucans
in chitinous waste and nanofibrous structure or oligomeric
fragment of chitin can be recognized by plants. Some reports
have suggested that degradation of polymeric chitin to oligomeric
chitin is required for recognition by PRRs (Stacey and Shibuya,

1997; Shibuya and Minami, 2001). As it would take time
for chitin fragments to be released from compost, any effects
of chitinous compost on disease resistance would likely be
slow-acting. We demonstrated here that CNF was degraded
by chitinase more rapidly than was un-nanofibrillated chitin
(Figure 1B). Chitin fragments could be released and recognized
by PRRs soon after CNF treatment; therefore, CNF may be
a useful fast-acting elicitor. In addition, it was suggested that
smaller fragments of chitin are not absolutely required for chitin
recognition on account of strong binding of polymeric chitin
to AtCERK1 (Petutsching et al., 2010; Cao et al., 2014). The
timing of ROS generation induced by CNF was comparable
with that induced by chitin-oligosaccharides (Figure 2), which
suggests that polymeric CNF could be directly recognized by
plant PRR. These findings indicate that the CNF nanostructure
allows PRRs rapid access to polymeric CNF for initiation
of PTI.

In summary, we have demonstrated that nanofibrillated
polymeric chitin shows elicitor activity to induce ROS production
and defense-related gene expression. Further, CNF effectively
reduced the symptoms of both fungal and bacterial infection.
Thus, using nanofibrillation to produce CNF of submicron
size and high surface-to-volume ratio, and therefore much
greater dispersibility in water, makes it possible to elucidate the
elicitor activity of polymeric chitin. Our results also show that
nanofibrillated chitin could be a useful and practical material for
plant disease control in agriculture. Further study is needed to
improve the material properties of CNF to enhance its elicitor
activity for a broad range of host plants.
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