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Sphingolipids have essential structural and bioactive functions in membranes and in
signaling. However, how plants regulate sphingolipid biosynthesis in the response
to stress remains unclear. Here, we reveal that the plant hormone ethylene can
modulate sphingolipid synthesis. The fungal toxin Fumonisin B1 (FB1) inhibits the activity
of ceramide synthases, perturbing sphingolipid homeostasis, and thus inducing cell
death. We used FB1 to test the role of ethylene signaling in sphingolipid synthesis
in Arabidopsis thaliana. The etr1-1 and ein2 mutants, which have disrupted ethylene
signaling, exhibited hypersensitivity to FB1; by contrast, the eto1-1 and ctr1-1 mutants,
which have enhanced ethylene signaling, exhibited increased tolerance to FB1. Gene
expression analysis showed that during FB1 treatment, transcripts of genes involved
in de novo sphingolipid biosynthesis were down-regulated in ctr1-1 mutants but up-
regulated in ein2 mutants. Strikingly, under normal conditions, ctr1-1 mutants contained
less ceramides and hydroxyceramides, compared with wild type. After FB1 treatment,
ctr1-1 and ein2 mutants showed a significant improvement in sphingolipid contents,
except the ctr1-1 mutants showed little change in hydroxyceramide levels. Treatment
of wild-type seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid
down-regulated genes involved in the sphingolipid de novo biosynthesis pathway, thus
reducing sphingolipid contents and partially rescuing FB1-induced cell death. Taking
these results together, we propose that ethylene modulates sphingolipids by regulating
the expression of genes related to the de novo biosynthesis of sphingolipids.
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INTRODUCTION

Sphingolipids, the complex membrane lipids found ubiquitously in eukaryotes, have important
functions in nutrient transport, inflammation, cell differentiation, mitogenesis, migration,
apoptosis, senescence, and autophagy (Guenther et al., 2008; Hannun and Obeid, 2008; Hla and
Dannenberg, 2012; Sentelle et al., 2012; Maceyka and Spiegel, 2014). A sphingolipid has three
parts: a long chain base moiety, a fatty acid moiety, and a head group (Sperling and Heinz, 2003;
Pata et al., 2010). According to their molecular structures, plant sphingolipids can be divided
into four classes: long-chain bases (LCBs), ceramides, glycosylceramides, and glycosyl inositol
phosphoceramides (GIPCs; Pata et al., 2010).

The de novo synthesis of sphingolipids starts from a condensation reaction of serine and
palmitoyl-CoA by serine palmitoyltransferase (SPT). The resulting 3-keto-dihydrosphingosine is
then reduced to a LCB, which forms the backbone of sphingolipids. LCBs can be acylated with
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various fatty acids, forming dihydroceramides in a reaction
catalyzed by ceramide synthases. Ceramides desaturated from
dihydroceramides can bemodified to complex sphingolipids such
as glycosylceramides (GIPCs) or phosphorylated to ceramide
phosphates (Hannun and Obeid, 2008; Pata et al., 2010). In
the past two decades, research has characterized many of the
genes involved in sphingolipid metabolism in plants. SPT, the
rate-limiting enzyme of de novo sphingolipid synthesis (Tamura
et al., 2001), has two subunits (LCB1 and LCB2a, LCB2b),
and loss-of-function of either subunit in Arabidopsis resulted in
lethality (Chen et al., 2006; Dietrich et al., 2008; Teng et al.,
2008). LCBs derived from sphinganine (d18:0) can be modified
by three enzymes: LCB C-4 hydroxylase, LCB �8 desaturase,
and LCB �4 desaturase (Chen et al., 2008, 2012; Michaelson
et al., 2009). LCB kinases phosphorylate LCBs into LCB-1-Ps
and four genes (LCBK1, LCBK2, SPHK1, and SPHK2) encode
these enzymes. LCB-1-Ps participate in abscisic acid signaling
(Imai and Nishiura, 2005; Worrall et al., 2008; Dutilleul et al.,
2012; Guo et al., 2012). LCB-1-P phosphatases and LCB-1-
P lyase dephosphorylate LCB-1-P and affect the dehydration
response in Arabidopsis (Tsegaye et al., 2007; Nishikawa et al.,
2008; Nakagawa et al., 2012). Ceramide synthases encoded by
three genes can be divided into two groups based on their
substrate preferences: one group includes LOH2, which prefers
acyl-CoAs with 16 carbon chain lengths; the other group
includes LOH1 and LOH3, which have a wide range of acyl-
CoAs as substrates (Markham et al., 2011; Ternes et al., 2011).
Loss of the ceramide kinase ACD5 causes the accumulation
of ceramides and salicylic acid and impairs plant defenses
(Greenberg et al., 2000; Liang et al., 2003; Bi et al., 2014).
Inositolphosphorylceramide synthase (IPCS) is involved in
RPW8-mediated hypersensitive response-like cell death (Wang
et al., 2008). Loss of sphingolipid fatty acid a-hydroxylases
results in abnormal plant development and increased sensitivity
to oxidative stress (Konig et al., 2012; Nagano et al., 2012).
A rice neutral ceramidase prefers ceramides as its substrates (Pata
et al., 2008), but the Arabidopsis neutral ceramidase AtNCER1
prefers hydroxyceramides and affects oxidative stress (Li et al.,
2015). We also reported that the Arabidopsis alkaline ceramidase
AtACER functions in disease resistance and salt tolerance (Wu
et al., 2015). Plants deficient in AtACER accumulate ceramides
and have reduced levels of LCBs, indicating that AtACER is
an important regulator of sphingolipid homeostasis (Wu et al.,
2015). Although many studies have expanded our understanding
of sphingolipids, little is known about how plants regulate
sphingolipid metabolism.

Ethylene, a gaseous plant hormone, functions in plant
development and stress responses, can be produced by stressed or
senescing plants, and affects other plants in the vicinity (Bleecker
and Kende, 2000). The ethylene signal transduction pathway has
been described in detail (Qiao et al., 2012; Wen et al., 2012;
Merchante et al., 2013). Briefly, in the absence of ethylene, the
redundant ethylene receptors ETR1, ERS1, ETR2, ERS2, and
EIN4 activate the CTR1 protein kinase, which phosphorylates
EIN2, inhibiting downstream signaling (Hua and Meyerowitz,
1998; Ju et al., 2012; Qiao et al., 2012; Wen et al., 2012). In the
presence of ethylene, the receptors bind ethylene and lose activity,

switching off CTR1. Then, the C-terminal of EIN2 is cleaved and
transported into the nucleus where it stabilizes the transcription
factors EIN3 and EIL1, resulting in the expression of ethylene-
responsive genes (Ju et al., 2012; Qiao et al., 2012; Wen et al.,
2012).

The fungal toxin Fumonisin B1 (FB1) inhibits the activity
of ceramide synthases, resulting in a dramatic increase in
the amount of LCBs and ceramides (Abbas et al., 1994;
Stone et al., 2000; Markham et al., 2011). Plants treated with
FB1 showed hypersensitive response phenotypes, including
generation of reactive oxygen species, deposition of phenolic
compounds and callose, accumulation of phytoalexins, and
expression of pathogenesis-related (PR) genes (Stone et al.,
2000). FB1-induced cell death in Arabidopsis protoplasts
requires jasmonate-, ethylene-, and salicylate-dependent
signaling pathways (Asai et al., 2000). Ethylene receptors
have distinct roles in FB1-induced cell death in Arabidopsis.
The etr1-1 mutant was more sensitive to FB1 than wild-type
plants, but the ein4-1 mutant was more tolerant to FB1,
and mutants of the other receptor isoforms showed similar
responses to FB1 as wild-type plants (Plett et al., 2009).
Gene expression analysis revealed that transcripts of ETR1
and ETHYLENE RESPONSE FACTOR1 (ERF1) increased
dramatically in ein4-1 mutants after FB1 treatment, indicating
that ETR1 plays a negative role in FB1-induced cell death
(Plett et al., 2009). Recently, another group reported that
etr1-1 mutants were more resistant to FB1, compared with
wild-type plants (Mase et al., 2013). The role of ethylene
signaling in FB1-induced cell death thus remains to be
elucidated.

Previous studies revealed that ethylene regulates the
biosynthesis of secondary metabolites such as indole-3-
acetic acid, ascorbic acid, flavonoid, and others (Buer
et al., 2006; Ruzicka et al., 2007; Gergoff et al., 2010).
However, the effects of ethylene on lipid biosynthesis have
remained unclear. Here, we report that ethylene modulates
sphingolipid synthesis. Our results showed that ethylene
signaling plays a negative role in FB1-induced cell death
and down-regulates the expression of genes involved in de
novo sphingolipid biosynthesis, thereby reducing sphingolipid
synthesis.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The etr1-1 (CS237), ein2 (CS8844), ctr1-1(CS8057), eto1-1
(CS3072), and acer-1 (CS876510, Wu et al., 2015) mutants
were obtained from the Arabidopsis Biological Resource Center
(ABRC); the double mutant ctr1 ein2 was a gift from Dr.
Chi-Kuang Wen. All the mutants used in this study were in
the Arabidopsis thaliana ecotype Columbia (Col-0), which was
used as the wild-type control. FB1, 1-aminocyclopropane-1-
carboxylic acid (ACC), and 3,3-diaminobenzidine-HCl (DAB)
were purchased from Sigma.

Seeds were sterilized and plated on 1/2xMS solid medium (1%
sucrose, 0.8% agar), stratified in the dark for 2 days at 4◦C, and
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then transferred into an incubator under a 16 h light/8 h dark
cycle (4000 lux light intensity) at 22◦C.

Chemical Treatments
For germination assays, 1/2x MS solid medium was
supplemented with various combinations of 0.5 µM FB1 and
50 µM ACC. For sphingolipid analysis, seeds were germinated
on 1/2x MS solid medium for 7 days, and the resulting seedlings
were transferred to 1/2x MS solid medium supplemented
with various combinations of 0.5 µM FB1 and 50 µM ACC
for another 6 or 8 days under the same conditions. For gene
expression, 7-day-old seedlings were transferred to 1/2x MS solid
medium supplemented with 0.5 µM FB1 or 50 µM ACC, and
harvested at 24 or 48 h.

DAB Staining
For analysis of the FB1-induced oxidative burst, 7-day-
old seedlings were transferred to 1/2x MS solid medium
supplemented with 0.5 µM FB1, harvested at 0, 12,
24, and 48 h. The seedlings were quickly immersed in
1 mg/ml DAB, then incubated for 3 h in the dark. The
pigments in the DAB-stained seedlings were removed with
acetic acid/glycerol/ethanol (1:1:3). DAB staining was observed
under a stereomicroscope (SteREO Lumar.V12 Carl Zeiss)
equipped with a CCD camera (AxioCam MRc, Carl Zeiss)
and quantified by measuring the intensity per unit area, with
Image J. At least six leaves per genotype were measured at
each time point and three independent experiments were
performed.

Sphingolipid Analysis
Sphingolipids were extracted as previously described (Wu
et al., 2015). Briefly, about 100 mg of fresh seedlings
was homogenized. Sphingolipids were extracted in the lower
phase of isopropanol/hexane/water (v/v/v, 55:20:25) at 60◦C
for 15 min. After centrifugation, the supernatants were air-
dried, de-esterified in 33% methylamine in ethanol/water
(7:3, v/v), air-dried and re-dissolved in 1 ml methanol, and
then analyzed with a Shimadzu UFLC XR/TripleTOF 5600
LC/MS system using an Agilent Eclipse XDB C8 column
(50 mm × 2.1 mm, 1.8 µm). Quantification was performed
based on peak area and internal standards. C17 base D-erythro-
sphingosine and d18:1 C12:0-ceramide were used as internal
standards.

Quantitative RT-PCR Analysis
Total RNA was extracted using the E.Z.N.A. Plant RNA
Kit (Cat#R6827-01, OMEGA). The first-strand cDNA was
synthesized from 1 µg of total RNA using the PrimeScript
RT reagent Kit (TAKARA, DRR047A). Real-time PCR was
performed using the SYBR Premix Ex Taq kit (Takara, RR820L)
according to the manufacturer’s instructions, and quantitatively
analyzed by Step One Plus Real-Time PCR Systems (AB
SCIEX). Relative expression of genes was determined by applying
the 2−��CT method and using ACT2 for normalization.
The primers for amplification are listed in Supplementary
Table S1.

RESULTS

Enhanced Ethylene Signaling Rescues
FB1-Induced Cell Death
The fungal toxin FB1, a well-known ceramide synthase inhibitor,
provides a useful tool to study how plants regulate sphingolipid
synthesis. As ethylene plays a pivotal role in FB1-induced cell
death (Plett et al., 2009), we inferred that ethylene signaling
may affect sphingolipid synthesis. To address this hypothesis, we
selected mutants that affect ethylene signaling. The dominant
negative ethylene receptor1 (etr1) mutant etr1-1 causes loss of
ethylene perception (Bleecker et al., 1988). The constitutive
triple response1 (ctr1) mutant ctr1-1 causes the loss of CTR1
kinase activity, and thus shows continuous activation of ethylene
signaling (Kieber et al., 1993). The ethylene insensitive2 (ein2)
mutant is impaired in ethylene signaling (Alonso et al., 1999). The
ethylene-overproducing1 (eto1) mutant eto1-1, which produces
excess ethylene, exhibits a constitutive ethylene response (Wang
et al., 2004). Seeds of wild type, etr1-1, ctr1-1, ein2, and eto1-1
were germinated on half-strength Murashige and Skoog medium
(1/2x MS) with or without 0.5 µM FB1. Phenotypes were sorted
and analyzed after 6 days of treatment. Interestingly, about 30%
of wild-type seedlings showed a severe phenotype, but only about
5% of ctr1-1 and eto1-1 seedlings showed severe phenotypes,
and more than 85% of ert1-1, and ein2 seedlings showed severe
phenotypes (Figure 1). Thus, the constitutive ethylene response
mutants (ctr1-1 and eto1-1) exhibited more resistance to FB1
and the mutants deficient in ethylene signaling (etr1-1 and ein2)
displayed more sensitivity to FB1.

Recently, a genetic screen for suppressors of ctr1-1 identified a
ctr1 ein2 double mutant, which showed no response to ethylene
(Zhang et al., 2014). To further confirm the role of ethylene
signaling in FB1-induced cell death, we tested the responses of the
ctr1 ein2 mutant to FB1 treatment. The ctr1 ein2 double mutant
was hypersensitive to FB1, similar to the ein2 single mutants
(Figure 2), indicating that ethylene signaling plays a vital role in
the response to FB1.

Previous studies have shown that FB1 induces an oxidative
burst, which may result in cell death (Stone et al., 2000; Shi
et al., 2007). We asked whether the effects of ethylene signaling
mutants on FB1 affected the oxidative burst. Seven-day-old
seedlings of wild type, ein2, and eto1-1 were transferred to 1/2x
MS supplemented with 0.5 µM FB1, and then seedlings were
harvested at the indicated times. H2O2 was visualized by staining
with diaminobenzidine (DAB). When seedlings were treated with
FB1, we observed a significant increase in DAB staining in ein2
leaves, but a significant decrease in DAB staining in eto1-1 leaves
compared to wild-type plants (Figure 3). These results indicate
that ethylene signaling plays an important role in FB1-induced
cell death.

Ethylene Signaling in Ceramidase
Mutants Negatively Affects FB1-Induced
Cell Death
To further test the idea that enhanced ethylene signaling could
affect FB1-induced cell death, we employed a genetic approach
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FIGURE 1 | Responses of mutants involved in ethylene signaling to FB1 treatment. (A) The wild-type, etr1-1, ein2, ctr1-1, and eto1-1 seeds were germinated
on 1/2x MS with or without 0.5 µM FB1. Photos were taken after 6 days of treatment. (B) Quantitation of the phenotypes in (A). Seedlings with cotyledon bleaching
were scored as having a severe phenotype. The data represent means of three independent experiments. At least 40 seeds of each sample were used in each
experiment. Data are means ± SD (n = 3) and sets marked with different letters indicate significances assessed by Student–Newman–Keul test (P < 0.05).

FIGURE 2 | Phenotypes of FB1-treated wild-type, ctr1-1, ein2 ctr1-1, and ein2 plants. (A) The wild-type, ctr1-1, ein2 ctr1-1, and ein2 seeds were germinated
on 1/2x MS with or without 0.5 µM FB1. Photos were taken after 8 days of treatment. (B) Quantitation of the phenotypes in (A). Seedlings with cotyledon bleaching
were scored as having a severe phenotype. The data represent means of three independent experiments. At least 40 seeds of each sample were used in each
experiment. Data are means ± SD (n = 3) and sets marked with different letters indicate significances assessed by Student–Newman–Keul test (P < 0.05).
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FIGURE 3 | Histochemical detection of H2O2 in leaves of mutants after treatment with FB1. (A) Representative leaves of wild-type, ein2, and eto1-1
seedlings stained with DAB after treatment with 0.5 µM FB1 for the indicated times. (B) Quantification of DAB staining in leaves treated with FB1 for 48 h. H2O2

deposits were quantified by measuring the intensity of DAB staining per unit area of leaves, using Image J. At least six leaves per genotype were analyzed for each
time point and the experiments were repeated three times with similar results. Values represent means ± SD (n = 6). Data sets marked with different letters indicate
significant differences assessed by Student–Newman–Keul test (P < 0.05).

FIGURE 4 | Phenotypes of FB1-treated wild-type, acer-1, ein2, ein2 acer, and eto1 acer plants. (A) Seeds were germinated on 1/2x MS with or without 0.5
µM FB1. Photos were taken after 8 days of treatment. (B) ACC reduces FB1-induced cell death in acer-1 mutant. Seeds were germinated on 1/2x MS
supplemented with various combinations of 0.5 µM FB1 and 50 µM ACC. Photos were taken after 2 weeks of treatment. (C) Quantitative analysis of the phenotype
of seedlings in (A). Data presented are means ± SD (n = 3) and sets marked with different letters indicate significances assessed by Student–Newman–Keul test
(P < 0.05). (D) Quantitative analysis of the phenotype of seedlings in (B). Data presented are means ± SD (n = 3) and asterisk indicates P < 0.01 using Student’s
t-test.

using the mutants involved in sphingolipid synthesis. AtACER
encodes an alkaline ceramidase that plays a critical role in
sphingolipid homeostasis in Arabidopsis (Wu et al., 2015). acer-
1, a T-DNA insertion mutant of AtACER, was hypersensitive

to FB1 compared to wild type (Wu et al., 2015). By crossing
ein2 and eto1 with acer, we generated ein2 acer and eto1 acer
double mutants. As shown in Figure 4, we found that ein2 acer
double mutant plants were more sensitive to FB1 than acer-1
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FIGURE 5 | Sphingolipid profiles of wild-type, ein2, and ctr1-1 seedlings during FB1 treatment. Seven-day-old seedlings were treated with 0.5 µM FB1 and
collected after 6 days. Total sphingolipids were extracted and analyzed by LC–MS system. (A) Phenotypes of FB1-treated seedlings. Photos were taken after 6 days
of treatment. (B) Quantitation of the phenotypes in (A). Seedlings with lesions were scored as having a severe phenotype. The data represent at least three
independent experiments. More than 100 seedlings were counted. (C–E) Comparisons of different kinds of sphingolipids in wild-type, ein2, and ctr1-1 seedlings.
Data represent means ± SD from three independent biological experiments and sets marked with different letters indicate significances assessed by
Student–Newman–Keul test (P < 0.05). (C) LCBs. (D) Ceramides. (E) Hydroxyceramides. See Supplementary Figure S1 for the detailed analysis.

mutant plants, but eto1 acer double mutants showed significantly
increased resistance to FB1 (Figures 4A,C). The data indicated
that blocking ethylene signaling enhanced the toxicity of FB1 and
strengthening ethylene signaling decreased the toxicity of FB1.
Interestingly, ACC significantly enhanced the tolerance of acer-
1 mutants to FB1 (Figures 4B,D). Taken together, our results
indicate that ethylene signaling in acer-1 mutants plays a negative
role in FB1-induced cell death.

Ethylene Signaling Inhibits Sphingolipid
Synthesis
Fumonisin B1 inhibits synthesis of very-long-acyl-chain (C > 18
carbons) ceramides and activates SPT, resulting in accumulation
of LCBs and long-acyl-chain ceramides (C16; Abbas et al., 1994;
Shi et al., 2007; Markham et al., 2011). FB1-induced cell death
may occur through priming of downstream signaling by LCBs
and ceramides (Shi et al., 2007; Wu et al., 2015). As we found
that mutants of ethylene signaling pathways showed different

phenotypes in response to FB1 treatment (Figures 5A,B), we
analyzed the profiles of sphingolipids in wild type, ctr1-1, and
ein2with or without FB1 treatment. No significant difference was
detected in the contents of LCBs among the mutants without
FB1 treatment (Figure 5C); however, the ctr1-1 mutants had less
ceramides and hydroxyceramides than the wild-type and ein2
plants (Figures 5D,E). After 6 days of FB1 treatment, the amounts
of LCBs (especially t18:0 and d18:0) dramatically increased in all
of the mutants, although ein2 showed a larger change and ctr1-
1 showed a smaller change compared to wild type (Figure 5C).
Total ceramides increased more than fivefold in ein2 mutants,
but increased only twofold in wild type and 1.7-fold in ctr1-1
mutants, compared with untreated plants (Figure 5D).

We also compared ceramide species with different length
fatty acid moieties, LCB moieties, or saturated or unsaturated
fatty acid moieties (Supplementary Figure S1). Again, the data
showed that the ctr1-1 mutants had less ceramide accumulation
after FB1 treatment (Supplementary Figures S1A–C). The ctr1-1
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FIGURE 6 | Expression of genes involved in de novo sphingolipid synthesis in wild-type, ein2, and ctr1-1 seedlings during FB1 treatment.
Seven-day-old seedlings were treated with 0.5 µM FB1 and samples were collected at the indicated times. ACT2 (AT3G18780) was used as an internal control.
Gene expression values are presented relative to average wild-type levels, which were set as 1. Data represent means ± SD from three technical repeats and sets
marked with different letters indicate significances assessed by Student–Newman–Keul test (P < 0.05). This experiment was repeated three times with similar
results. The primers used for this analysis are provided in Supplementary Table S1. (A) Relative transcript abundance of genes involved in LCB synthesis (LCB1,
LCB2a, LCB2b). (B) Relative transcript abundance of genes involved in ceramide synthesis (LOH1, LOH2, LOH3).

mutants showed no significant change in total hydroxyceramides
after FB1 treatment, whereas the ein2 mutants and wild type
showed slight increases (Figure 5E). Overall, under normal
growth conditions, the ctr1-1 mutants had less ceramides and
hydroxyceramides compared to wild type and ein2 mutants.
However, when seedlings were treated with FB1, the LCB,
ceramide, and hydroxyceramide contents increased in wild type
and ein2 especially; by contrast, only LCBs and ceramides
accumulated in ctr1-1 mutants, and their contents were lower
than in wild type, implying that ethylene signaling may negatively
regulate sphingolipid synthesis.

To explore how ethylene signaling regulates sphingolipid
synthesis, 7-day-old seedlings of wild type, ein2, and ctr1-1
mutants were transferred to 1/2x MS supplemented with 0.5 µM
FB1, harvested at the indicated times, and used for measurement
of expression of genes involved in de novo sphingolipid synthesis.
Surprisingly, during FB1 treatment, almost all of the analyzed
genes showed higher expression in ein2 mutants, but lower
expression in ctr1-1 mutants, compared to wild type (Figure 6),
suggesting that ethylene signaling modulates sphingolipids,
possibly by regulating the expression of genes that participate in
de novo synthesis of sphingolipids.

ACC Inhibits Sphingolipid Synthesis
To further assess the role of ethylene in sphingolipid synthesis, we
tested the effects of the ethylene biosynthesis precursor ACC on
FB1-induced cell death.Wild-type seeds were germinated on 1/2x
MS supplemented with combinations of 0.5 µM FB1 and 50 µM
ACC. As shown in Figure 6A, wild-type plants treated with
ACC showed a relatively small stature, similar to ctr1-1 mutants.
We found that ACC clearly reduced FB1-induced cell death

(Figures 7A,B). To investigate whether ethylene affects synthesis
of sphingolipids, 1-week-old seedlings of wild type were treated
with combinations of 0.5µMFB1 and 50µMACC for 6 days, and
then sphingolipids were extracted and analyzed. Interestingly,
ACC and ctr1-1 showed similar effects on sphingolipid contents.
The amounts of ceramides and hydroxyceramides decreased after
ACC treatment, compared to control (Figure 7C). Seedlings
treated with FB1 plus ACC showed dramatically decreased
sphingolipid accumulation including LCBs, hydroxyceramides,
and ceramides (Figure 7C), indicating that ACC may antagonize
FB1-induced sphingolipid synthesis. We next analyzed gene
expression after ACC treatment. The genes involved in de
novo sphingolipid synthesis were almost all down-regulated
(Figure 7D), implying that ACC-mediated inhibition of synthesis
of sphingolipids may be achieved by regulating expression of
these genes.

DISCUSSION

Sphingolipids have emerged as a bioactive lipids involved in
many aspects of plant growth and responses to biotic or
abiotic stresses. However, how plants regulate sphingolipid
biosynthesis, and the relationship between sphingolipids and
ethylene, remain unclear. In this study, we explored the role
of ethylene signaling in sphingolipid synthesis by using the
ceramide synthase inhibitor FB1. We demonstrated that ethylene
can modulate sphingolipids by regulating the expression of genes
related to the de novo biosynthesis of sphingolipids.

Under our experimental conditions, the etr1-1 mutant
exhibited enhanced susceptibility to FB1 compared to wild-type
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FIGURE 7 | ACC reduces FB1-induced cell death. (A) Wild-type seeds were germinated on 1/2x MS supplemented with various combinations of 0.5 µM FB1
and 50 µM ACC. Photos were taken after 2 weeks of treatment. (B) Quantitative analysis of the phenotype of seedlings in (A). At least 100 seeds of each sample
were used in each experiment. Data presented are means ± SD (n = 3) and sets marked with different letters indicate significances assessed by
Student–Newman–Keul test (P < 0.05). (C) Sphingolipid analysis of wild-type seedlings treated with various combinations of ACC and FB1. One-week-old seedlings
were used and harvested after 6 days of treatment. Total sphingolipids were extracted and analyzed (see Supplementary Figure S2 for the detailed analysis).
(D) Expression of genes involved in de novo sphingolipid synthesis in wild-type seedlings after 48 h ACC treatment. Data represent means ± SD from three technical
repeats and sets marked with double asterisks indicate significance assessed by Student’s t-test (P < 0.01). This experiment was repeated three times with similar
results.

plants, similar to the results reported by Plett et al. (2009).
However, the plants used in other studies were cultivated under
different photoperiod conditions, and these studies produced
different results (Mase et al., 2013). The conflicting observations
on the roles of ETR1 in FB1-induced cell death may be
because plants use combinations of ethylene receptors to respond
to various environments (Liu and Wen, 2012; Wilson et al.,
2014). CTR1 and its downstream target EIN2 function as core
components in the ethylene signaling pathway (Qiao et al., 2012;
Wen et al., 2012). The roles of CTR1 and EIN2 in FB1-induced
cell death remain critical questions. We found that the ctr1-1
mutant was more tolerant to FB1 compared to wild-type plants,
whereas the ein2 mutant was much more susceptible to FB1. In
addition, the ctr1 ein2 double mutant showed hypersensitivity to
FB1, as did ein2, but not ctr1-1 mutants. Also, exogenous ACC
could partially rescue the phenotype of FB1-treated seedlings.
These data indicated that ethylene signaling plays a negative
role in FB1-induced cell death. Consistent with previous reports,
plants treated with FB1 resulted in a dramatic accumulation
of LCBs and long chain ceramides (Abbas et al., 1994; Shi
et al., 2007; Markham et al., 2011). The ceramidase mutant
acer-1 with a higher ceramide levels, was more sensitive to FB1
compared to wild-type plants (Wu et al., 2015). Interestingly, the
ein2 acer double mutant showed enhanced sensitivity to FB1,
but the eto1 acer mutant showed reduced sensitivity to FB1.

Moreover, FB1-treated acer-1 seedlings could be partially rescued
by exogenous ACC. As LCBs and ceramides both can induce
PCD in plants, we suggest that ethylene signaling may regulate
FB1-induced cell death by modulating sphingolipid synthesis.

Although our understanding of sphingolipids has improved,
little is known about how plants regulate sphingolipid
metabolism. In yeast and human cells, Orm proteins control de
novo synthesis of sphingolipids by inhibiting the activity of SPT,
which participates in a phosphorylation-based feedback loop
(Breslow et al., 2010; Roelants et al., 2011). In plants, however,
we still lack evidence showing that certain proteins regulate
sphingolipid synthesis. In this work, to test the role of ethylene
in sphingolipid synthesis, we employed mutants affecting the
ethylene signaling pathway and investigated their effects on
FB1-induced perturbation of sphingolipids. The analysis of
sphingolipids showed that before FB1 treatment, the amounts
of LCBs did not significantly differ in wild-type, ctr1-1, and
ein2 seedlings, but the ctr1-1 mutants had less ceramides and
hydroxyceramides. When seedlings were treated with FB1, LCBs,
ceramides and hydroxyceramides accumulated in wild-type and
ein2 seedlings, with more accumulation in the ein2 seedlings;
by contrast, we detected only limited accumulation of LCBs
and ceramides in ctr1-1 seedlings. These results indicated
that ethylene signaling may negatively regulate sphingolipids.
To further explore the effects of ethylene on sphingolipid
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synthesis, we used ACC to mimic the action of ethylene. We
found that ACC treatment resulted in lower ceramide and
hydroxyceramide contents in seedlings compared to control,
and could restrict FB1-induced sphingolipid synthesis. Gene
expression analysis showed that almost all of the genes related to
de novo sphingolipid synthesis were up-regulated in ein2mutants
but down-regulated in ctr1-1 mutants after FB1 treatment, and
these genes were down-regulated after ACC treatment. Taken
together, these data suggested that ethylene may modulate de
novo synthesis of sphingolipids. As transcription factors are vital
to the regulation of lipid synthesis (Kannangara et al., 2007;
Raffaele et al., 2008), we also speculate that ethylene-responsive
transcription factors may regulate the expression of genes that
participate in sphingolipid synthesis.

In the past two decades, flourishing studies on sphingolipids in
plants have revealed that sphingolipids have critical functions in
plant morphogenesis, development, senescence, and resistance to
biotic and abiotic stress. Ethylene pervades every aspect of plant
life. Our findings illustrate the important connections between
these two bioactive molecules and indicate that ethylene may

modulate de novo synthesis of sphingolipids. Future studies will
focus on the molecular mechanism by which ethylene modulates
the expression of genes involved in sphingolipid synthesis.
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