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Low boron (B) supply alters the architecture of the root system in Arabidopsis thaliana
seedlings, leading to a reduction in the primary root growth and an increase in the length
and number of root hairs. At short-term (hours), B deficiency causes a decrease in the
cell elongation of the primary root, resulting in a lower growth. Experimental approaches
using ethylene insensitive Arabidopsis mutants, inhibitors of ethylene response, and GUS
reporter lines suggest that ethylene is involved in these responses of the primary root to
B deficiency. Furthermore, it has been shown that auxin participates in the inhibition of
cell elongation under short-term B deprivation. These results support that an interaction
between ethylene and auxin plays an important role in controlling the primary root
elongation, in which a number of genes related to the synthesis, transport, and signaling
of both phytohormones could modulate this effect. Evidence for a root cross-talk among
both hormones and other possible intermediates (abscisic acid, calcium sensors, and
reactive oxygen species) in response to B deficiency is provided and discussed.

Keywords: abscisic acid, auxin, boron deficiency, calcium signaling, ethylene, primary root, reactive oxygen
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ROLE OF BORON IN PLANT DEVELOPMENT

Boron (B)—an element with properties intermediate between metals and non-metals–is an
essential nutrient for vascular plants, and its limited availability affects yields and quality of crops
producing significant economic losses (Blevins and Lukaszewski, 1998; Tanaka and Fujiwara,
2008).

Three mechanisms to explain B uptake and transport in plants have been described: (i) passive
diffusion through the plasma membrane, (ii) facilitated diffusion through channels (NIPs, nodulin
26-like intrinsic proteins), and (iii) active high-affinity transport mediated by BOR transporters
and induced under low B availability (Brown et al., 2002; Takano et al., 2008; Miwa and Fujiwara,
2010; Reid, 2014).

Both boric acid and borate have the ability to react with compounds containing cis-diol
groups resulting in stable borate ester complexes. Thus, the best-known role of B is its structural
function in the cell wall, where borate acts to form a diester bond between apiose residues of two
rhamnogalacturonan II monomers; this dimer—the first molecule linked by borate identified in the
plant kingdom—contributes to the steadiness of the cell wall (Ishii andMatsunaga, 1996; Kobayashi
et al., 1996; O’Neill et al., 1996). In addition, B has been related to other two main processes,
namely, the maintenance of plasma membrane integrity through the formation of complexes with
compounds containing cis-diol moieties (e.g., glycoproteins and glycolipids) and the support of
metabolic activities, so that its deficiency affects numerous metabolic and physiological processes
that take place during both reproductive and vegetative stages of a plant’s life cycle (Blevins
and Lukaszewski, 1998; Brown et al., 2002; Bolaños et al., 2004; Goldbach and Wimmer, 2007;

Frontiers in Plant Science | www.frontiersin.org 1 January 2016 | Volume 6 | Article 1103

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.01103
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2015.01103
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2015.01103&domain=pdf&date_stamp=2016-01-08
http://journal.frontiersin.org/article/10.3389/fpls.2015.01103/abstract
http://loop.frontiersin.org/people/203066/overview
http://loop.frontiersin.org/people/297913/overview
http://loop.frontiersin.org/people/297989/overview
http://loop.frontiersin.org/people/297986/overview
http://loop.frontiersin.org/people/283757/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


González-Fontes et al. Root Responses to Boron Deficiency

Camacho-Cristóbal et al., 2008a). To explain this apparently
pleiotropic effect of B, it has been proposed that the main role
of B is the stabilization of cis-hydroxyl-containing molecules,
irrespectively of their function (Bolaños et al., 2004). Nonetheless,
with the exception of the primary structural role of B in the cell
wall, so far there is not a hypothesis which fully explains how so
many plant processes are affected by short-term B deficiency.

ETHYLENE-AUXIN INTERACTION IN THE
CONTROL OF ROOT DEVELOPMENT

Plant hormones regulate many aspects of growth and
differentiation in plants, often through interaction between
them. Thus, without exception, auxin, cytokinin, and ethylene
are involved in regulation of root development (Ruzicka et al.,
2007, 2009).

The roles of auxin and ethylene in controlling plant
development have been thoroughly studied. It is well known
that these two hormones act synergistically in regulating certain
developmental processes, such as formation and elongation
of root hairs, but also that they act antagonistically in
other processes such as the development of lateral roots and
hypocotyl elongation (Stepanova et al., 2007). The cross-talk
between both hormones can be analyzed from the signaling
pathways of ethylene and auxin (Muday et al., 2012). A first
interaction occurs by activation of genes containing promoter
regions that respond to ethylene and auxin, allowing both
signaling pathways to directly regulate transcription. A second
interaction occurs through the expression of genes that are
auxin responsive, but whose activities regulate the synthesis,
signaling or the response of ethylene, and vice versa (Muday
et al., 2012). Therefore, ethylene and auxin can interact at three
levels: reciprocally regulating their biosynthesis, influencing the
response pathway, or acting on the same genes (Stepanova et al.,
2007).

In some processes of plant growth and differentiation,
auxin and ethylene can cause similar responses due to the
capacity of auxin to promote ethylene synthesis by increasing
ACC (1-aminocyclopropane-1-carboxylic acid) synthase activity.
Exogenous application of IAA results in increased transcription
of multiple genes responsible for ACC synthase (ACS), leading to
an increase in ethylene production (Liang et al., 1992; Stepanova
et al., 2007; Benková and Hejátko, 2009). Nevertheless, it has also
been described that ethylene modulates the synthesis, transport,
and auxin signaling in processes such as root growth and the
formation of root hairs (Benková andHejátko, 2009;Muday et al.,
2012). Thus, while auxin can inhibit root growth in the absence
of ethylene, ethylene inhibits root growth by increased auxin
levels in certain areas of the root (Stepanova et al., 2007). For
instance, ethylene enhances shootward auxin transport from the
root apical to elongation zone by upregulating the transcription
of AUX1 and PIN2, which mediate auxin delivery into cells
of the elongation zone. Increased auxin levels elicit auxin
responses in this zone that decrease cell elongation (Ruzicka et al.,
2007).

Therefore, the maintenance of an appropriate ethylene-auxin
balance is one of the most important mechanisms involved in

FIGURE 1 | Proposed model for short-term response of the primary
root of Arabidopsis thaliana plants to B deficiency. For more details see
the text.

root growth regulated by both hormones (Benková and Hejátko,
2009).

BORON AVAILABILITY AFFECTS THE
FORMATION OF ROOT HAIRS AND THE
ROOT SYSTEM GROWTH VIA ETHYLENE

In vascular plants, the most rapid response to B deficiency is
the growth inhibition of both primary and lateral roots (Dell
and Huang, 1997). Furthermore, this mineral deficiency elicits
root hair formation and elongation (Takano et al., 2006; Martín-
Rejano et al., 2011) and a decrease in the cell elongation of the
primary root (Dell and Huang, 1997; Camacho-Cristóbal et al.,
2015). These changes in root architecture can seriously affect the
ability of plants to take up water and nutrients.

Number and Length of Root Hairs
Interestingly, low B supply (0.4 µM) leads to an increase in
the length and number of root hairs even after only 1 day of
B deficiency (Martín-Rejano et al., 2011). This effect appears
to be mediated by ethylene (Figure 1), which is supported
by the following three facts: first, both the ethylene reporter
EBS::GUS and the ACS11::GUS lines showed an increased
expression in the maturation zone of primary root in response
to low B supply (Martín-Rejano et al., 2011) and B deficiency
(Camacho-Cristóbal et al., 2015), respectively, which suggests an
accumulation of ethylene in this root zone; second, B limiting-
induction of root hairs disappeared in an ethylene insensitive
(ein2-1) Arabidopsis thalianamutant (Martín-Rejano et al., 2011),
which shows that the ethylene signal transduction to the nucleus
through EIN2 protein is required to induce the formation and
elongation of root hairs under conditions of limiting B; third,
the effect of low B supply (0.4 µM, Martín-Rejano et al., 2013)
or B deficiency (Camacho-Cristóbal et al., 2015) on root hair
length was attenuated in the presence of Ag+—an inhibitor
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of ethylene response. In agreement with these results, ethylene
has been reported to induce the formation and elongation of
root hairs in Arabidopsis (Grierson et al., 2014 and references
therein).

Additionally, it is well known that reactive oxygen species
(ROS) are necessary for root hair growth in Arabidopsis
(Foreman et al., 2003). In fact, Arabidopsis rhd2 mutants,
which lack respiratory burst oxidase homolog C (RBOHC, a
plasma membrane NADPH oxidase), have markedly decreased
levels of ROS and, consequently, form shorter root hairs;
treatment of rhd2 roots with ROS partly suppressed the
mutant phenotype (Foreman et al., 2003). However, it has
been reported that Arabidopsis rhd2 plants grown on B-free
solidified media formed root hairs, which were similar to those
of control plants (Bassil et al., 2005). B lack in Arabidopsis
rhd2 mutants could induce the formation of root hairs by two
non-exclusive hypotheses: (i) another mechanism in which a
notable participation of ROS would not be essential, and/or
(ii) the increase in the activity of other RBOs expressed
in Arabidopsis roots. Consistent with this last hypothesis,
NADPH oxidase activities increased in primary roots of
Arabidopsis after short-term B deficiency (Camacho-Cristóbal
et al., 2015).

Finally, it is noteworthy to mention that the higher number
and length of root hairs under B limitation could be an efficient
way to enhance the B uptake by NIP5;1 proteins localized to the
plasma membrane of root hairs (Takano et al., 2006).

Primary Root Growth
Low B treatment (0.4 µM) for 1 to 4 days alters the architecture
of the root system in Arabidopsis seedlings leading to a reduction
in the primary root growth (Martín-Rejano et al., 2011). It
is well known that ethylene plays critical roles in modulating
root growth (Le et al., 2001; Swarup et al., 2007). The signals
generated by ethylene converge in transcription factors, such
as EIN3, which trigger a transcriptional cascade resulting in
activation and repression of hundreds of genes (Stepanova and
Alonso, 2009). Interestingly, EBS::GUS activity also increased
in the elongation zone of the Arabidopsis primary roots treated
with limiting B (Martín-Rejano et al., 2011). This suggests
that the accumulation of ethylene mediates the inhibition of
primary root growth under low B supply. In addition to
ethylene, auxin seems to be involved in the inhibition of
Arabidopsis primary root treated with limiting B supply (0.4
µ M). Two facts support this assumption: (i) the expression
of the auxin reporter DR5::GUS increased in the elongation
zone of primary roots and (ii) the growth of primary roots in
the auxin resistant aux1-22 mutant was less sensitive to low
B treatment than in wild-type plants (Martín-Rejano et al.,
2011).

Total primary root growth depends on two developmental
processes: the division of cells in the meristematic region and
the elongation of cells that leave the root meristem (Scheres
et al., 2002). Several abiotic stresses such as B toxicity cause a
decrease in meristem size because of a progressive reduction
of cell division, which correlates with the inhibition of root
growth (Aquea et al., 2012). However, other abiotic stresses,

including B deficiency, affect mainly cell elongation in the
growing tissues of plants (Dell and Huang, 1997; Martín-Rejano
et al., 2011; Camacho-Cristóbal et al., 2015). Thus, a short-term
B deficiency has been shown to strongly inhibit the elongation
of root cells as manifested by their short length, which results in
a rapid inhibition of primary root growth (Camacho-Cristóbal
et al., 2015). This inhibition in cell elongation can reasonably
be attributed to the adverse effects of B deprivation on the
physical stability of the cell wall, which is essential for the cell
elongation process (De Cnodder et al., 2005). In fact, changes
in cell wall polysaccharides and the structural proteins can
moderate plant cell expansion during development (Cosgrove,
1997). Cell area is increased in an order of magnitude along the
root elongation phase, and this requires a major restructuring
of the cell wall and an increase in polysaccharide biosynthesis
(Tsang et al., 2011). Hence, growing primary roots are sensitive
to the cell wall damage. For instance, inhibition of cellulose
biosynthesis or interference in the cell wall assembly rapidly
reduced elongation (Tsang et al., 2011). Therefore, the structural
damages in the cell wall caused by B deficiency, together with
the downregulation of several cell wall-related genes (Camacho-
Cristóbal et al., 2008b), could lead to disorders that affect cell
elongation. Even though the processes that control the extent
of root cell elongation under B deficiency are still not clearly
defined, there is growing evidence supporting the mediation of
ethylene (Camacho-Cristóbal et al., 2015). Thus, interestingly,
ACS11 gene, which encodes an isoform of ACC synthase, was
rapidly overexpressed in the absence of B, a fact consistent with
the increased expression of ACS11::GUS reporter line in the root
elongation zone (Martín-Rejano et al., 2014; Camacho-Cristóbal
et al., 2015). It has been shown that the expression of ACS
genes increases when there are severe developmental problems
(Tsuchisaka et al., 2009). Although ACS11 gene expression
was rapidly induced under B deficiency, this is not the case
with other genes of the ACS family (Camacho-Cristóbal et al.,
2015). These results agree with those obtained by Tsang et al.
(2011) in which only the ACS11 gene was induced in the root
elongation zone upon treatment with the cell wall-damaging
isoxaben. This rapid upregulation of the ACS11 gene under
B deficiency would suggest an enhancement of ACC and/or
ethylene synthesis in Arabidopsis roots to inhibit expansion
of cells leaving the root meristem (Le et al., 2001; Swarup
et al., 2007). In addition, cell elongation of the ethylene-
insensitive mutant ein2-1 was less sensitive to B deficiency than
that of the wild-type plants (Camacho-Cristóbal et al., 2015),
which also supports the occurrence of this ethylene-dependent
pathway to control the inhibition of cell elongation under B
deficiency.

Ethylene, or ACC, causes an irreversible blockage in cell
elongation from which cells cannot expand (Le et al., 2001;
De Cnodder et al., 2005). Inhibition of root elongation is an
evident effect of ethylene or ACC, which is a synergistic effect
with auxin on this process (Rahman et al., 2001; Swarup et al.,
2002). Analysis of inhibition of root growth by ethylene and
auxin revealed that both reduce the rate of cell expansion in the
central zone of elongation (Rahman et al., 2007; Swarup et al.,
2007). Importantly, IAA exogenous application to Arabidopsis
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seedlings grown under control conditions decreased root cell
elongation in a similar way to that caused by B deprivation
(Martín-Rejano et al., 2014). This would support that B deficiency
induces a decrease in root cell elongation, in part, by increased
levels of auxin. In addition, the higher expression of the
auxin reporter IAA2::GUS in the elongation zone and the
complete restoration of cell elongation by PEO-IAA—an auxin
signaling inhibitor—in B-deficient roots indicate the requirement
of auxin signaling in the response of cell elongation to B
deficiency (Martín-Rejano et al., 2014; Camacho-Cristóbal et al.,
2015). It has also been suggested that the shootward auxin
transport via AUX1 and PIN2 proteins participates in this
response, since the primary root growth in aux1-22 and pin2
mutants was less sensitive to B deprivation than in wild-type
plants (Martín-Rejano et al., 2013; Camacho-Cristóbal et al.,
2015).

Furthermore, an accumulation of ROS has been reported
in the elongation zone of Arabidopsis roots when they were
subjected to B deprivation, and that these early responses to B
deficiency were mediated by ethylene probably acting upstream
of ROS production (Oiwa et al., 2013; Camacho-Cristóbal
et al., 2015). Interestingly, it has also been described that
localized auxin accumulation increases ROS levels (Peer et al.,
2013), which would also explain the observed accumulation
of ROS in the elongation zone under B deficiency. In this
regard, the shorter cell elongation in Arabidopsis roots under
B deficiency has been related to oxidative damage by ROS
(Camacho-Cristóbal et al., 2015), which can be produced
by NADPH oxidases of plasma membrane (Suzuki et al.,
2011). In fact, it has been proposed that the crosslinking
between hydroxyproline-rich glycoproteins driven by ROS
could be an important mechanism to inhibit root cell
elongation (De Cnodder et al., 2005). Consistent with this,
NADPH oxidase activity in Arabidopsis roots was significantly
higher after short-term B deprivation and, in addition,
diphenyleneiodonium, which inhibits ROS generation by
NADPH oxidases, attenuated the effect of B deficiency on
cell elongation, even in the presence of ACC (Camacho-
Cristóbal et al., 2015). These results support the hypothesis
of a relation between ethylene, auxin, ROS production
and inhibition of root cell elongation under this mineral
deficiency.

ROLE OF ETHYLENE AND AUXIN IN
ROOT RESPONSE TO THE BORON
DEFICIENCY: WHICH WORKS FIRST?

B deficiency causes a decrease in root growth that is mediated
by ethylene and auxin, but which of the two phytohormones
acts first triggering this response? When Arabidopsis seedlings
grown with 10 µM B were treated with ACC, their primary
root cell lengths decreased up to a similar size to those grown
under B deficiency suggesting the involvement of ethylene in
the B deficiency-induced response (Camacho-Cristóbal et al.,
2015). Interestingly, when auxin signaling was inhibited by
PEO-IAA in B-deficient seedlings, the length of their root
cells increased up to the size of those treated with B

sufficiency, even in the presence of ACC (Martín-Rejano et al.,
2013, 2014; Camacho-Cristóbal et al., 2015). Furthermore, the
blockage of ethylene signaling by Ag+ was able to abolish the
effect of B deprivation on IAA2::GUS expression (Camacho-
Cristóbal et al., 2015). These findings suggest that auxin
signaling acts downstream of the ethylene signal in the root
response to B deficiency, that is, ethylene would be acting
previously to auxin. Consistent with these results, it has been
described that the effect of ethylene on the root growth is
largely mediated by an increase in the auxin response, which
results in a lower elongation of root cells (Swarup et al.,
2007).

According to this, a potential model is proposed to explain
how seedling roots of A. thaliana respond in short-term to B
deprivation, and how ethylene and auxin are associated with this
response (Figure 1). B deficiency would trigger an increase in
ACS11 gene expression and, consequently, in the levels of ACC
and ethylene. This rise would lead to alter auxin response in
the primary root of Arabidopsis plants that, in turn, result in
a decrease of the root cell length (Swarup et al., 2007; Muday
et al., 2012). The increased auxin response in the elongation
zone could explain the results observed with the auxin reporter
line IAA2::GUS under B deficiency (Camacho-Cristóbal et al.,
2015).

An intriguing fact is why B deficiency provokes a decrease
in the cell elongation of the primary root while increases
length of root hairs. It is well known that Ca2+ and ROS
are necessary for root hair growth in Arabidopsis (Foreman
et al., 2003; Takeda et al., 2008; Monshausen et al., 2009;
Swanson et al., 2011). As B deprivation increases cytosolic
levels of Ca2+ (Quiles-Pando et al., 2013; González-Fontes
et al., 2014) and ROS (Oiwa et al., 2013; Camacho-Cristóbal
et al., 2015) in the Arabidopsis roots, the higher levels of both
could explain the enhanced length of root hairs under this
mineral deficiency. However, under B deficiency, the auxin level
in the elongation zone would exceed the threshold value of
growth inhibition inducing local responses that inhibit the cell
elongation.

Finally, and interestingly, it has recently been reported that
abscisic acid (ABA) signaling activates two Ca2+-dependent
protein kinases—CPK4 and CPK11—that are capable of
phosphorylating ACSs resulting in increased ethylene
production, which inhibits primary root growth in Arabidopsis
(Luo et al., 2014); as discussed by these authors, ABA would be
acting not only upstream of ethylene, but also affecting auxin
accumulation and/or auxin signaling via ROS production (Luo
et al., 2014, and references therein). Moreover, it was shown
that also a Ca2+-dependent protein kinase is necessary for
the phosphorylation of RBOHD protein associated with ROS
generation (Dubiella et al., 2013). Curiously, it has been reported
that B deprivation increases cytosolic Ca2+ concentration in
both tobacco BY-2 cells (Koshiba et al., 2010) and Arabidopsis
roots (Quiles-Pando et al., 2013; González-Fontes et al.,
2014), and that two encoding genes of Ca2+-dependent
protein kinases (CPK28 and CPK29) are also upregulated
during short-term B deficiency (Quiles-Pando et al., 2013;
González-Fontes et al., 2014). As B deprivation leads to increased
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levels of ethylene and ROS (Camacho-Cristóbal et al., 2015), in
light of all these data it would not be ruled out that there might
be a cross-talk among ABA, Ca2+ signaling, ethylene, auxin,
and ROS in responses to different plant stresses, including B
deficiency.
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