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Identification of genes for yield components, plant height (PH), and yield-related
physiological traits and tightly linked molecular markers is of great importance
in marker-assisted selection (MAS) in wheat breeding. In the present study, 246
Fg RILs derived from the cross of Zhou 8425B/Chinese Spring were genotyped
using the high-density lllumina iSelect 90K single nucleotide polymorphism (SNP)
assay. Field trials were conducted at Zhengzhou and Zhoukou of Henan Province,
during the 2012-2013 and 2013-2014 cropping season under irrigated conditions,
providing data for four environments. Analysis of variance (ANOVA) of agronomic
and physiological traits revealed significant differences (P < 0.01) among RILs,
environments, and RILs x environments interactions. Broad-sense heritabilities of all
traits including thousand kernel weight (TKW), PH, spike length (SL), kernel number
per spike (KNS), spike number/m? (SN), normalized difference in vegetation index at
anthesis (NDVI-A) and at 10 days post-anthesis (NDVI-10), SPAD value of chlorophyll
content at anthesis (Chl-A) and at 10 days post-anthesis (Chl-10) ranged between
0.65 and 0.94. A linkage map spanning 3609.4cM was constructed using 5636
polymorphic SNP markers, with an average chromosome length of 171.9¢cM and
marker density of 0.64 cM/marker. A total of 866 SNP markers were newly mapped
to the hexaploid wheat linkage map. Eighty-six QTL for yield components, PH,
and vyield-related physiological traits were detected on 18 chromosomes except
1D, 5D, and 6D, explaining 2.3-33.2% of the phenotypic variance. Ten stable QTL
were identified across four environments, viz. QTKW.caas-6A.1, QTKW.caas-7AL,
QKNS.caas-4AL, QSN.caas-1AL.1, QPH.caas-4BS.2, QPH.caas-4DS. 1,
QSL.caas-4AS, QSL.caas-4AL.1, QChl-A.caas-5AL, and QChl-10.caas-5BL.
Meanwhile, 10 QTL-rich regions were found on chromosome 1BS, 2AL (2), 3AL,
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4AL (2), 4BS, 4DS, 5BL, and 7AL exhibiting pleiotropic effects. These QTL or QTL
clusters are tightly linked to SNP markers, with genetic distances to the closest SNPs
ranging from 0 to 1.5 cM, and could serve as target regions for fine mapping, candidate
gene discovery, and MAS in wheat breeding.

Keywords: linkage analysis, molecular marker, QTL, Triticum aestivum, wheat 90K SNP array

INTRODUCTION

Wheat (Triticum aestivum L.) is the third most important cereal
food crop after maize (Zea mays L.) and rice (Oryza sativa L.;
Green et al., 2012; Edae et al., 2014). It accounts for about
19% of total grain production among the principal cereal crops,
and provides 55% of the carbohydrate consumed by the human
population in the world (Gupta et al., 1999; Bagge et al., 2007).
Food security is becoming a serious concern for the future
due to a rapidly increasing population, the gradual decrease in
arable land area, shortages of water and other input resources,
and predicted climate change impacts on crop yield. Thus, it is
very important to increase the yields of all food crops to avert
predicted food security crises (Yang et al., 2012).

Wheat GY is a complex quantitative trait with components
such as spike number (SN), kernel number per spike (KNS),
and thousand kernel weight (TKW). Potential yield is closely
associated with plant photosynthesis (Reynolds et al., 2011).
Genetic improvement of yield components and physiological
traits can certainly increase grain yield (GY). Quantitative trait
loci (QTL) mapping is a key approach for understanding the
genetic architecture of yield components and physiological traits
in wheat (Holland, 2007). Previously, QTL mapping using
various segregating populations was conducted for plant height
(PH), spike length (SL), SN, KNS, and TKW (Bérner et al., 2002;
Kumar et al., 2007; Cuthbert et al., 2008; Golabadi et al., 2011;
Bennett et al., 2012). However, QTL were defined by relatively
large genetic distances due to the limited numbers of markers.
In addition, QTL for physiological traits were rarely reported,
except a few association studies for SPAD value of chlorophyll
content (Chl), normalized difference in vegetation index (NDVT),
and canopy temperature (CT) in spring wheat (Edae et al., 2014;
Pinto and Reynolds, 2015; Sukumaran et al., 2015).

The recently developed high-density single nucleotide
polymorphism (SNP) gene-chip technology provides a superior
approach for QTL mapping, because SNP markers have less
errors in evaluation, higher accuracy and particularly higher
numbers than SSR markers (Birkhead et al., 2010; Yu et al., 2011).
In addition, SNPs can be employed to survey the structure and
progressive history of populations, as a tool for association and

Abbreviations: CT, canopy temperature; Chl-A, SPAD value of chlorophyll
content at anthesis; Chl-10, SPAD value of chlorophyll content at 10 days
post-anthesis; GY, grain yield; GWAS, genome-wide association study; KNS,
kernel number per spike; MAS, marker-assisted selection; NDVI-A, normalized
difference in vegetation index at anthesis; NDVI-10, normalized difference in
vegetation index at 10 days post-anthesis; PH, plant height; QTL, quantitative
trait locus/loci; RIL, recombinant inbred line; SN, spike number/m?; SL, spike
length; SNP, single nucleotide polymorphism; SSR, simple sequence repeat; TKW,
thousand kernel weight.

linkage mapping to detect QTL and to build high-density linkage
maps (Aranzana et al,, 2005; Akhunov et al, 2009). During
the past 5 years, high-density SNP data were increasingly used
to identity QTL in bi-parental populations and genome-wide
association studies (GWAS) in important crops and animals
(Rafalski, 2002; Tian et al., 2011; Zhao et al., 2011; Cook et al.,
2012; Jia et al., 2013) due to their high call frequency, locus
specific, co-dominant inheritance, simple documentation,
potential for analysis, and low error rates (Gupta et al., 1999;
Schlotterer, 2004). Many QTL for agronomic and quality traits
have been successfully identified in maize and rice using GWAS
and high-throughput SNP genotyping (Huang et al., 2010, 2011;
Lietal, 2012; Yang et al., 2013). QTL mapping using segregating
populations and SNP chip technology has been reported in pea,
potato, watermelon, and barley (Ariyadasa et al., 2014; Lambel
et al., 2014; Prashar et al., 2014; Sindhu et al., 2014). During the
last 2 years, several QTL and association mapping studies were
conducted for disease resistance, pre-harvest sprouting, and
yield related traits using 9K and 90K SNP chips in wheat (Cabral
et al., 2014; Sela et al., 2014; Wang et al., 2014; Sukumaran et al.,
2015).

Zhou 8425B, an elite Chinese wheat line developed by the
Zhoukou Academy of Agricultural Sciences in 1984, has a semi-
dwarf PH, large spike, high TKW and multiple disease resistance
(Li et al., 2006; Zhao et al., 2008; Xiao et al., 2011). More than
100 cultivars derived from this line have been grown on an
accumulated area of over 33 million ha in China during the past
20 years (Yin et al., 2009). Currently, more than half of the wheat
cultivars in Henan province, the largest wheat production region
in China, are derivatives of Zhou 8425B. Therefore, it should be
interesting to dissect the genetic components of this elite line for
more efficient use in breeding programs. The present study used
a 90K Infinium iSelect SNP assay to screen 246 RILs from the
cross of Zhou 8425B/Chinese Spring; 5636 polymorphic SNPs
were used to generate a high-density chromosome linkage map.
The objectives were to identify QTL for yield components, PH,
and yield-related physiological traits, and their tightly linked SNP
markers for marker-assisted selection (MAS) in wheat breeding.

MATERIALS AND METHODS

Plant Materials and Field Trials

A total of 246 Fg RILs derived from the cross of Zhou
8425B/Chinese Spring were used in this study. Field trials were
performed at Zhengzhou and Zhoukou of Henan Province,
during the 2012-2013 and 2013-2014 cropping seasons,
providing data for four environments. The RILs were planted
in randomized complete blocks with three replicates at each
location. Plots consisted of four 1.5m rows with 20 cm between
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rows. Approximately 50 seeds were sown evenly in each row. The
field trials were managed following the local normal practice.

Phenotyping

The NDVI and Chl were measured at anthesis and 10 days
post-anthesis in each plot. NDVI was measured by scanning
plants with a portable spectroradiometer (GreenSeeker, Ntech
Industries, Inc, Ukiah, CA). Chl was scored as the average of six
flag leaves per plot using a chlorophyll meter SPAD-502 (Inolta,
Japan). PH was measured from the ground to the tip of the spike
excluding awns at the late grain-filling stage. SL was recorded as
average values of five spikes per plot. SN was scored in a 1 m
single row section and then transformed to SN per m?. KNS was
calculated from the mean of 30 randomly selected spikes in each
plot. After harvest, TKW was measured by weighing duplicates
of 500 kernels from each plot. GY was determined as the weight
of grain harvested per unit area (kg/m?).

Phenotypic Data Analysis

The phenotypic data analyses were conducted with SAS v.
9.2 software (SAS Institute Inc, Cary, NC). PROC GLM was
used in ANOVA, where genotypes were considered as fixed
effects, and environments and replicates nested in environments
were considered as random effects. Correlation analysis between
parameters was performed using the “PROC CORR” procedure.
Broad-sense heritability was estimated in all environments aqs
h3 = cé / (crg, + cée /1 + 6% /re), where the genetic variance cé =
(MS; — MSg,)/re, genotype x environment interaction variance
cée = (MSfe — MS,)/r, error variance of = MS,, MSy = genotype
mean square, MSy, = genotype X environment interaction mean
square, MS, = error mean square, and r and e were the numbers
of replicates and environments, respectively.

SNP Genotyping

The 246 RILs and their parents were genotyped with the
90K iSelect SNP array (Wang et al., 2014) from CapitalBio
Corporation  (Beijing, China; http://www.capitalbio.com).
Genotypic clusters for every SNP were determined following
the manual for Genome Studio version 1.9.4 with the polyploid
clustering version 1.0.0 (Illumina; http://www.illumina.com),
based on the data from all the genotypes. SNPs were filtered by
excluding those with monomorphic or with poor quality data.
SNP markers with missing parental genotype information, where
the parental genotypes were inconsistent with progeny genotypic
ratios were removed. SNPs with large numbers of missing
values (20% or more) were not included in map construction.
Molecular markers for dwarf genes Rht-B1b and Rht-D1b were
used to confirm the association with PH.

Linkage Map Construction

SNP markers were grouped using IciMapping 4.0 software
(http://www.isbreeding.net). Linkage analysis was performed
using JoinMap 4.0 (Stam, 1993). Then, the linkage map
was constructed using MapChart 2.2 (http://www.earthatlas.
mapchart.com). Map distances between markers were calculated
with the Kosambi mapping function. Each linkage group was
oriented from the short (S) to long (L) chromosome arms, and

the position and the order of the markers were compared with
wheat 90K consensus SNP map (Wang et al., 2014).

QTL Analysis

QTL analysis was performed using inclusive composite interval
mapping (ICIM) with IciMapping 4.0 software (Li et al., 2007a).
Phenotypic values of all lines in each environment, and the
averaged phenotypic values from the four environments, were
used for QTL detection. Missing phenotypic data were deleted
using the “Deletion” command. The walking speed chosen for
all QTL was 1.0cM, with P = 0.001 in stepwise regression.
Based on 2000 permutations at a probability level of 0.01, the
LOD scores to declare significant QTL for all traits ranged from
2.0 to 2.5 across four environments, thus a LOD threshold of
2.5 was chosen for declaration of putative QTL. Each QTL was
represented by a 20cM interval with the LOD maximum as
center. The phenotypic variance explained (PVE) was estimated
through stepwise regression (Li et al., 2007a).

RESULTS

Phenotypic Evaluation

ANOVA were conducted for TKW, KNS, SN, PH, SL, Chl-
A, Chl-10, NDVI-A, and NDVI-10 across four environments.
There were significant differences among the 246 RILs for all
traits. The frequency distributions of TKW, KNS, SN, PH, SL,
Chl-A, Chl-10, NDVI-A, and NDVI-10 for the RILs in each
environment were continuous (Figure S1), indicating polygenic
control. Based on data averaged across four environments, TKW
ranged from 26.5 to 52.6 g with an average of 37.2 g, KNS ranged
between 41 and 74 with an average of 53, and SN ranged from
318 to 671 with an average of 465. PH and SL ranged from
60.6 to 1259cm and 6.9 to 16.0cm, with averages of 100.9
and 10.2 cm, respectively. Chl-A and Chl-10 ranged between
38.6 and 76.5 units and between 28.7 and 58.1 units, with an
average of 46.5 and 47.8 units, respectively. Similarly, NDVI-A
and NDVI-10 ranged from 0.51 to 0.81 and 0.40 to 0.71 units,
with averages of 0.74 and 0.55, respectively (Table S1). TKW,
PH, SL, and NDVI-10 showed higher heritabilities, ranging
from 0.88 to 0.94, followed by Chl-10 (0.85), Chl-A (0.79),
KNS (0.78), SN (0.74), and NDVI-A (0.65). ANOVA of the
nine traits revealed significant differences (P < 0.01) among
RILs, environments, and genotype x environment interactions
(Table 1), confirming strong environmental influences on these
traits.

Correlations Between Traits

Pearson’s coefficients of correlation were calculated for all traits
based on the data averaged over four environments (Table 2).
KNS was positively correlated with SL (r = 0.43). The highest
negative correlation was observed between TKW and SN (r = —
0.36). KNS exhibited positive correlations with Chl-10 (r = 0.45)
and NDVI-A (r = 0.38). SN was positively correlated with
NDVI-A (r = 0.41) and NDVI-10 (r = 0.37). PH exhibited
a negative correlation with Chl-A (r = —0.44). Chl-A was
positively correlated with Chl-10 (r = 0.65). Chl-10 showed
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TABLE 1 | Analysis of variance for yield components, plant height, and physiological traits in FgRILs from Zhou 8425B/Chinese Spring across four

environments.

Source of variance

Sum of squares

TKW KNS SN PH SL Chl-A Chl-10 NDVI-A NDVI-10
Environments 30,765 4676 6,570,684 163,966 1806** 9428 5974 13.8* 9.09"
Lines 57,359 89,731 1,035,994 605,189 3971 19,647 46,644 3.6™ 9.03*
Replicates 29 170 4596 128 201 113 574 0.01* 0.02*
Lines x Environments 90,428 51,955 717,092 96,937 1061 10,527 17,795 2.5 3.08"
Error 6607 54,938 108,3116 103,483 1090 8235 22,346 1.2 2
Broad-sense heritability 0.94 0.78 0.74 0.94 0.90 0.79 0.85 0.65 0.88

*Significant at P = 0.05, **Significant at P = 0.01. TKW, thousand kernel weight; KNS, kernel number per spike; SN, spike number/m?; PH, plant height; SL, spike length; Chl-A, SPAD
value of chlorophyll content at anthesis; Chl-10, SPAD value of chlorophyll content at 10 days post-anthesis; NDVI-A, normalized difference in vegetation index at anthesis; NDVI-10,
normalized difference in vegetation index at 10 days post-anthesis.

TABLE 2 | Pearson’s coefficient of correlation for average of yield components, plant height, and physiological traits across four environments.

Trait TKW KNS SN PH SL Chl-A Chi-10 NDVI-A
KNS —0.12

SN —0.36™ —0.25"

PH 0.19* -0.02 0.04

SL 0.08 0.43* —-0.19" —0.03

Chl-A 0.24* 0.24** —0.23* —0.44 0.09

Chl-10 0.20* 0.45* —0.13 -0.26™ 0.21* 0.65™

NDVI-A —0.06 0.38"* 0.41* —0.06 0.24** 0.10 0.51*

NDVI-10 —0.10 0.26™ 0.37** —0.11 0.14 0.01 0.51* 0.78**

*and ** represent significance at P < 0.05 and P < 0.01, respectively. TKW, thousand kernel weight; KNS, kernel number per spike; NS, number of spikes; PH, plant height; SL, spike
length; Chl-A, SPAD value of chlorophyll content at anthesis; Chl-10, SPAD value of chlorophyll content at 10 days post-anthesis; NDVI-A, seedling normalized difference in vegetation

index at anthesis; NDVI-10, seedling normalized difference in vegetation index at 10 days post-anthesis.

positive correlation with NDVI-A (r = 0.51) and NDVI-10 (r =
0.51). The maximum positive correlation was between NDVI-A
and NDVI-10 (r = 0.78).

SNP Genotyping

Among 81,587 SNPs used in screening the Zhou 8425B/Chinese
Spring population, 7514 SNP markers (9.2%) were polymorphic
between the two parental lines. Of those, 192 markers had more
than 20% missing data points in the RILs, and 1686 were not
anchored on the linkage map.

Linkage Map Construction

Twenty-one linkage groups corresponding to the 21 hexaploid
wheat chromosomes were constructed from the 5636 high-
quality polymorphic SNP markers (Tables S2, $3); 2457 (43.6%)
were localized to the A genome with a total length of 1668.1 cM
and average marker density of 0.68 cM, 2838 (50.4%) were
mapped to the B genome with a total length of 1276.8 cM and
average marker density of 0.45 cM, and 341 were mapped to the
D genome with a total length of 664.5cM and average marker
density of 1.95cM. Ninety-four percent of markers mapped
to the A and B genomes, indicating that SNP markers on
those genomes were much more polymorphic than those in
the D genome. All linkage maps covered 3609.4cM with an
average chromosome length of 171.9 cM, ranging from 21.0 cM

(6D) to 303.7cM (7A). The number of SNP markers in each
wheat chromosome ranged from 10 mapped on chromosome
3D to 599 on chromosome 5B. The SNP markers were well
distributed throughout the genome, although chromosomes
3D, 4D, and 7D exhibited lower marker densities. The overall
SNP density was 0.64 cM, with the highest density of 0.28 cM
on chromosome 2B, and the lowest density of 9.10cM on
chromosome 3D.

QTL Analysis of Grain Yield and Related

Traits

ICIM identified 86 QTL for yield components, PH, and yield-
related physiological traits based on data from individual location
and year, and data averaged across the four environments. These
QTL were detected on 18 chromosomes, excluding 1D, 5D, and
6D (Table 3, Figure 1). QTL for individual traits are described
below.

Thousand Kernel Weight

Thirteen QTL for TKW were identified on chromosomes 1AL,
2DL (2), 3DL, 4AL, 4BS, 5AL (2), 5AS, 5BL, 6A, 7AL, and
7BL, respectively (Table3, Figure1). Alleles that increased
TKW at 11 loci were derived from the parent Zhou 8425B,
however two positive alleles were contributed by Chinese
Spring. QTKW.caas-6A.1 and QTKW.caas-7AL were stably
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TABLE 3 | QTL for yield components, plant height, and physiological traits in the Zhou8425B/Chinese Spring population.

Trait Location and year ~ QTL Position?  Marker interval LODP PVE(%)® Addd
TKW Zhoukou2013 QTKW.caas-3DL 57 IBV/5136—Excalibur_c32309_395 3.16 3.9 -0.88
QTKW.caas-4AL 141 wsnp_Ra_rep_c70233_67968353—RAC875_c29282_566 2.62 3.3 -0.8
QTKW.caas-4BS.1 24 BobWhite_c162_145—Kukri_c66885_230 2.69 3.3 0.92
QTKW.caas-6A.1 73.5 Ku_c32892_967—wsnp_RFL_Contig2523_2130662 5.98 7.3 —-1.14
QTKW.caas-7AL 172 Kukri_rep_c97425_164—RAC875_c18798_103 3.66 5.4 —1.05
Zhengzhou2013 QTKW.caas-1AL.4 125 BS00036104_51—Ra_c5683_1762 4.33 5.1 -0.96
QTKW.caas-4AL 141 wsnp_Ra_rep_c70233_67968353—RAC875_c29282_566 4.59 5.5 -1.27
QTKW.caas-5AL.1 220 TA005992-0641— Tdurum_contig82476_184 3.35 45 1.37
QTKW.caas-6A.1 735 Ku_c32392_967—wsnp_RFL_Contig2523_2130662 7.71 4.8 —1.03
QTKW.caas-7AL 172 Kukri_rep_c97425_164 —RAC875_c18798_103 2.86 6.5 -1.19
QTKW.caas-7BL 131 Tdurum_contig63207_82— Tdurum_contig15734_221 3.71 4.3 -0.86
Zhoukou2014 QTKW.caas-2DL.1 65 D_GBB4FNX01D4DHE_47—RAC875_c79540_228 3.38 4.5 -0.82
QTKW.caas-5AS.1 44.5 wsnp_Ex_rep_c71219_70023450—Kukri_c24642_426 2.81 3.4 -0.9
QTKW.caas-5BL 61 wsnp_Ra_c5634_9952011—RAC875_c14882_275 6.54 8.2 —1.1
QTKW.caas-6A.1 73.5 Ku_c832892_967—wsnp_RFL_Contig2523_2130662 7.71 9.9 —1.31
QTKW.caas-7AL 172 Kukri_rep_c97425_164—RAC875_c18798_103 2.86 3.5 -0.81
QTKW.caas-7BL 131 Tdurum_contig63207_82— Tdurum_contig15734_221 3.55 4.3 —-1.05
Zhengzhou2014 QTKW.caas-2DL.2 1 wsnp_Ku_c8712_14751858—Ku_c19185_1569 4.44 5.3 —1.03
QTKW.caas-4AL 141 wsnp_Ra_rep_c70233_67968353—RAC875_c29282_566 2.96 3.4 -1.07
QTKW.caas-5AS.1 44.5 wsnp_Ex_rep_c71219_70023450—Kukri_c24642_426 2.9 3.5 —0.98
QTKW.caas-5AL.2 183 Kukri_rep_c102608_599— Tdurum_contig13810_485 5.12 6.0 —-1.25
QTKW.caas-6A.1 73.5 Ku_c323892_967—wsnp_RFL_Contig2523_2130662 7.82 9.2 —1.31
QTKW.caas-7AL 172 Kukri_rep_c97425_164—RAC875_c18798_103 4.56 5.4 —1.09
QTKW.caas-7BL 131 Tdurum_contig63207_82— Tdurum_contig15734_221 3.53 4.0 -1.05
Average QTKW.caas-3DL 57 IBV5136— Excalibur_c32309_395 5.37 5.8 —1.01
QTKW.caas-4AL 141 wsnp_Ra_rep_c70233_67968353—RAC875_c29282_566 5.83 6.6 -0.97
QTKW.caas-5AL.2 183 Kukri_rep_c102608_599— Tdurum_contig13810_485 3.95 4.2 -1.16
QTKW.caas-6A.1 73.5 Ku_c32392_967—wsnp_RFL_Contig2523_2130662 9.3 10.3 -0.85
QTKW.caas-7AL 172 Kukri_rep_c97425_164—RAC875_c18798_103 4.52 4.8 —1.01
QTKW.caas-7BL 131 Tdurum_contig63207_82— Tdurum_contig15734_221 5.22 5.5 —0.96
KNS Zhoukou2013 QKNS.caas-2B.1 92 Tdurum_contig10048_447—IAAV1381 2.9 5.7 -1.79
QKNS.caas-3AL 228.3 RAC875_c61934_186—wsnp_Ex_c45877_51547406 6.98 10.9 2.46
QKNS.caas-4AL 139 Kukri_rep_c106490_583—RAC875_c29282_566 3.39 5.1 —1.68
QKNS.caas-7BS 18 BS00011652_51—BS00081132_51 3.02 4.6 1.6
Zhengzhou2013 QKNS.caas-3AL 228.3 RAC875_c61934_186—wsnp_Ex_c45877_51547406 3.18 5.1 1.67
QKNS.caas-3B 166 RAC875_c10909_1180—BobWhite_c22016_155 3.42 5.6 -1.75
QKNS.caas-4AL 139 Kukri_rep_c106490_583—RAC875_c29282_566 6.44 10.5 -2.4
Zhoukou2014 QKNS.caas-2B.2 12 Tdurum_contig98206_211—RFL_Contig1483_1765 3.45 4.4 —1.54
QKNS.caas-3AL 228.3 RAC875_c61934_186—wsnp_Ex_c45877_51547406 2.79 3.4 1.35
QKNS.caas-3B 166 RAC875_c10909_1180—BobWhite_c22016_155 3.32 4.1 —1.48
QKNS.caas-4AL 139 Kukri_rep_c106490_583—RAC875_c29282_566 7.23 9.1 —2.22
QKNS.caas-4BL.1 100 BobWhite_c8266_582—GENE-2826_154 3.7 47 —1.59
QKNS.caas-6BL 178 RAC875_c28848_330—BS00065202_51 3.84 5.0 1.7
Zhengzhou2014 QKNS.caas-1BS.1 43 Kukri_c1529_462—Kukri_c8390_547 4.13 7.5 1.83
QKNS.caas-2D 29 Kukri_c14902_1112—RAC875_c77816_365 2.62 5.3 —-1.29
QKNS.caas-4AL 139 Kukri_rep_c106490_583—RAC875_c29282_566 6.42 9.4 —1.59
QKNS.caas-2AL.1 143 BS00014251_51—1BV80 5.11 5.4 —1.29
Average QKNS.caas-2B.1 92 Tdurum_contig10048_447—IAAV1381 4.88 6.1 —-1.37
QKNS.caas-3AL 228.3 RAC875_c61934_186—wsnp_Ex_c45877_51547406 7 7.2 1.48
QKNS.caas-3B 166 RAC875_c10909_1180—BobWhite_c22016_155 5.21 8.8 -1.83
QKNS.caas-4AL 139 Kukri_rep_c106490_583—RAC875_c29282_566 10.93 11.8 -1.89
(Continued)
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TABLE 3 | Continued

Trait Location and year QTL Position?  Marker interval LODP  PVE(%)®¢ Addd
SN Zhoukou2013 QSN.caas-1AL.1 47.5 IACX592—Jagger_c1403_60 7.66 13.8 —17.49
QSN.caas-3AL 141 Ra_c14565_1056— Tdurum_contig64606_1104 2.63 6.4 —21.19
QSN.caas-7AL 170 BS00023673_51—wsnp_JD_c18814_17164689 3.39 6.4 —20.53
Zhengzhou2013 QSN.caas-1AL.1 47.5 IACX592—Jagger_c1403_60 8.59 1.4 —34.46
QSN.caas-1BL 122 D_contig12192_450— Tdurum_contig8840_575 2.62 3.4 —18.77
QSN.caas-2BL 35 Excalibur_c19260_105—IACX8096 3.63 6.7 26.32
QSN.caas-3AS 113 wsnp_Ku_c40218_48484410— 2.95 3.8 -19.75
wsnp_Ex_rep_c106152_90334299
Zhoukou2014 QSN.caas-1AL.1 47.5 IACX592—Jagger_c1403_60 5.51 8.0 —20.08
QSN.caas-2AS.3 126 JG_c883_445—Kukri_rep_c104727_91 3.91 5.6 16.75
QSN.caas-3AL 141 Ra_c14565_1056— Tdurum_contig64606_1104 3.93 7.9 —20.07
QSN.caas-5BS.1 9 BS00032003_51—BS00070871_51 2.92 4.3 14.69
QSN.caas-6AL.1 75 RAC875_c7804_236— Excalibur_c36332_449 3.66 5.3 —16.19
Zhengzhou2014 QSN.caas-1AL.1 47.5 IACX592 —Jagger_c1403_60 15.09 17.2 —34.6
QSN.caas-1BL.1 66 IAAV4702—wsnp_BG274294B_Ta_2_3 3.03 2.3 —12.98
QSN.caas-2AS.3 126 JG_c883_445—Kukri_rep_c104727_91 3.81 3.0 14.31
QSN.caas-3AL 141 Ra_c14565_1056— Tdurum_contig64606_1104 9 1.7 —29.26
QSN.caas-6AL.1 75 RAC875_c7804_236—Excalibur_c36332_449 712 5.5 —-19.5
QSN.caas-7AL 170 BS00023673_51—wsnp_JD_c18814_17164689 6.89 5.9 —20.09
Average QSN.caas-1AL.1 47.5 IACX592—Jagger_c1403_60 12.09 14.2 —24.72
QSN.caas-2AS.3 128 Kukri_c7914_99—wsnp_Ex_c36242_44232305 417 4.9 14.57
QSN.caas-3AL 141 Ra_c14565_1056— Tdurum_contig64606_1104 6.93 114 —22.1
QSN.caas-6AL.1 75 RAC875_c7804_236— Excalibur_c36332_449 6.33 5.8 —-17.92
PH Zhoukou2013 QPH.caas-4AL 90 IHX2890—RAC875_c35171_613 4.37 3.9 —2.56
QPH.caas-4BS.1 11 RAC875_c86104_111—1tplb0025f09_1853 4.88 4.9 —2.87
QPH.caas-4BS.2 55 RAC875_c6749_954—BobWhite_c44691_648 21.68 22.8 —6.35
QPH.caas-4DS.1 63.8 RAC875_c13945_597—BS00036421_51 13.66 14.5 —4.99
QPH.caas-5AS 50 Kukri_c24642_426—RFL_Contig2251_434 5.67 14.9 —2.89
QPH.caas-7AL 170 BS00023673_51—wsnp_JD_c18814_17164689 2.99 2.6 2.1
Zhengzhou2013 QPH.caas-4BS.2 55 RAC875_c6749_954—BobWhite_c44691_648 14.87 22.7 —6.67
QPH.caas-4DS. 1 63.8 RAC875_c13945_597—BS00036421_51 14.02 23.5 -6.71
QPH.caas-5AS 50 Kukri_c24642_426—RFL_Contig2251_434 5.84 13.2 —2.61
Zhoukou2014 QPH.caas-2BL 58 Tdurum_contig47_148—RAC875_c40992_113 2.62 2.3 2.4
QPH.caas-4AL 90 IHX2890—RAC875_c35171_613 3.25 2.9 —2.69
QPH.caas-4BS.2 55 RAC875_c6749_954—BobWhite_c44691_648 22.59 24.2 —7.98
QPH.caas-4DS.1 63.8 RAC875_c13945_597—BS00036421_51 26.88 33.2 -9.2
QPH.caas-5AS 50 Kukri_c24642_426—RFL_Contig2251_434 5.67 14.3 -2.71
Zhengzhou2014 QPH.caas-2BL 58 Tdurum_contig47_148—RAC875_c40992_113 2.82 2.8 2.93
QPH.caas-4BS.2 55 RAC875_c6749_954—BobWhite_c44691_648 23.1 29.3 —9.58
QPH.caas-4DS. 1 63.8 RAC875_c13945_597—BS00036421_51 21.21 29.6 -9.51
Average QPH.caas-4AL 90 IHX2890—RAC875_c35171_613 2.73 2.6 —-2.26
QPH.caas-4BS.2 55 RAC875_c6749_954—BobWhite_c44691_648 24.73 27.4 —7.53
QPH.caas-4DS. 1 63.8 RAC875_c138945_597—BS00036421_51 24.01 30.0 —7.78
QPH.caas-5AS 50 Kukri_c24642_426—RFL_Contig2251_434 2.95 12.7 —2.31
SL Zhoukou2013 QSL.caas-1BL 66 IAAV4702—wsnp_BG274294B_Ta_2_3 4.86 6.0 0.34
QSL.caas-4AS 57.6 Kukri_c46057_646—RAC875_rep_c77874_269 3.68 4.5 0.28
QSL.caas-4AL.1 146 Kukri_c17417_571—BS00022076_51 7.93 1.2 —0.44
QSL.caas-5AL 157.5 JD_c15758_288—BS00041911_51 5.78 8.7 -0.39
QSL.caas-7AS 168 wsnp_Ex_c200_391493—Ex_c6870_1704 4.1 4.9 0.29
QSL.caas-7DS 60 RAC875_c53629_483—Excalibur_c55782_55 3.27 4.0 0.27
(Continued)
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TABLE 3 | Continued

Trait Location and year ~ QTL Position?  Marker interval LODP PVE(%)® Addd
Zhengzhou2013 QSL.caas-1BL 66 IAAV4702—wsnp_BG274294B_Ta_2 3 2.6 3.6 0.24
QSL.caas-3BL 133 Ku_c12191_1202—Excalibur_c3556_520 2,77 3.9 0.24
QSL.caas-4AS 57.6 Kukri_c46057_646—RAC875_rep_c77874_269 7.98 12.3 0.43
QSL.caas-4AL.1 146 Kukri_c17417_571—BS00022076_51 4.67 6.8 -0.32
QSL.caas-5AL 157.5 JD_c15758_288—BS00041911_51 4.24 6.4 -0.31
Zhoukou2014 QSL.caas-2AL 212.5 BS00022265_51—wsnp_Ex_rep_c70299_69243835 3.54 4.3 0.26
QSL.caas-4AS 57.6 Kukri_c46057_646—RAC875_rep_c77874_269 8.53 10.3 0.41
QSL.caas-4AL.1 146 Kukri_c17417_571—BS00022076_51 9.52 1.8 -0.43
QSL.caas-5AL.1 183.5 Kukri_rep_c102608_599—Kukri_c14187_243 7.09 8.7 -0.38
QSL.caas-6BL 156 Ra_c2557_2531—BS00067417_51 3.16 3.6 0.26
QSL.caas-7AS.1 124 Tdurum_contig82438_136—BS00034509_51 4.26 9.6 0.45
Zhengzhou2014 QSL.caas-1BS 42 BS00070878_51—Kukri_c1529_462 4.79 5.2 0.36
QSL.caas-2AL 212.5 BS00022265_51-wsnp_Ex_rep_c70299_69243835 3.65 4.0 0.28
QSL.caas-4AS 57.6 Kukri_c46057_646-RAC875_rep_c77874_269 7.58 8.6 0.4
QSL.caas-4AL.2 98 Ex_c6665_1067—D_GCE8BAKX02GF3QZ_210 3.03 5.4 0.32
QSL.caas-4AL.1 146 Kukri_c17417_571—BS00022076_51 9.81 11.9 —0.48
QSL.caas-5AL.1 183.5 Kukri_rep_c102608_599—Kukri_c14187_243 5.37 6.0 -0.34
QSL.caas-6BL 156 Ra_c2557_2531—BS00067417_51 2.91 3.1 0.26
QSL.caas-7AS 168 wsnp_Ex_c200_391493—Ex_c6870_1704 3.58 5.4 0.33
Average QSL.caas-1BS 43 Kukri_c1529_462-Kukri_c8390_547 6.3 8.8 0.44
QSL.caas-4AS 57.6 Kukri_c46057_646—RAC875_rep_c77874_269 11.24 13.3 0.42
QSL.caas-4AL.1 146 Kukri_c17417_571—BS00022076_51 11.91 14.9 —0.44
QSL.caas-4AL.2 98 Ex_c6665_1067—D_GCE8BAKX02GF3QZ_210 2.61 2.7 0.19
QSL.caas-5AL 159 JD_c15758_288—BS00041911_51 6.89 9.1 -0.35
QSL.caas-7AS 168 wsnp_Ex_c200_391493—Ex_c6870_1704 4.55 4.8 0.25
Chl-A Zhoukou2013 QChl-A.caas-2AS 45 wsnp_Ex_c322_624793— Tdurum_contig10785_103 2.59 4.5 0.51
QChl-A.caas-3AS 111 wsnp_Ku_c11052_18135847— 3.46 5.6 0.56
wsnp_Ra_c16278_24893033
QChl-A.caas-5AL 68.5 BS00109052_51—wsnp_BE443187A_Ta_2_3 3.89 6.5 0.6
Zhengzhou2013 QChl-A.caas-2AL.1 199 Kukri_c25901_348— Tdurum_contig11659_253 3.42 5.1 0.71
QChl-A.caas-2DS 55 BS00081578_51—1tplb0021c10_951 3.75 8.6 0.92
QChl-A.caas-3AS 111 wsnp_Ku_c11052_18135847— 4.31 6.5 0.8
wsnp_Ra_c16278_24893033
QChl-A.caas-5AL 68.5 BS00109052_51—wsnp_BE443187A_Ta_2_3 4.33 16.3 0.72
Zhoukou2014 QChl-A.caas-4AL 78 BobWhite_c15697_675—BobWhite_c2179_1476 3.56 7.1 0.92
QChl-A.caas-4DS 67 RAC875_c13945_597—BS00036421_51 3.49 6.3 0.86
QChl-A.caas-5AL 68.5 BS00109052_51—wsnp_BE443187A_Ta_2_3 5.55 8.8 1.01
Zhengzhou2014 QChl-A.caas-2AL.2 140 Excalibur_c84687_162—BS00014251_51 3.94 5.7 -0.82
QChl-A.caas-2DL. 1 114 IBV8632—D_contig02226_528 2.75 3.9 0.68
QChl-A.caas-5AL 68.5 BS00109052_51—wsnp_BE443187A_Ta_2_3 5.36 7.8 0.96
QChl-A.caas-5AS. 1 227 Tdurum_contig82476_184— Tdurum_contig30719_380 3.01 8.4 1.31
Average QChl-A.caas-2AL.2 140 Excalibur_c84687_162— BS00014251_51 4.27 6.0 —0.61
QChl-A.caas-2AL.1 199 Kukri_c25901_348— Tdurum_contig11659_253 3.53 4.8 0.54
QChl-A.caas-3AS 111 wsnp_Ku_c11052_18135847— 3.58 4.9 0.55
wsnp_Ra_c16278_24893033
QChl-A.caas-4DS 64 RAC875_c13945_597—BS00036421_51 4.04 6.2 0.63
QChl-A.caas-5AL 68.5 BS00109052_51—wsnp_BE443187A_Ta_2_3 6.6 9.2 0.75
Chl-10 Zhoukou2013 QChl-10.caas-2D 29 Kukri_c14902_1112—RAC875_c77816_365 4.11 5.5 —1.41
QChl-10.caas-5BL 60 wsnp_Ex_c12909_20457660—wsnp_Ra_c5634_9952011 4.83 8.2 1.78
Zhengzhou2013 QChl-10.caas-2BS 19 RAC875_c21378_474— Tdurum_contig81323_291 3.78 6.3 -1.25
QChl-10.caas-5BL 60 wsnp_Ex_c12909_20457660—wsnp_Ra_c5634_9952011 6.06 10.3 1.59
(Continued)
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TABLE 3 | Continued

Trait Location and year QTL Position?  Marker interval LODP  PVE(%)®¢ Addd
Zhoukou2014 QChl-10.caas-2D 29 Kukri_c14902_1112—RAC875_c77816_365 4.04 9.2 —-1.6
QChl-10.caas-5BL 60 wsnp_Ex_c12909_20457660— wsnp_Ra_c5634_9952011 4.83 7.0 1.33
QChl-10.caas-6AS 21 BS00031062_51—RFL_Contigb170_1904 3.07 4.3 -1
QChl-10.caas-7A 177 BS00023993_51—Ex_c52798_415 3.98 7.9 1.38
Zhengzhou2014 QChl-10.caas-2AL 140 Excalibur_c84687_162—BS00014251_51 5.44 7.0 -0.91
QChl-10.caas-2AL.1 200 Kukri_c25901_348—Tdurum_contig11659_253 4.77 6.1 0.85
QChl-10.caas-2BS 19 RAC875_c21378_474—Tdurum_contig81323_291 5.37 7.8 —0.96
QChl-10.caas-5AL 72 BS00067453_51—Excalibur_c24638_380 4.89 6.8 0.9
QChl-10.caas-5BL 60 wsnp_Ex_c12909_20457660—wsnp_Ra_c5634_9952011 8.09 10.6 1.13
QChl-10.caas-7A 177 BS00023993_51—Ex_c52798_415 2.53 4.2 0.72
Average QChl-10.caas-2BS 19 RAC875_¢c21378_474—Tdurum_contig81323_291 5.31 8.3 -1.14
QChlI-10.caas-5AL 7 RFL_Contig727_736—wsnp_JD_c3867_4934646 2.71 3.5 0.73
QChl-10.caas-5BL 60 wsnp_Ex_c12909_20457660—wsnp_Ra_c5634_9952011 10.19 14.2 1.49
QChl-10.caas-7A 177 BS00023993_51—Ex_c52798_415 3.14 5.7 0.96
NDVI-A Zhengzhou2013 QNDVI-A.caas-4AL 93 Ex_c6665_1067—D_GCE8AKX02GF3QZ_210 3.27 6.5 0.01
QNDVI-A.caas-5BL 128 Tdurum_contig23273_426—BS00065128_51 3.74 6.5 —0.01
Zhoukou2014 QNDVI-A.caas-8AL 230 Tdurum_contig31235_99—wsnp_Ex_c45877_51547406 2.9 4.7 0.01
QNDVI-A.caas-5BS.1 33 Kukri_c10970_573—tplb0046h23_602 3.46 5.7 0.01
Zhengzhou2014 QNDVI-A.caas-1BS 41 BS00070878_51—Kukri_c1529_462 3.88 6.7 0.01
QNDVI-A.caas-4BS 56 RAC875_c6749_954—BobWhite_c44691_648 2.73 4.0 0.01
QNDVI-A.caas-4DS 69 RAC875_c13945_597—BS00036421_51 6.03 9.8 0.01
QNDVI-A.caas-5AL 91 BS00082002_51—wsnp_Ku_c14275_22535576 415 6.4 0.01
Average QNDVI-A.caas-3AL 230 Tdurum_contig31235_99—wsnp_Ex_c45877_51547406 2.54 4.3 0.01
NDVI-10  Zhoukou2013 QNDVI-10.caas-2DS 53 BS00081578_51—tplb0021c10_951 2.67 4.4 -0.02
QNDVI-10.caas-5AL 204 BS00055102_51—BS00067351_51 3.94 6.3 -0.02
QNDVI-10.caas-5BL 61 wsnp_Ra_c5634_9952011—RAC875_c14882_275 52 8.5 0.02
Zhengzhou2013 QNDVI-10.caas-4BS 53 RAC875_c6749_954— BobWhite_c44691_648 2.93 5.5 0.02
QNDVI-10.caas-5BL 61 wsnp_Ra_c5634_9952011—RAC875_c14882_275 3.52 6.1 0.02
Zhoukou2014 QNDVI-10.caas-5BL 61 wsnp_Ra_c5634_9952011—RAC875_c14882_275 3.69 6.0 0.01
QNDVI-10.caas-6BL 109 Kukri_c63314_962—BobWhite_c36416_56 3.37 5.8 0.01
Zhengzhou2014 QNDVI-10.caas-4DS 68 RAC875_c13945_597—BS00036421_51 3.48 7.0 0.01
QNDVI-10.caas-6BL 109 Kukri_c63314_962—BobWhite_c36416_56 3.86 7.3 0.01
Averages QNDVI-10.caas-5BL 61 wsnp_Ra_c5634_9952011—RAC875_c14882_275 5.09 8.5 0.02
QNDVI-10.caas-6BL 109 Kukri_c63314_962—BobWhite_c36416_56 3.34 6.3 0.01

aPosition of QTL located on chromosome: as cM distance from the top of each map.
bA LOD threshold of 2.5 was used for declaration of QTL, based on 2000 permutations at a significance level of 0.01.
¢Phenotypic variance explained by QTL.

dpositive “additive effect” indicates an increasing effect from Chinese Spring; negative “additive effect” indicates an increasing effect from Zhou 84258.

TKW, thousand kernel weight; KNS, kernel number per spike; SN, spike number/m?; PH, plant height; SL, spike length; Chl-A, SPAD value of chlorophyll content at anthesis; Chi-10,
SPAD value of chlorophyill content at 10 days post-anthesis; NDVI-A, normalized difference in vegetation index at anthesis; NDVI-10, normalized difference in vegetation index at 10

days post-anthesis.

identified across all environments, and explained 4.8-10.3% and
3.5-6.5% of the phenotypic variances, respectively. Two other
QTL, QTKW.caas-4AL, and QTKW.caas-7BL, were detected
in three environments, explaining 3.3-6.6% and 4.0-5.5% of
the phenotypic variances, respectively. QTKW.caas-5AS.1 was
detected at Zhoukou2014 and Zhengzhou2014, and explained
from 3.4 to 3.5% of the phenotypic variance. The positive
alleles at QTKW.caas-1AL.4, QTKW.caas-2DL.1, QTKW.caas-
2DL.2, QTKW.caas-3DL, QTKW.caas-4AL, QTKW.caas-5AL.2,
QTKW.caas-5AS.1, QTKW.caas-5BL, QTKW.caas-6A.1,

QTKW.caas-7AL, and QTKW.caas-7BL loci were contributed
by Zhou 8425B. Those for increasing TKW at QTKW.caas-
4BS.1 and QTKW.caas-5AL.1 loci were derived from Chinese
Spring.

Kernel Number per Spike

Eleven QTL for KNS were identified on chromosomes 1BS,
2AL, 2B (2), 2D, 3AL, 3B, 4AL, 4BL, 6BL, and 7BS (Table 3,
Figure 1). Alleles increasing KNS at the loci on chromosomes
2AL, 2B (2), 2D, 3B, 4AL, and 4BL were contributed by Zhou
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index at 10 days post-anthesis.

FIGURE 1 | Genetic maps of chromosomes showing QTL for yield components, plant height, and yield-related physiological traits in the Zhou
8425B/Chinese Spring population. Traits are projected as solid bars with different colors for which the legend is given at the end of figure. TKW, thousand kernel
weight; PH, plant height; SL, spike length; KNS, kernel number per spike; SN, spike number/m?; Chi-A, SPAD value of chlorophyll content at anthesis; Chl-10, SPAD
value of chlorophyll content at 10 days post-anthesis; NDVI-A, normalized difference in vegetation index at anthesis; NDVI-10, normalized difference in vegetation

8425B, and those on chromosomes 1BS, 3AL, 6BL, and 7BS
were come from Chinese Spring. QKNS.caas-4AL flanked by
SNP markers Kukri_rep_c106490_583 and RAC875_c29282_566
was detected in all environments, explaining 5.1-10.5% of
the phenotypic variance. The second QTL between SNP
markers RAC875_c61934_186 and wsnp_Ex_c45877_51547406
on chromosome 3AL was found in three environments, and
explained 3.4-10.9% of the phenotypic variance. QKNS.caas-3B
detected at Zhengzhou2013 and Zhoukou2014 accounted for
4.1-5.6% of the phenotypic variance.

Spike Number

Ten QTL for SN were identified on chromosomes 1AL, 1BL (2),
2AS, 2BL, 3AL, 3AS, 5BS, 6AL, and 7AL (Table 3, Figure 1).
Alleles for increased SN present on chromosomes 1AL, 1BL,
3AL, 3AS, 6AL, and 7AL were contributed by Zhou 8425B,
and positive alleles on 2AS, 2BL and 5BS came from Chinese
Spring. QSN.caas-1AL.1 between the SNP markers TACX592
and Jagger c1403_60 was identified in all four environments,
explained 8.0-17.2% of the variation in SN. Another QTL,
QSN.caas-3AL, between markers Ra_cl4565_1056 and
Tdurum_contig64606_1104, was identified in three environments
and explained 6.4-11.7% of the phenotypic variance. QSN.caas-
2AS.3, QSN.caas-6AL.1 and QSN.caas-7AL were detected in
two environments and explained 3.0-6.4% of the phenotypic
variance.

Plant Height

Seven QTL for PH were detected on chromosomes 2BL, 4AL,
4BS (2), 4DS, 5AS, and 7AL, respectively (Table 3, Figure 1).
The alleles reducing PH on 4AL, 4BS, 4DS, and 5AS came
from the shorter parent Zhou 8425B and those on 2BL and
7AL were from Chinese Spring. QPH.caas-4BS.2 flanked by
markers RAC875_c6749 954 and BobWhite_c44691_ 648 was
identified in all four environments, and explained 22.7-29.3%
of the phenotypic variance. QPH.caas-4DS.1 between markers
RAC875_c13945_597 and BS00036421_51 was also detected
across all environments, accounting for 14.5-33.2% of the PH
variance. These two major QTL are Rht-Blb and Rht-DIb,
respectively, based on the gene-specific markers. QPH.caas-5AS
was found in three environments and explained 12.7-14.9%
of the phenotypic variance. QPH.caas-2BL and QPH.caas-4AL
were consistently observed in two environments and explained
2.3-3.9% of the phenotypic variance.

Spike Length

Thirteen QTL for SL were mapped on chromosomes 1BL, 1BS,
2AL, 3BL, 4AS, 4AL (2), 5AL (2), 6BL, 7AS (2), and 7DS (Table 3,
Figure 1). Alleles for increased SL at the loci on chromosomes
4AL (1) and 5AL were contributed by Zhou 8425B, and those

at loci on chromosomes 1B, 2AL, 3BL, 4AS, 4AL (1), 6BL, 7AS
(2), and 7DS were from Chinese Spring. QSL.caas-4AS between
markers  Kukri_c46057_646 and RAC875_rep_c77874_269
was detected in all environments, explaining 4.5-12.3% of
the phenotypic variance. QSL.caas-4AL.1 flanked by SNP
markers Kukri_c17417 571 and BS00022076_51 was also
found in four environments, accounting for 6.8-11.9% of the
phenotypic variance. QSL.caas-1BL, QSL.caas-2AL, QSL.caas-
5AL, QSL.caas-5AL.1, QSL.caas-6BL, and QSL.caas-7AS detected
in two environments explained 3.1-8.7% of the phenotypic
variance.

SPAD Value of Chlorophyll Content at

Anthesis

Ten QTL for Chl-A were detected on chromosomes 2AS, 2AL
(2), 2DS, 2DL, 3AS, 4AL, 4DS, 5AS, and 5AL (Table 3, Figure 1).
Alleles increasing Chl-A at all loci except QChl-A.caas-2AL.2
were contributed by Chinese Spring. QChi-A.caas-5AL flanked
by SNP markers BS00109052_51 and wsnp_BE443187A_Ta_2_3
was detected in all environments, explaining 6.5-16.3% of
the phenotypic variance. QChl-A.caas-3AS between markers
wsnp_Ku_c11052_18135847 and wsnp_Ra_c16278_24893033
was identified in two environments, explaining 5.6-6.5% of the
phenotypic variance.

SPAD Value of Chlorophyll Content at 10

Days Post-Anthesis
Eight putative QTL for Chl-10 were detected on chromosomes

2AL (2), 2BS, 2D, 5AL, 5BL, 6AS, and 7A (Table3,
Figure1).  QChl-10.caas-5BL  between = SNP  markers
wsnp_Ex_c12909_20457660 and  wsnp_Ra_c5634_9952011

was detected in all four environments, explaining 7.0-10.6%
of the phenotypic variance; the additive effect was for the
Chinese Spring allele. QChI-10.caas-2BS, QChl-10.caas-2D
and QChl-10.caas-7A were significant in two environments
and explained 4.2-9.2% of the phenotypic variance. Alleles
increasing Chl-10 at the QChI-10.caas-2BS and QChl-10.caas-
2D loci came from Zhou 8425B, whereas that increasing
Chl-10 at QChl-10.caas-7A locus was derived from Chinese
Spring.

Normalized Difference in Vegetation Index

at Anthesis

Eight QTL for NDVI-A were detected on chromosomes 1BS,
3AL, 4AL, 4BS, 4DS, 5AL, 5BL, and 5BS (Table 3, Figure 1),
explaining 4.0-9.8% of the phenotypic variances. The alleles
increasing NDVI-A at all loci except QNDVI-A.caas-5BL were
from Chinese Spring.
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Normalized Difference in Vegetation Index

at 10 Days Post-Anthesis

Six QTL for NDVI-10 were identified on chromosomes 2DS,
4BS, 4DS, 5AL, 5BL, and 6BL (Table 3, Figure 1). Alleles for
increasing NDVI-10 at the loci on chromosomes 2DS and
5AL were contributed by Zhou 8425B, and those at other
loci were from Chinese Spring. QNDVI-10.caas-5BL flanked by
markers wsnp_Ra_c5634_9952011 and RAC875_c14882_275 was
significant in three environments and explained 6.0-8.5% of
the phenotypic variance; the positive allele came from Chinese
Spring. QNDVI-10.caas-6BL was found in two environments and
explained 5.8-7.3% of the phenotypic variance.

DISCUSSION

SNP Discovery and Linkage Map

Construction

SNP markers enable construction of high-density linkage maps
and identification of QTL for complex agronomic traits in crop
plants (Song et al., 2013). In the current study, we used 5636
polymorphic SNP markers from a 90K SNP assay (Wang et al.,
2014), and constructed a high-density genetic map for a RIL
population derived from the cross Zhou 8425B/Chinese Spring.
Of these markers, 4770 (84.6%) were mapped by Wang et al.
(2014) and 866 are newly mapped (Table S4). The order of SNP
markers in the linkage map is generally consistent with Wang
et al. (2014). The total length of the linkage map was 3609.4 cM,
similar to previously reported maps in hexaploid wheat (Blanco
et al,, 1998; Marone et al., 2012). The average density of the map
was 0.64 cM/marker, representing a considerable improvement
over previously reported maps based on SSR, STS and DArT
(Nachit et al., 2001; Marone et al.,, 2012). Markers for the A
(43.6%) and B (50.4%) genomes were more abundant than those
for the D genome (6%), again consistent with previous studies
(Shiaoman et al., 2009; Wang et al., 2014), and this is attributed to
the low level of polymorphism in D genome of hexaploid wheat.
Although the average density is high, there were still some gaps,
for instance, on chromosomes 1B and 4D.

The average number of mapped markers per chromosome
was 268.4, ranging from 10 on chromosome 3D to 599 on
chromosome 5B. However, 65.6% of the SNPs mapped displayed
redundancy and only 6.9% of SNPs were used for linkage map
construction in the present study, in agreement with previous
reports (Barker and Edwards, 2009; Colasuonno et al., 2014).
The low polymorphisms of SNPs in high-density assays identified
in these studies may reflect an overall narrow range of genetic
diversity in wheat. Because many SNP markers were co-located at
the same genetic loci (Colasuonno et al., 2014), the BIN-Mapping
function was employed in selecting markers for QTL mapping.
BIN helps with automatic deletion of the high “nearest neighbor”
markers in generating the input file that can be used for more
efficient genetic map construction. The 5636 polymorphic SNP
markers were optimized by the BIN-Mapping function and a
linkage map based on 1938 skeleton SNPs were used to perform
QTL analysis. Indeed, this generated a simplified genetic map for
QTL mapping.

QTL Mapping

The green-revolution genes, Rht1 and Rht2 on chromosomes 4B
and 4D, respectively, have been deployed worldwide (Ellis et al.,
2005; Peng et al., 2011). In the present study, the most interesting
QTL associated with PH were also detected on chromosomes 4B
and 4D across all environments. QPH.caas-4BS.2 and QPH.caas-
4DS.1 carrying positive alleles from the short parent Zhou
8425B explained the highest phenotypic variance, and represent
polymorphisms was associated with Rht-B1 and Rht-DI1. Another
stable QTL for PH, QPH.caas-5AS, was positioned at 50 cM.
A QTL for PH reported previously on chromosome 5A in a
spring wheat population derived from a Seri/Babax cross based
on SSR marker Xgwm617a (Lopes et al., 2013) is likely the same
gene. QPH.caas-5AS was detected in four environments and the
reducing height allele was from Zhou 8425B. The gene could be
used in MAS in wheat breeding. A minor PH QTL, QPH.caas-
4AL, positioned at 90 cM, is different from a major QTL for PH
at position 13.6cM on chromosome 4A in the Seri/Babax RIL
population (Lopes et al., 2013). QPH.caas-4ALwas detected in
two environments and it is likely to be a new PH QTL.

An important QTL for TKW, QTKW.caas-6A.1, tightly linked
to the SNP marker Ku_c32392_967 at a genetic distance of
1.4cM was mapped at a similar locus to a QTL reported by
Sukumaran et al. (2015) based on wheat 90K_consensus_map
(Wangetal., 2014). QTKW.caas-7BL, positioned at 131cM across
all four environments, is likely to be new. A minor QTL for
TKW reported by Liu et al. (2014) in marker interval Xcau30-
7B-Xgwm66¢-7B positioned at 2cM in a mapping population
derived from a cross of common wheat line ND3331 and Tibetan
semi-wild wheat accession Zang1817 and is clearly different.

QKNS.caas-4AL mapped at 141cM on chromosome 4AL
in the present study, whereas Lopes et al. (2013) detected a
different QTL for KNS at 5.55 cM on chromosome 4AS across 12
environments based on linkage with marker C14p6. A previously
reported minor QTL for KNS (Liu et al., 2014) on chromosome
4AS, positioned at 0 cM, was also found in two environments but
with very low contributions to phenotypic variation. Therefore,
QKNS.caas-4AL, detected across all environments with higher
phenotypic variation explained, is probably a new QTL. A new
QTL QKNS.caas-3AL positioned at 228.3 cM in the current study
differed from a major QTL at 56 cM reported by Ali et al. (2011)
using a Cheyenne (CNN) x [CNN (Wichita 3A)] recombinant
inbred chromosome line (RICL) population consisting of 223
CNN (RICLs3A) and seven check cultivars.

QSN.caas-1AL.1, at 47.5cM on chromosome 1AL across all
environments explained more than 10% of the phenotypic
variance, was different from a minor QTL for SN reported in a
Chuang 35,050/Shannong 483 RIL population using SSR markers
(Li et al., 2007b); the latter was found in single environment with
lower explained phenotypic variation (5.7%) and it is likely to be
anew QTL. Another QSN.caas-3AL at about 141 cM and detected
in three environments is different from a minor QTL for SN on
chromosome 3AL based on the linked markers Xgwm-720 and
Xgwm-1063 positioned at 44.5cM (Kumar et al., 2007). Therefore,
QSN.caas-3AL is also new.

Only a few QTL for physiological traits have been detected
in wheat (Rebetzke et al., 2008a,b; Reynolds and Tuberosam,
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2008). A QTL for Chl-10 was mapped 60 cM on chromosome
5BL in this study, whereas a major QTL for Chl was previously
identified between Xgwm639.1-5B and Xwmc388.4-5B (Xu et al.,
2012). A minor QTL, QChl-10.caas-6AS, tightly linked to the SNP
marker RFL_Contig5170_1904 at a genetic distance of 1.8 cM was
different from that reported by Sukumaran et al. (2015) due to
the large genetic distance between the two linked SNP markers
(Wang et al., 2014). QChl-10.caas-5AL located on the long arm of
chromosome 5A across all environments has not been reported
previously, therefore, it is a new QTL.

A significant QTL, QNDVI-10.caas-5BL, was tightly linked to
the SNP marker RAC875_c14882_275, at a genetic distance of
0.4 cM, which may be different from that reported by Sukumaran
et al. (2015) based on wheat 90K_consensus_map (Wang et al.,
2014).

Co-localization of QTL for Yield and

Related Traits

Co-localization of QTL or QTL clusters for yield and related traits
have been reported in previous studies (McCartney et al., 2005;
Quarrie et al,, 2006). In the current study, 10 QTL clusters on
chromosomes 1BS, 2AL (2), 3AL, 4AL (2), 4BS, 4DS, 5BL, and
7AL were detected with each for more than two traits (Table 4,
Figure 1) and QTL clusters associated with GY were detected on
chromosomes 3AL, 4DS, and 5BL.

The interval 217.4-233.8cM on chromosome 3AL is a
pleiotropic locus impacting GY, KNS and NDVI-A. No similar
pleiotropic region on chromosome 3A was reported previously.
GY showed a significantly positive correlation with KNS (r =
0.44) and NDVI-A (r = 0.6), indicating that the increased GY at
QGY.caas-3AL resulted from increased KNS and NDVI-A.

Another pleiotropic locus for GY, PH, Chl-A, NDVI-A, and
NDVI-10 was identified at position 65 cM on chromosome 4DS.
Co-localized QTL for GY and PH on chromosome 4DS detected
in the present study and also reported by Li et al. (2015) are was
associated with Rht-D1b. However, the co-localization of QTL for
GY and Chl-A, NDVI-A, and NDVI-10 in same or similar region
on chromosome 4DS has not been reported before.

QTL for GY, TKW, Chl-10, and NDVI-10 were associated
in an interval of 54.1-61.4 cM on chromosome 5BL. A similar
previously reported multiple trait region for GY and TKW on 5B
(Edae et al., 2014) was positioned at 67.7-76.4 cM based on DArT
markers in CIMMYT spring wheat lines. However, yield-related
QTL for Chl-10 and NDVI-10 in a similar region on chromosome
5BL were not reported previously. Physiological traits Chl and
NDVI were significantly correlated with GY in this study, with
correlation coeflicients of 0.5 and 0.34, respectively, implying that
they may be related to the transfer of photosynthetic products in
the grain filling (Lupton, 1966).

A QTL cluster for TKW, KNS and SL between markers
Kukri_rep_c106490_583 and tplb0033c09_1345 and positioned
in the interval 136.8-157.3cM on chromosome 4AL, is likely
the same or similar to a QTL cluster for KNS and SL reported
by Liu et al. (2014) based on the interval Xwmc491-Xwmc96.
Another QTL-rich region for PH, SL and NDVI-A, in interval
88.1-102.5cM on chromosome 4AL, is new. QTKW.caas-7AL
associated with SN, PH, SL, Chl-10, in interval 136.8-157.3 cM,
was not reported previously.

In this study, a QTL-rich region for PH, NDVI-A and NDVI-
10 on chromosome 4BS identified in interval 42.0-56.2 cM was
different from the QTL for TKW and PH reported previously
(Huang et al., 2004; McCartney et al., 2005). The 4BS QTL had
a strong effect on PH and this QTL-rich region was associated
with Rht-B1b.

Potential Application of QTL for MAS in

Wheat Breeding

GY is highly affected by environments, and it is difficult to
select high-yielding lines in smaller plots at the early stage
of a breeding program. In contrast, environments have much
less influence on yield components, PH and physiological
traits, and some more stable QTL for these traits have been
found, in agreement with previous reports (Lopes et al,
2013; Edae et al, 2014; Liu et al, 2014). Furthermore, yield
was significantly and positively correlated with TKW, KNS,
Chl-A, Chl-10, NDVI-A, and NDVI-10. Consequently, it is

TABLE 4 | Summary of pleiotropic QTL detected in the Zhou 8425B/Chinese Spring population.

Chromosome Marker interval Position (cM) Trait

1BS BS00070878_51~Kukri_c8390_547 39.5~44.3 KNS, SL, NDVI-A

2AL Excalibur_c84687_162~1BV/80 139.6~145.9 KNS, Chl-A, ChI-10

2AL Kukri_c25901_348~wsnp_Ex_rep_c70299_69243835 198.5~214.0 SL, Chl-A, Chl-10

3AL RAC875_c61934_186~wsnp_Ex_c45877_51547406 217.4~233.8 GY, KNS, NDVI-A

4AL IHX2890~D_GCESAKX02GF3QZ_210 88.1~102.5 PH, SL, NDVI-A

4AL Kukri_rep_c106490_583~tplb0033c09_1345 136.8~157.3 TKW, KNS, SL

4BS RAC875_c6749_954~BobWhite_c44691_648 42.0~56.2 PH, NDVI-A, NDVI-10
4DS RAC875_c13945_597~BS00036421_51 58.8~71.2 GY, PH, Chl-A, NDVI-A, NDVI-10
5BL wsnp_Ex_c10842_17637744~RAC875_c14882_275 54.1~61.4 GY, TKW, Chl-10, NDVI-10
7AL wsnp_Ex_c200_391493~Ex_c52798_415 168.0~178.4 TKW, SN, PH, SL, Chl-10

GY, grain yield; TKW, thousand kernel weight; PH, plant height; SL, spike length; KNS, kernel number per spike; SN, spike number/m?; Chl-A, SPAD value of chlorophyll content at
anthesis; Chl-10, SPAD value of chlorophyll content at 10 days post-anthesis; NDVI-A, normalized difference in vegetation index at anthesis; NDVI-10, normalized difference in vegetation

index at 10 days post-anthesis.
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feasible to improve GY by selecting these yield-related traits in
breeding programs because of the more accurate measurement
and repeatability across environments in comparison with
yield. Stable QTL such as QTKW.caas-6A.1, QTKW.caas-7AL,
QPH.caas-4BS.2, QPH.caas-4DS.1, QKNS.caas-3AL, QKNS.caas-
4AL, QChl-A.caas-5AL, QChl-10.caas-5BL, and QNDVI-10.caas-
5BL could be used in breeding. Due to the availability of
high-density SNP markers, it is more likely that these QTL
represent actual candidate genes for the various traits, as
previously identified for pre-harvest sprouting and yellow
pigment content (Cabral et al., 2014; Colasuonno et al., 2014).
If so they are potential candidates for fine mapping and ultimate
candidate gene discovery.

CONCLUSION

A high-density linkage map was constructed in the Zhou
8425B/Chinese Spring population using the 90K SNP array; it
proved powerful for mapping QTL for yield components, PH
and yield-related physiological traits in wheat. Ten pleiotropic
QTL clusters for yield related traits and eight novel QTL for
TKW, PH, KNS (2), SN (2), and Chl-10 (2) were identified,
with genetic distances of 0-1.5cM from the closest linked SNP
markers; therefore, these QTL could serve as target regions for
fine mapping, candidate gene discovery, and MAS in wheat
breeding.

AUTHOR CONTRIBUTIONS

FG carried out the experiment and wrote the paper. WW,
JL, and AR performed SNP genotyping and data analysis. GY
participated in field trials. XX, XW, and ZH designed the
experiment and wrote the paper. All authors read and approved
the final manuscript.

REFERENCES

Akhunov, E., Nicolet, C., and Dvorak, J. (2009). Single nucleotide polymorphism
genotyping in polyploid wheat with the Illumina Golden-Gate assay. Theor.
Appl. Genet. 119, 507-517. doi: 10.1007/s00122-009-1059-5

Ali, M. L., Baenziger, P. S., Ajlouni, Z. A., Campbell, B. T., Gill, K. S., Eskridge, K.
M., etal. (2011). Mapping QTL for agronomic traits on wheat chromosome 3A
and a comparison of recombinant inbred chromosome line populations. Crop
Sci. 51, 553-566. doi: 10.2135/cropsci2010.06.0359

Aranzana, M. J., Kim, S., Zhao, K. Y., Bakker, E., Horton, M., Jakob, K., et al.
(2005). Genome-wide association mapping in Arabidopsis identifies previously
known flowering time and pathogen resistance genes. PLoS Genet. 1:¢60. doi:
10.1371/journal.pgen.0010060

Ariyadasa, R., Mascherm, M., Nussbaumer, T., Schulte, D., Frenkel, Z.,
Poursarebani, N., et al. (2014). A sequence-ready physical map of barley
anchored genetically by two million single-nucleotide polymorphisms. Plant
Physiol. 164, 412-423. doi: 10.1104/pp.113.228213

Bagge, M., Xia, X. C, and Liibberstedt, T. (2007). Functional markers
in wheat. Curr. Opin. Plant Biol. 10, 211-216. doi: 10.1016/jpbi2007
01009

Birkhead, T. R., Ball, A., Stapleym, J., Dawson, D., Burke, T., and Slate, J.
(2010). A comparison of SNPs and microsatellites as linkage mapping markers:

ACKNOWLEDGMENTS

The authors are grateful to Prof. R. A. McIntosh, Plant Breeding
Institute, University of Sydney, for review of this manuscript.
This study was supported by the National Natural Science
Foundation of China (31461143021), Beijing Municipal Science
and Technology Project (D151100004415003), International
Science and Technology Cooperation Program of China
(2013DFG30530, 2014DFG31690), and China Agriculture
Research System (CARS-3-1-3).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.
01099

Table S1 | Summary of means, maxima, minima, and standard deviations
for yield components, plant height, and yield-related physiological traits
measured in the Zhou 8425B/Chinese Spring population.

Table S2 | Summary of the genetic map constructed with 246 RILs derived
from the Zhou 8425B/Chinese Spring cross.

Table S3 | All SNP markers mapped in the Zhou 8425B/Chinese Spring
populationin.

Table S4 | The names and positions of 866 newly mapped SNP markers.

Figure S1 | Frequency distributions of yield components, plant height, and
yield-related physiological traits in Zhou 8425B/Chinese Spring
population. (a) Thousand kernel weight, (b) Kernel number per spike, (c) Spike
number/m2, (d) Plant height, (e) spike length, (f) SPAD value of chlorophyll content
at anthesis, (g) SPAD value of chlorophyll content at 10 days post-anthesis, (h):
Normalized difference in vegetation index at anthesis, (i) Normalized difference in
vegetation index at 10 days post-anthesis. 2012-2013ZK, 2012-2013 cropping
season in Zhoukou; 2012-20132Z, 2012-2013 cropping season in Zhengzhou;
2013-2014zK, 2013-2014 cropping season in Zhoukou; 2013-2014ZZ,
2013-2014 cropping season in Zhengzhou.

lessons from the zebra finch (Taeniopygia guttata). BMC Genomics 11:218. doi:
10.1186/1471-2164-11-218

Barker, G. L. A., and Edwards, K. J. (2009). A genome-wide analysis of single
nucleotide polymorphism diversity in the world’s major cereal crops. Plant
Biotechnol. J.7,318-325. doi: 10.1111/j.1467-7652.2009.00412.x

Bennett, D., Reynolds, M., Mullan, D., Izanloo, A., Kuchel, H., Langridge, P.,
et al. (2012). Detection of two major grain yield QTL in bread wheat (Triticum
aestivum L.) under heat, drought and high yield potential environments. Theor.
Appl. Genet. 125, 1473-1485. doi: 10.1007/s00122-012-1927-2

Blanco, A., Bellomo, M. P., Cenci, A., De Giovanni, C., D’Ovidio, R,, Iacono, E.,
et al. (1998). A genetic linkage map of durum wheat. Theor. Appl. Genet. 97,
721-728. doi: 10.1007/s001220050948

Borner, A., Schumann, E., Fiirste, A., Céster, H., Leithold, B., Réder, M. S., et al.
(2002). Mapping of quantitative trait loci determining agronomic important
characters in hexapioid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105,
921-936. doi: 10.1007/s00122-002-0994-1

Cabral, A. L,, Jordan, M. C., McCartney, C. A., You, F. M., Humphreys, D. G,,
MacLachlan, R., et al. (2014). Identification of candidate genes, regions and
markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.).
BMC Plant Biol. 14:340. doi: 10.1186/s12870-014-0340-1

Colasuonno, P., Gadaleta, A., Giancaspro, A., Nigro, D., Giove, S., Incerti, O., et al.
(2014). Development of a high-density SNP-based linkage map and detection

Frontiers in Plant Science | www.frontiersin.org

15

December 2015 | Volume 6 | Article 1099


http://journal.frontiersin.org/article/10.3389/fpls.2015.01099
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Gao et al.

Genome-Wide Linkage Mapping of QTL

of yellow pigment content QTLs in durum wheat. Mol. Breeding 34, 1563-1578.
doi: 10.1007/s11032-014-0183-3

Cook, J. P., McMullen, M. D., Holland, J. B., Tian, F., Bradbury, P., Ross-Ibarra,
J., etal. (2012). Genetic architecture of maize kernel composition in the nested
association mapping and inbred association panels. Plant Physiol. 158, 824-834.
doi: 10.1104/pp.111.185033

Cuthbert, J. L., Somers, D. J., Brilé-Babel, A. L., Brown, P. D., and Crow, G.
H. (2008). Molecular mapping of quantitative trait loci for yield and yield
components in spring wheat (Triticum aestivum L.). Theor. Appl. Genet. 117,
595-608. doi: 10.1007/s00122-008-0804-5

Edae, E. A, Byrne, P. F., Haley, S. D., Lopes, M. S., and Reynolds, M. P. (2014).
Genome-wide association mapping of yield and yield components of spring
wheat under contrasting moisture regimes. Theor. Appl. Genet. 127, 791-807.
doi: 10.1007/s00122-013-2257-8

Ellis, M. H., Rebetzke, G. ., Azanza, F., Richards, R. A., and Spielmeyer, W. (2005).
Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat.
Theor. Appl. Genet. 111, 423-430. doi: 10.1007/s00122-005-2008-6

Golabadi, M., Arzani, A., Mirmohammadi Maibody, S. A. M., Tabatabaei, B. E. S.,
and Mohammadi, S. A. (2011). Identification of microsatellite markers linked
with yield components under drought stress at terminal growth stages in durum
wheat. Euphytica 177, 207-221. doi: 10.1007/s10681-010-0242-8

Green, A. J., Berger, G., Griffey, C. A., Pitman, R, Thomason, W., Balota,
M., et al. (2012). Genetic yield improvement in soft red winter wheat in
the Eastern United States from 1919 to 2009. Crop Sci. 52, 2097-2108. doi:
10.2135/cropsci2012010026

Gupta, P. K., Varshney, R. K., Sharma, P. C., and Ramesh, B. (1999). Molecular
markers and their applications in wheat breeding. Plant Breeding 118, 369-390.
doi: 10.1046/j1439-0523199900401x

Holland, J. B. (2007). Genetic architecture of complex traits in plants. Curr. Opin.
Plant Biol. 10, 156-161. doi: 10.1016/jpbi200701003

Huang, X., Wei, X,, Sang, T., Zhao, Q., Feng, Q., Zhao, Y., et al. (2010). Genome-
wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42,
961-967. doi: 10.1038/ng.695

Huang, X., Zhao, Y., Wei, X,, Li, C, Wang, A, Zhao, Q. et al. (2011).
Genome-wide association study of flowering time and grain yield traits in a
worldwide collection of rice germplasm. Nat. Genet. 44, 32-39. doi: 10.1038/
ng.1018

Huang, X. Q., Kempf, H., Ganal, M. W., and Réder, M. S. (2004). Advanced
backcross QTL analysis in progenies derived from a cross between a German
elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor.
Appl. Genet. 109, 933-943. doi: 10.1007/s00122-004-1708-7

Jia, G., Huang, X., Zhi, H., Zhao, Y., Zhao, Q., Li, W, et al. (2013). A haplotype
map of genomic variations and genome-wide association studies of agronomic
traits in foxtail millet (Setaria italica). Nat. Genet. 45, 957-961. doi: 10.1038/
ng.2673

Kumar, N., Kulwal, P. L., Balyan, H. S., and Gupta, P. K. (2007). QTL mapping for
yield and yield contributing traits in two mapping populations of bread wheat.
Mol. Breeding 19, 163-177. doi: 10.1007/s11032-006-9056-8

Lambel, S., Lanini, B., Vivoda, E., Fauve, J., Wechter, W. P., Harris-Shultz, K. R.,
etal. (2014). A major QTL associated with Fusarium oxysporum race resistance
identified in genetic populations derived from closely related watermelon lines
using selective genotyping and genotyping-by-sequencing for SNP discovery.
Theor. Appl. Genet. 127, 2105-2115. doi: 10.1007/s00122-014-2363-2

Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., et al. (2012). Genome-wide
association study dissects the genetic architecture of oil biosynthesis in maize
kernels. Nat. Genet. 45, 43-50. doi: 10.1038/ng.2484

Li, H. H, Ye, G. Y., and Wang, J. K. (2007a). A modified algorithm for the
improvement of composite interval mapping. Genetics 175, 361-374. doi:
10.1534/genetics.106.06681

Li, S. S, Jia, J. Z., Wei, X. Y., Zhang, X. C,, Li, L. Z., Chen, H. M., et al. (2007b).
An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol.
Breeding 20, 167-178. doi: 10.1007/s11032-007-9080-3

Li, X. M., Xia, X. C,, Xiao, Y. G., He, Z. H., Wang, D. S., Trethowan, R., et al. (2015).
QTL mapping for plant height and yield components in common wheat under
water limited and full irrigation environments. Crop Pasture Sci. 67, 660-670.
doi: 10.1071/CP14236

Li, Z. F., Zheng, T. C, He, Z. H, Li, G. Q,, Xu, S. C, Li, X. P,, et al. (2006).
Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line

Zhou 8425B. Theor. Appl. Genet. 112, 1098-1103. doi: 10.1007/s00122-006-
0211-8

Liu, G, Li, J. ], Lu, L. H,, Qin, D. D, Zhang, J. P., Guan, P. F,, et al. (2014). Mapping
QTLs of yield-related traits using RIL population derived from common
wheat and Tibetan semi-wild wheat. Theor. Appl. Genet. 127, 2415-2432. doi:
10.1007/s00122-014-2387-7

Lopes, M. S., Reynolds, M. P., McIntyre, L., Mathews, K. L., Jalal Kamali, M. R,,
Mossad, M., et al. (2013). QTL for yield and associated traits in the Seri/Babax
population grown across several environments in Mexico, in the West Asia,
North Africa, and South Asia regions. Theor. Appl. Genet. 126, 971-984. doi:
10.1007/s00122-012-2030-4

Lupton, F. H. (1966). Translocation of photosynthetic assimilates in wheat. Ann.
Appl. Biol. 57, 355-364. doi: 10.1111/.1744-7348.1966.tb03829.x

Marone, D., Laido, G., Gadaleta, A., Colasuonno, P., Ficco, D. B. M., Giancaspro,
A., et al. (2012). A high-density consensus map of A and B wheat genomes.
Theor. Appl. Genet. 125, 1619-1638. doi: 10.1007/s00122-012-1939-y

McCartney, C. A., Somers, D. J., Humphreys, D. ., and Lukow, O. (2005). Mapping
quantitative trait loci controlling agronomic traits in the spring wheat cross RL
4452 x AC ‘Domain’. Genome 48, 870-883. doi: 10.1139/g05-055

Nachit, M. M., Elouafi, I., Pagnotta, M. A,, Ei, S. A, Tacono, E., Labhilili, M.,
et al. (2001). Molecular linkage map for an intraspecific recombinant inbred
population of durum wheat (Triticum turgidum L. var. durum). Theor. Appl.
Genet. 102, 177-186. doi: 10.1007/s001220051633

Peng, Z. S., Li, X, Yang, Z. J., and Liao, M. L. (2011). A new reduced height gene
found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet. Mol.
Res. 10, 2349-2357. doi: 10.4238/2011.October.5.5

Pinto, R. S., and Reynolds, M. P. (2015). Common genetic basis for canopy
temperature depression under heat and drought stress associated with
optimized root distribution in bread wheat. Theor. Appl. Genet. 128, 575-585.
doi: 10.1007/s00122-015-2453-9

Prashar, A., Hornyik, C., Young, V., McLean, K., Sharma, S. K., Dale, M. F. B,,
etal. (2014). Construction of a dense SNP map of a highly heterozygous diploid
potato population and QTL analysis of tuber shape and eye depth. Theor. Appl.
Genet. 127, 2159-2171. doi: 10.1007/s00122-014-2369-9

Quarrie, S. A., Quarrie, S. P., Radosevic, R., Rancic, D., Kaminska, A., Barnes,
J. D., et al. (2006). Dissecting a wheat QTL for yield present in a range of
environments: from the QTL to candidate genes. J. Exp. Bot. 57, 2627-2637.
doi: 10.1093/jxb/erl026

Rafalski, A. (2002). Applications of single nucleotide polymorphisms in crop
genetics. Curr. Opin. Plant Biol. 5, 94-100. doi: 10.1016/S1369-5266(02)
00240-6

Rebetzke, G. J., Condon, A. G., Farquhar, G. D., Appels, R., and Richards, R. A.
(2008a). Quantitative trait loci for carbon isotope discrimination are repeatable
across environments and wheat mapping populations. Theor. Appl. Genet. 118,
123-137. doi: 10.1007/s00122-008-0882-4

Rebetzke, G. J., van Herwaarden, A. F., Jenkins, C., Weiss, M., Lewis, D., Ruuska,
S., et al. (2008b). Quantitative trait loci for water-soluble carbohydrates and
associations with agronomic traits in wheat. Aust. J. Agric. Res. 59, 891-905.
doi: 10.1071/AR08067

Reynolds, M., Bonnett, D., Chapman, S. C., Furbank, R. T., Manes, Y., Mather,
D. E., et al. (2011). Raising yield potential of wheat. I. Overview of a
consortium approach and breeding strategies. J. Exp. Bot. 62, 439-452. doi:
10.1093/jxb/erq311

Reynolds, M., and Tuberosam, R. (2008). Translational research impacting on
crop productivity in drought-prone environments. Curr. Opin. Plant Biol. 11,
171-179. doi: 10.1016/j.pbi.2008.02.005

Schlotterer, C. (2004). The evolution of molecular markers - just a matter of
fashion. Nat. Rev. Genet. 5, 63-69. doi: 10.1038/nrg1249

Sela, H., Ezratim, S., Ben-Yehuda, P., Manisterski, J., Akhunov, E., Dvorak, J., et al.
(2014). Linkage disequilibrium and association analysis of stripe rust resistance
in wild emmer wheat (Triticum turgidum ssp. dicoccoides) population in Israel.
Theor. Appl. Genet. 127, 2453-2463. doi: 10.1007/s00122-014-2389-5

Shiaoman, C., Zhang, W. J., Akhunov, E., Sherman, J., Ma, Y. Q., Luo, M. C,,
etal. (2009). Analysis of gene-derived SNP marker polymorphism in US wheat
cultivars. Mol. Breeding 23, 23-33. doi: 10.1007/s11032-008-9210-6

Sindhu, A., Ramsay, L., Sanderson, L. A., Stonehouse, R., Li, R., Condie, J., et al.
(2014). Gene-based SNP discovery and genetic mapping in pea. Theor. Appl.
Genet. 127, 2225-2241. doi: 10.1007/s00122-014-2375-y

Frontiers in Plant Science | www.frontiersin.org

16

December 2015 | Volume 6 | Article 1099


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Gao et al.

Genome-Wide Linkage Mapping of QTL

Song, Q., Hyten, D. L., Jia, G, Quigley, C. V., Fickus, E. W., Nelson,
R. L, et al. (2013). Development and evaluation of Soy SNP 50K,
a high-density genotyping array for soybean. PLoS ONE 8:¢54985. doi:
10.1371/journal.pone.0054985

Stam, P. (1993). Construction of integrated genetic linkage maps by means of
a new computer package: JoinMap. Plant J. 3, 739-744. doi: 10.1111/j.1365-
313X.1993.00739.x

Sukumaran, S., Dreisigacker, S., Lopes, M., Chavez, P., and Reynolds, M. P. (2015).
Genome-wide association study for grain yield and related traits in an elite
spring wheat population grown in temperate irrigated environments. Theor.
Appl. Genet. 128, 353-363. doi: 10.1007/s00122-014-2435-3

Tian, F., Bradbury, P. J.,, Brown, P. ], Hung, H., Sun, Q. Flint-Garcia, S.,
et al. (2011). Genome-wide association study of leaf architecture in the maize
nested association mapping population. Nat. Genet. 43, 159-162. doi: 10.1038/
ng.746

Wang, S. C., Wong, D., Forrest, K., Allen, A., Chao, S. M., Huang, B. E,, et al.
(2014). Characterization of polyploid wheat genomic diversity using a high-
density 90000 single nucleotide polymorphism array. Plant Biotechnol. J. 12,
87-96. doi: 10.1111/pbi.12183

Xiao, Y. G, Yin, G. H,, Li, H. H,, Xia, X. C, Yan, J., Zheng, T. C,, et al. (2011).
Genetic diversity and genome-wide association analysis of stripe rust resistance
among the core wheat parent Zhou 8425B and its derivatives. Sci. Agric. Sin. 44,
3919-3929. doi: 10.3864/j.issn.0578-1752.2011.19.001

Xu, Y. F, An, D. G, Liy, D. C,, Zhang, A. M., Xu, H. X,, and Li, B. (2012).
Mapping QTLs with epistatic effects and QTL x treatment interactions for salt
tolerance at stage of wheat. Euphytica 186, 233-245. doi: 10.1007/s10681-012-
0647-7

Yang, Q. Li, Z,, Li, W. Q., Ku, L. X, Wang, C,, Ye, J. R,, et al. (2013). CACTA-
like transposable element in ZmCCT attenuated photoperiod sensitivity and
accelerated the postdomestication spread of maize. Proc. Natl. Acad. Sci. U.S.A.
110, 16969-16974. doi: 10.1073/pnas.1310949110

Yang, Z. B., Bai, Z. Y., Li, X. L., Wang, P., Wu, Q. X,, Yang, L., et al. (2012).
SNP identification and allelic-specific PCR markers development for TaGW2,
a gene linked to wheat kernel weight. Theor. Appl. Genet. 125, 1057-1068. doi:
10.1007/s00122-012-1895-6

Yin, G. H, Wang, J. W,, Wen, W. E, He, Z. H, Li, Z. F,, Wang, H,
et al. (2009). Mapping of wheat stripe rust resistance gene YrZHS84 with
RGAP markers and its application. Acta Agron. Sin. 35, 1274-1281. doi:
10.3724/SP.].1006.2009.01274

Yu, H., Xie, W.,, Wang, J.,, Xing, Y., Xu, C, Li, X,, et al. (2011). Gains in
QTL detection using an ultra-high density SNP map based on population
sequencing relative to traditional RFLP/SSR markers. PLoS ONE 6:€17595. doi:
10.1371/journal. pone.0017595

Zhao, K., Tung, C. W., Eizenga, G. C., Wright, M. H., Ali, M. L, Price, A. H., et al.
(2011). Genome-wide association mapping reveals a rich genetic architecture of
complex traits in Oryza sativa. Nat. Commun. 2:467. doi: 10.1038/ncomms1467

Zhao, X. L., Zheng, T. C,, Xia, X. C,, He, Z. H,, Liu, D. Q., Yang, W. X,, et al. (2008).
Molecular mapping of leaf rust resistance gene LrZH84 in Chinese wheat line
Zhou 8425B. Theor. Appl. Genet. 117, 1069-1075. doi: 10.1007/s00122-008-
0845-9

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Gao, Wen, Liu, Rasheed, Yin, Xia, Wu and He. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Plant Science | www.frontiersin.org

17

December 2015 | Volume 6 | Article 1099


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring
	Introduction
	Materials and Methods
	Plant Materials and Field Trials
	Phenotyping
	Phenotypic Data Analysis
	SNP Genotyping
	Linkage Map Construction
	QTL Analysis

	Results
	Phenotypic Evaluation
	Correlations Between Traits
	SNP Genotyping
	Linkage Map Construction
	QTL Analysis of Grain Yield and Related Traits
	Thousand Kernel Weight
	Kernel Number per Spike
	Spike Number
	Plant Height
	Spike Length
	SPAD Value of Chlorophyll Content at Anthesis
	SPAD Value of Chlorophyll Content at 10 Days Post-Anthesis
	Normalized Difference in Vegetation Index at Anthesis
	Normalized Difference in Vegetation Index at 10 Days Post-Anthesis

	Discussion
	SNP Discovery and Linkage Map Construction
	QTL Mapping
	Co-localization of QTL for Yield and Related Traits
	Potential Application of QTL for MAS in Wheat Breeding

	Conclusion
	Author contributions
	Acknowledgments
	Supplementary Material
	References


