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Heavy metal contamination of soil and water causing toxicity/stress has become

one important constraint to crop productivity and quality. This situation has further

worsened by the increasing population growth and inherent food demand. It has

been reported in several studies that counterbalancing toxicity due to heavy metal

requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue,

and whole plant level, which might manifest in terms of improved crop productivity.

Recent advances in various disciplines of biological sciences such as metabolomics,

transcriptomics, proteomics, etc., have assisted in the characterization of metabolites,

transcription factors, and stress-inducible proteins involved in heavy metal tolerance,

which in turn can be utilized for generating heavy metal-tolerant crops. This review

summarizes various tolerance strategies of plants under heavy metal toxicity covering

the role of metabolites (metabolomics), trace elements (ionomics), transcription factors

(transcriptomics), various stress-inducible proteins (proteomics) as well as the role

of plant hormones. We also provide a glance of some strategies adopted by

metal-accumulating plants, also known as “metallophytes.”
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INTRODUCTION

During the last few decades, increased anthropogenic activities, rapid industrialization, andmodern
agricultural practices have resulted in increased heavy metal contamination in the environment,
which causes toxicity to the living organisms (Eapen and D’Souza, 2005; Kavamura and Esposito,
2010; Miransari, 2011). Large areas of land have been contaminated with heavy metals due to
the use of pesticides, fertilizers, municipal and compost wastes, and also due to heavy metal
release from smelting industries and metalliferous mines (Yang et al., 2005). Although many
heavy metals occur naturally in the earth’s crust at various levels, the problem arises when they
are released in excess into the environment due to natural and/or anthropogenic activities. The
53 elements belonging to the d-block have been categorized as “heavy metals” based on their
density (>5 g/cm3) (Jarup, 2003). During evolution of angiosperms, only 19 elements such as C,
O, H, Mg, S, N, Ca, P, and K (macronutrients) and Cu, Zn, Mn, Fe, Mo, B, Ni, Co, Cl, and B
(micronutrients) were selected for basic metabolism (Ernst, 2006). In addition, Si is also considered
as a beneficial element, and it has been reported to be involved in the maintenance of plant
structures in some plants (Epstein, 1999). Macro and micronutrients play an important role in
physiological and biochemical processes of plants such as chlorophyll biosynthesis, photosynthesis,
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DNA synthesis, protein modifications, redox reactions in the
chloroplast and the mitochondrion, sugar metabolism, and
nitrogen fixation. For example, Zn is a cofactor for more than
300 enzymes and 200 transcription factors associated with the
maintenance of membrane integrity, auxin metabolism, and
reproduction (Marschner, 1995; Barker and Pilbeam, 2007;
Briat et al., 2007; Williams and Pittman, 2010; Prasad, 2012;
Ricachenevsky et al., 2013). However, at elevated concentrations,
heavy metals produce severe toxicity symptoms in plants, and
therefore, their uptake and utilization are tightly controlled by
the plant cells (Janicka-Russak et al., 2008; Saito et al., 2010;
Singh et al., 2012; Srivastava et al., 2012; DalCorso et al., 2013a;
Farias et al., 2013; Fidalgo et al., 2013). Some heavy metals,
such as Cd, Cr, Pb, Al, Hg, etc., although being non-essential
and without physiological function, are very toxic even at very
low concentrations (Ernst et al., 2008; Janicka-Russak et al.,
2008; Garzón et al., 2011; Hayat et al., 2012; Shahid et al., 2012;
Chong-qing et al., 2013; Gill et al., 2013). Essential and non-
essential heavymetals generally produce common toxic effects on
plants, such as low biomass accumulation, chlorosis, inhibition
of growth and photosynthesis, altered water balance and nutrient
assimilation, and senescence, which ultimately cause plant death.

In addition to adverse impacts on plants, heavy metals pose
threat to human health due to their persistence in nature. For
instance, Pb is one of the most toxic heavy metals that has
soil retention time of 150–5000 years and reported to maintain
its concentration high for as long as 150 years (NandaKumar
et al., 1995; Yang et al., 2005). Plants growing in heavy metal-
contaminated sites generally accumulate higher amounts of
heavy metals, and thus, contamination of food chain occurs.
Contaminated food chain acts as a primary route for the entry of
heavy metals into animal and human tissues, making them prone
to several diseases that range from dermatitis to various types of
cancers (McLaughlin et al., 1999). This problem might become
even worse if sufficient measures are not taken at the right time.
Therefore, research in this area is driven by the hope to decrease
the entry of heavy metals in crop plants, thereby reducing the risk
of contamination in animals and human beings.

Abiotic stresses are estimated to be the main cause for global
crop yield reduction of ca. 70%, and thus, are considered a
great constraint to crop production (Acquaah, 2007; Jewell et al.,
2010). This situation has worsened due to disturbed equilibrium
between crop productivity and population growth. Therefore, it
is especially important to understand plants’ responses to such
stressors, particularly heavy metals, in order to find newmethods
for improving crops quantitatively and qualitatively. Currently,
studies are being performed to address the above mentioned
problems and have majorly focused on “omic” tools that take
into consideration of ionomics (trace elements), metabolomics
(metabolome), transcriptomics (transcriptome), and proteomics
(proteome). The data obtained will provide insights that might
help in enhancing stress tolerance and be employed in breeding
and engineering programs aiming at developing plants with new
and desired agronomical traits (Lee et al., 2007; Atkinson and
Urwin, 2012). In this context, this review is focused on several
aspects, from plant responses to heavy metals (considering
sensitive as well as metallophytes) to the role of ionomics,

metabolomics, transcriptomics, and proteomics in the regulation
of heavy metal tolerance (Figure 1).

PLANT RESPONSES TO HEAVY METAL
STRESS

Being sessile organisms, plants cannot escape unwanted changes
in the environment. Exposure to heavy metals triggers a wide
range of physiological and biochemical alterations, and plants
have to develop and/or adopt a series of strategies that allow
them to cope with the negative consequences of heavy metal
toxicity. Plants respond to external stimuli including heavy metal
toxicity via several mechanisms. These include (i) sensing of
external stress stimuli, (ii) signal transduction and transmission
of a signal into the cell, and (iii) triggering appropriate
measures to counterbalance the negative effects of stress stimuli
by modulating the physiological, biochemical, and molecular
status of the cell. At the whole plant level, it is difficult to
measure sensing and changes in the signal transduction after
exposing plants to heavy metal stress. However, monitoring early
responses, such as oxidative stress, transcriptomic and proteomic
changes, or accumulation of metabolites, might be useful to

FIGURE 1 | Integrated approach to study plant responses to heavy

metal stress. Transcriptomics, proteomics, metabolomics, and ionomics are

useful tools that can help us to decipher and analyze active regulatory

networks controlling heavy metal stress responses and tolerance.
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study sensing and signal transduction changes that take place
after plants’ exposure to stress. For instance, Tamás et al. (2010)
reported that early signs of metal toxicity in barley were similar
to water deficiency signs, and thus, overexpression of genes
related to dehydration stress in barley was found after exposure
to Cd and Hg. Similar to this, Hernandez et al. (2012) reported
oxidative stress and glutathione depletion in alfalfa roots as early
signs of sensing and signal transduction after exposure to heavy
metals. In another study by Zhang et al. (2002), seed germination
and seedling growth of wheat was found to be inhibited due to
high concentration of As. Similarly, Imran et al. (2013) reported
reduction in plumule and radicle length of Helainthus annuus
L. seedlings when exposed to As. In addition, As has also
been reported to decrease the photosynthetic pigment, damage
chloroplast membrane, and decrease enzyme activity by reacting
with the sulfhydryl group of proteins and also reported to alter
nutrient balance and protein metabolism (Li et al., 2006; Singh
et al., 2009; Ahsan et al., 2010).

Heavy metals exert toxicities in plants through four proposed
mechanisms. These include (i) similarities with the nutrient
cations, which result into a competition for absorption at root
surface; for example, As and Cd compete with P and Zn,
respectively, for their absorption; (ii) direct interaction of heavy
metals with sulfhydryl group (-SH) of functional proteins, which
disrupts their structure and function, and thus, renders them
inactive; (iii) displacement of essential cations from specific
binding sites that lead to a collapse of function; and (iv)
generation of reactive oxygen species (ROS), which consequently
damages themacromolecules (Sharma andDietz, 2009; DalCorso
et al., 2013a).

The roots of sessile plants are the first organ that encounters
heavy metals, and thus, roots have been widely studied to assess
the impact of a stressor. Plants growing on heavy metal-rich
soils suffer from both decreased growth and yield (Keunen
et al., 2011), indicating an implication of heavy metal toxicity
in hampering the overall growth performance of the stressed
plants (Kikui et al., 2005; Panda et al., 2009; Buendía-González
et al., 2010; Gangwar et al., 2010, 2011; Gangwar and Singh, 2011;
Eleftheriou et al., 2012; Hayat et al., 2012; Silva, 2012; Anjum
et al., 2014). Root growth is a combination of cell division and
elongation. In this context, a decrease in mitotic activity has been
reported in several plant species after exposure to heavy metals,
which consequently results into a suppressed root growth (Fontes
and Cox, 1998; Doncheva et al., 2005; Sundaramoorthy et al.,
2010; Hossain et al., 2012a,b; Thounaojam et al., 2012). A study
by Liu et al. (1992) showed that Cr(VI) has greater toxic effect
on cell division than Cr(III). Furthermore, Sundaramoorthy et al.
(2010) have also observed that Cr(VI) caused an extension in cell
cycle that leads to the inhibition in cell division, thereby reducing
root growth.

Pena et al. (2012) have reported that Cd toxicity affects
the cell cycle G1/S transition and progression through S phase
via decreased expression of a cyclin-dependent kinase (CDK),
suggesting that ROS might be involved in such alterations.
Yuan et al. (2013) have reported that excess Cu affects both
elongation and meristem zones by altering auxin distribution
through PINFORMED1 (PIN1) protein, and that Cu-mediated

auxin redistribution is responsible for Cu-mediated inhibition
of primary root elongation. Similarly, Petö et al. (2011) have
also demonstrated that excess Cu inhibits root length and
alters morphology by inducing alterations in auxin levels, which
antagonizes nitric oxide function. It has also been demonstrated
that inhibition in root growth is accompanied by an increase in
root diameter, suggesting that plant cytoskeleton might also be
a target of heavy metal toxicity (Zobel et al., 2007). Therefore,
these studies suggest that heavy metals might cause an inhibition
in root growth that alters water balance and nutrient absorption,
thereby affecting their transportation to the aboveground
plant parts and thus negatively affecting shoot growth and
ultimately decreasing biomass accumulation. Roots utilize several
mechanisms such as synthesis and deposition of callose to reduce
and/or avoid heavy metal toxicity. These mechanisms create a
barrier for the entry of heavymetals and enhance plasticity of root
anatomy. Apart from barricading the entry of heavy metals, roots
also allow their transportation to aboveground plant parts (in
the case of metallophytes or hyperaccumulator plants: plants that
can grow in heavy metal-contaminated soil; Fahr et al., 2013) for
sequestration into the vacuoles rendering them inactive, and thus
non-reactive.

Plasma membranes serve as a highly regulated checkpoint for
an entry of unwanted substances inside the cell and protect the
cell from negative consequences of many stressors. It has been
reported that Arabidopsis halleri and Arabidopsis arenosa were
more tolerant to heavy metal stress than Arabidopsis thaliana
due to the lowest membrane depolarization, indicating that
rapid membrane voltage changes might be an excellent tool
for monitoring the effects of heavy metal toxicity (Kenderešová
et al., 2012). Once inside the cell, heavy metals alter metabolism
that results into a reduction of growth and lower biomass
accumulation (Nagajyoti et al., 2010). Heavy metal toxicity
might also cause stunted stem and root length, and chlorosis
in younger leaves that can extend to the older leaves after
prolonged exposure (Israr et al., 2006; Guo et al., 2008a,b;
Warne et al., 2008; Gangwar and Singh, 2011; Gangwar et al.,
2011; Srivastava et al., 2012). At the cellular and molecular
levels, heavy metal toxicity affects plants in many ways. For
instance, it alters the key physiological and biochemical processes
such as seed germination, pigment synthesis, photosynthesis,
gas exchanges, respiration, inactivation and denaturation of
enzymes, blocks functional groups of metabolically important
molecules, hormonal balance, nutrient assimilation, protein
synthesis, and DNA replication (Nagajyoti et al., 2010; Yadav,
2010; Keunen et al., 2011; He et al., 2012; Hossain et al.,
2012a,b; Silva, 2012; Wani et al., 2012; Singh et al., 2013). Under
Cd stress, severe deleterious effects on various photosynthetic
indices such as photosynthetic rate (Pn) and intracellular CO2

concentration (Ci) have been reported in tomato seedlings
(Dong et al., 2005). Maleva et al. (2012) have observed that
Mn, Cu, Cd, Zn, and Ni caused a significant decline in the
levels of chlorophyll contents, accompanied by a decrease in
the photochemical efficiency of photosystem II (PS II) in
Elodea densa. Similarly, Li et al. (2012) have also reported that
Cu, Zn, Pb, and Cd depressed chlorophyll and carotenoids
levels and the quantum yield of PS II in Thalassia hemprichii,
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indicating that heavy metals have negative consequences on
photosynthesis. Apart from affecting light reactions, heavy
metals decrease CO2 assimilation by either diminishing RUBP
carboxylase activity or by reacting with the thiol group of
RUBISCO. For instance, Zn has been reported to inhibit
RUBISCO activity in Phaseolus vulgaris by replacing Zn+2 for
Mg+2, as both are bivalent cations (Monnet et al., 2001). In
another study on Erythrina variegate by Muthuchelian et al.
(2001), decreased RUBISCO activity was observed under Cd
stress, and this decrease in RUBISCO activity might be due
to the formation of mercaptide by Cd with thiol group of
RUBISCO (Siborova, 1988). These researchers also reported
decreased CO2 fixation, which is possibly due to a decrease
in ATP and reductant pool (Husaini and Rai, 1991), as Cd
ions decrease the proton source for reduction reactions (Ferretti
et al., 1993). Similarly, Cu, a well-known inhibitor of carboxylase
and oxygenase activities of RUBISCO (Lidon and Henriques,
1991), was found to decrease RUBISCO activity in Chenopodium
rubrum (Schafer et al., 1992) by interacting with the essential
cysteine residue of the enzyme (Siborova, 1988). Such reduction
in pigments, photosynthetic rate, quantum yield of PS II, gas
exchange, stomatal conductance, and CO2 assimilation might
be linked to the ultrastructural changes (changes at cellular
and tissue levels) induced by heavy metal stress. The effects
arising due to changes in ultrastructures of membranes have
been reported in several studies (Azzarello et al., 2012; Basile
et al., 2012; Esposito et al., 2012; He et al., 2012; Sánchez-Pardo
et al., 2012; Ali et al., 2013a,b). Moreover, heavy metals have
been reported to affect another key physiological process, i.e.,
nitrogen metabolism, which is involved in plant function, from
metabolism to allocation of resources, thereby regulating plant
growth and development. Heavy metals have been found to
enhance protease activity (Chaffei et al., 2003), and thus, reducing
the activity of enzymes involved in nitrate (Nitrate reductase; NR
andNitrite reductase; NiR) and ammonia (Glutamine synthetase;
GS, Glutamine oxoglutarate aminotransferase; GOGAT and
Glutamate dehydrogenase; GDH) assimilation. The heavy metal
Cd has been reported to affect nitrogen metabolism by inhibiting
nitrate uptake and transportation, nitrate reductase, and GS
activity (Hernández et al., 1997; Lea and Miflin, 2004), thereby
affecting primary N assimilation processes.

Heavy metal-mediated alteration in hormonal balance
correlates with their toxicities in plants (Petö et al., 2011;
Wilkinson et al., 2012). For instance, in Brassica juncea, As
causes toxicity by changing the levels of the auxins:indole-
3-acetic acid (IAA), indole-3- butyric acid (IBA), and
naphthalene acetic acid (NAA) and altering the expression
of about 69 microRNAs (Srivastava et al., 2013). However,
exogenous supply of IAA improves the growth of B.
juncea under As stress, suggesting an implication of the
regulation of the hormone level in the management of As
stress.

Metallophytes under Heavy Metal Stress
Metallophytes, also known as hyperaccumulators, have the ability
to uptake large amounts of heavy metals from the soil, and
this property makes them unique to be utilized in technologies

such as biogeochemical and biogeobotanical prospection and
phytoremediation. The absorbed heavy metals from the soil by
these hyperaccumulators are not retained in the roots but are
translocated to the shoots and accumulated in the aboveground
organs at concentrations 100–1000-fold higher than the observed
in non-hyperaccumulating species (Figures 2ia,b). However, this
high concentration does not pose any toxic effect on plants
(Rascio, 1997; Reeves, 2006; Prasad et al., 2010). With significant
advances in our understanding of the mechanisms adopted
by hyperaccumulators, there has been implication of three
hallmarks that distinguish them from non-hyperaccumultors.
These are (i) greater capability of heavy metal uptake, (ii) root-
to-shoot translocation of heavy metal, and (iii) detoxification
and sequestration of heavy metal (Figures 2iia–c). Studies on
Thlaspi caerulescens and A. halleri, model plants for studying
heavy metal tolerance strategies, have been done (Milner and
Kochian, 2008; Singh et al., 2009; Frérot et al., 2010; Krämer,
2010). The studies have revealed that hyperaccumulation is
not due to the presence of a novel gene, but it arises only
from differential expression of genes that are common to
hyperaccumulators and non-hyperaccumulators (Verbruggen
et al., 2009). Hyperaccumulation of heavy metal includes three
complex phenomena discussed below:

Heavy Metal Uptake
Hyperaccumulators have an extraordinary ability to absorb heavy
metals from the soil under varying concentration of heavy metals
(Ma et al., 2001; Yang et al., 2002). Although heavy metals
are taken up by hyperaccumulators, their uptake is affected by
several factors such as pH, water content, organic substances, etc.
Moreover, heavy metal uptake requires a suitable transporting
system to enter the plant (Figure 2i). Several researchers have
reported that pH affects (i) proton secretion by roots that
further acidify rhizosphere, thus enhancing metal dissolution,
and (ii) the growth of metal-accumulating plant species (Bernal
et al., 1994; Peng et al., 2005; Kuriakose and Prasad, 2008).
Apart from pH, organic substances released from the roots
affect growth in hyperaccumulating plants. Krishnamurti et al.
(1997) have reported that organic acids released influence Cd
solubility by forming Cd complexes. Therefore, pH and organic
substances released from the rhizosphere of a hyperaccumulator
mobilize heavy metal and enhance absorption (Krishnamurti
et al., 1997; Peng et al., 2005). High uptake of heavy metal
has also been associated with enhanced root proliferation
(Whiting et al., 2000). Furthermore, constitutive overexpression
of genes also attributes to enhanced heavy metal uptake.
To pinpoint the genes involved in overexpression, several
comparative studies have been performed in hyperaccumulating
Arabidopsis halleri and Thlapsi caerulescenswith that of congener
non-hyperaccumulating species. Studies on T. caerulescens
and A. halleri have revealed that increased Zn uptake is
due to overexpression of genes belonging to the ZIP (Zinc-
regulated transporter Iron-regulated transporter proteins) family
encoding plasma membrane located transporters (Assunção
et al., 2001): ZTN1 and ZTN2 in T. caerulescens and ZIP6
and ZIP9 in A. halleri. The decreased uptake of Cd under
increasing Zn concentration was noticed in both genera,
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FIGURE 2 | (i) A schematic diagram showing differential expression of constitutive gene in regulating transporters in hyperaccumulating (a) and

non-hyperaccumulating (b) species (A; heavy metal). (ii) Mechanism of metal tolerance in hyperaccumulators (a) metal uptake by roots; ZIP (zinc-regulated

transporter iron-regulated transporter proteins) (b) translocation of metal from root to shoot; ATPases (or CPx-type, P1B-type), Nramp (natural resistance-associated

macrophage protein), CDF (cation diffusion facilitator family proteins), zinc–iron permease (ZIP) family proteins, MATE (Multidrug and Toxin Efflux) family, and (c)

sequestration of metal in vacuole. A, metal; B, organic acid.
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and it clearly demonstrated that expression of ZIP genes
is Zn regulated (Assunção et al., 2010) and Cd influx is
mainly due to Zn transporters having strong preference for
Zn over Cd (Weber et al., 2006). Evidence exists that As
being a chemical analog of phosphate enters the plant cell
via phosphate transporters (Meharg and Hartley-Whitaker,
2002; Kanoun-Boulé et al., 2009). Similarly, a study on the
As hyperaccumulator Pteris vittata and non-hyperaccumulator
Pteris tremula has shown that plasma membranes of root
cells of P. vittata had high density of phosphate/arsenate
transporters than P. tremula (Caille et al., 2005), possibly due
to constitutive gene overexpression. In addition, a study on
the Se hyperaccumulators Astragalus bisulcatus (Fabaceae) and
Stanleya pinnata (Brassicaceae) revealed that there was a higher
Se/S ratio in the shoots of these species in comparison to the
non-hyperaccumulator sister species, and this observation also
supported the fact that an enhanced Se uptake was through
sulfate transporters (Galeas et al., 2007).

Root-to-Shoot Translocation of Heavy Metals
Unlike non-hyperaccumulator plants, hyperaccumulators do not
retain the heavy metal absorbed from roots but translocate
them into shoots via xylem and several classes of proteins
are involved in this translocation. The proteins involved are
heavy metal-transporting ATPases (or CPx-type, P1B-type),
natural resistance-associated macrophage proteins (Nramp),
cation diffusion facilitator (CDF) family proteins, zinc–iron
permease (ZIP) family proteins, and MATE (Multidrug And
Toxin Efflux) protein family. The CPx-type ATPases are involved
in transporting toxic metals like Cu, Zn, Cd, and Pb using ATP
across cell membranes (Williams et al., 2000). The P1B-type
ATPases also have the similar role of transporting heavy metal,
but they also regulate metal homeostasis as well as tolerance
(Axelsen and Palmgren, 1998). These heavy metal ATPases
(HMAs) overexpressed in roots and shoots of hyperaccumulators
suggest their upregulation in hyperaccumulators in comparison
to non-hyperaccumulators (Papoyan and Kochian, 2004). Nramp
is another class of protein family that has been found to be
involved in transporting heavy metal ions, and genes coding
for these proteins are termed as Nramp genes. Studies on rice
revealed three homologs of this protein, namely OsNramp1,
OsNramp2, and OsNramp3, and these proteins expressed in
different tissues of rice transport distinct but related ions
(Belouchi et al., 1997). Another class of proteins (CDF) have
been found to be involved in transporting Zn, Co, and Cd, and
regulate effluxing of cation out of the cytoplasmic compartment,
and therefore, they are termed as “cation efflux transporters”
(Mäser et al., 2001). A related Zn transporter (ZNT1) from T.
caerulescens was reported by Pence et al. (2000), which belongs
to a superfamily known as ZIP gene family, and was found to
be expressed at high levels in roots and shoots. Another Zn
transporter ZAT1 was also reported in Arabidopsis that was
highly expressed in root tissues (van der Zaal et al., 1999).
The transporter protein MATE is also involved in heavy metal
translocation; FDR3, a protein of this family, was found to be
expressed in roots of T. caerulescens and A. halleri, and the gene
encoding this protein FDR3 plays a role in translocation of heavy

metal (Talke et al., 2006; van de Mortel et al., 2006; Krämer et al.,
2007). Therefore, the abovementioned studies provide strong
evidence that multiple transporter proteins are involved in the
translocation of heavy metal.

Detoxification/Sequestration of Heavy Metal
After translocating, hyperaccumulators sequestrate and then
detoxify the heavy metal, a process that allows them to survive
undermetal-contaminated areas without suffering from any toxic
effect (Figure 2ii). The process of detoxification/sequestration
occurs in the vacuole of plants (Vögeli-Lange and Wagner,
1990; Kanoun-Boulé et al., 2009; Singh et al., 2011a) and several
transporter families are involved in this process, namelyABC,
CDF, HMA, and NRAMP transporters. The ABC transporters
are involved in transporting heavy metal into the vacuole and
mainly two subfamilies (MRP and PDR) are active. The HMT1,
first vacuolar ABC transporter reported in Schizosaccharomyces
pombe, localized in the tonoplast aids in transporting PC–
Cd (phytochelatins–cadmium) complexes formed in the cytosol
(Ortiz et al., 1992, 1995; Kuriakose and Prasad, 2008). Later
on, a functional homolog of HMT1 has been reported in
Caenorhabditis elegans and Drosophila (Vatamaniuk et al., 2005;
Sooksa-Nguan et al., 2009); however, no such homolog was
studied in plants. Studies in A. thaliana have revealed two
transporters AtMRP1 and AtMRP2 in transporting PC–Cd
complexes into the vacuole (Lu et al., 1997, 1998), and these
transporters confer the metal tolerance. The CDF transporter
family, also named “metal tolerance protein (MTP),” is also
involved in transporting metal cations such as Zn2+, Cd2+,
Co2+, Ni2+, or Mn2+ from the cytosol to the vacuole (Krämer
et al., 2007; Montanini et al., 2007). They have been categorized
into two of four distinct groups of which groups I and III
are the most important (Blaudez et al., 2003). Comparative
studies in A. halleri and T. caerulescens with those of non-
hyperaccumulators have shown higher expression of MTP1
(group III), MTP8 (group I), and MTP11 (group I) (Becher et al.,
2004; Talke et al., 2006; van de Mortel et al., 2006). Similarly,
AhMTP1 protein also showed a constitutive higher expression in
leaves of A. halleri under exogenous supply of Zn (Dräger et al.,
2004). The MTP11 and MTP8 were found to be close homologs
of ShMTP8 (formerly ShMTP1) and confirmed Mn tolerance in
A. thaliana (Delhaize et al., 2003), thus suggesting a role of these
proteins in metal tolerance. Likewise, other transporter proteins
such as HMA and NRAMP are also involved in transporting
the metal from the cytosol to the vacuole. However, HMAs are
thought to be involved in detoxification mechanisms due to their
overexpression, as reported in A. thaliana (Morel et al., 2009).

Apart from the role of transporter proteins, organic acids
are also involved in detoxification mechanisms, as they help
in entrapping the metal ion and chelating them. For instance,
citrate binds with Ni in leaves of Thlaspi goesingense, enabling
formation of metal–organic acid complex for chelation (Krämer
et al., 2000). Similarly, malate binds with Zn in A. halleri and Cd
in T. caerulescens (Salt et al., 1999; Sarret et al., 2002). The role of
amino acids in hyperaccumulator has been found to be important
due to the formation of stable complexes with bivalent cations
(Callahan et al., 2006), thus helping largely in sequestrating

Frontiers in Plant Science | www.frontiersin.org 6 February 2016 | Volume 6 | Article 1143

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Singh et al. Heavy Metal Tolerance in Plants

metal cations. For example, histidine (His) is involved in
Ni hyperaccumulation, and a high concentration of His has
been reported in the roots of Ni hyperaccumulators (Assuncão
et al., 2003). The mechanism of heavy metal detoxification in
hyperaccumulators also relies on the overexpression of genes
related with antioxidant activity such as reduced glutathione
(GSH), cysteine and O-acetylserine (Anjum et al., 2014). Studies
have revealed that upstream signaling of salicylic acid results
in increased serine acetyltransferase (SAT) activity and higher
GSH level (Freeman et al., 2005a). Similarly, overexpression of
NgSAT inNoccaea goesingense resulted in enhanced levels of GSH
that resulted in Ni, Co, Zn, and to a small extent Cd tolerance
(Freeman et al., 2004; Freeman and Salt, 2007).

HEAVY METAL AND REACTIVE OXYGEN
SPECIES (ROS) PRODUCTION

Another negative consequence of heavy metal accumulation is
the generation of ROS. In plants, ROS accumulation depends
upon the balance between ROS production and ROS scavenging
(Mittler et al., 2004), which in turn also depends on growth
conditions such as temperature, light intensity, presence of heavy
metal, etc. For instance, the presence of excess heavy metals
results into a limitation of CO2 fixation in the chloroplasts,
which coupled with an over reduction of the photosynthetic
electron transport chain serves as a major site of ROS production
(Mittler et al., 2004). Over reduction of the electron transport
chains in the mitochondria is also a major site of ROS
generation (Davidson and Schiestl, 2001; Keunen et al., 2011).
Møller et al. (2007) reported that 1–5% of O2 consumed by
the isolated mitochondria converts into ROS. ROS hydrogen
peroxide (H2O2) is produced in the peroxisomes after glycolate
is oxidized to glyoxylic acid during photorespiration (Mittler
et al., 2004). Therefore, ROS such as singlet oxygen (1O2),
superoxide anion (O•−

2 ), H2O2, and hydroxyl radicals (•OH)
are produced in these organelles because of spin inversion and
one-two and three-electron transfer reactions to O2, respectively,
during functioning of the electron transport chains (Sharma and
Dietz, 2009). The redox active heavy metals such as Cu, Cd Fe,
and Zn can induce ROS formation directly by participating in
Haber–Weiss and Fenton reactions or indirectly by inhibiting
the functioning of enzymes in the cellular antioxidant defense
network (Schützendübel and Polle, 2002; Halliwell, 2006; Keunen
et al., 2011).

ROS are unstable, highly reactive, and thus, promptly react
with other macromolecules to generate more free radicals
because unpaired electrons tend to pair and give rise to two stable
electron bonds (Foyer and Halliwell, 1976). Being extremely
reactive in nature, ROS can interact with macromolecules
such as DNA, pigments, proteins, lipids, and other essential
cellular molecules depending on the properties like chemical
reactivity, redox potential, half-life, and mobility within the
cellular system, ultimately leading to a series of destructive
processes collectively termed as “oxidative stress” (Mittler, 2002;
Sharma and Dietz, 2009; Hossain et al., 2012a,b). Among ROS,
•OH is the most reactive, highly damaging, and short-lived

(1 ns), and can oxidize macromolecules within a diffusion
distance. Therefore, ROS might induce reversible as well
as irreversible modifications in lipids, proteins, and nucleic
acids; however, most of these ROS effects are damaging and
irreversible.

Conversely, ROS also act as signaling molecules involved
in the regulation of many key physiological processes such
as root hair growth, stomatal movement, cell growth, and
cell differentiation when finely tuned and regulated by an
antioxidative defense system (Foreman et al., 2003; Kwak et al.,
2006; Tsukagoshi et al., 2010). It has been shown in several
studies that ROS generated by NADPH oxidases during stress
are channeled by the plant to serve as a stress signal to activate
acclimation and defense mechanisms, which in turn counteract
oxidative stress (Mittler et al., 2004; Davletova et al., 2005; Miller
et al., 2008, 2010). Therefore, the fate of ROS (i.e., whether it
will act as signaling molecule or damaging one) in the cellular
system depends upon the output of many complex processes
that involve in antioxidative system, signaling cascades, redox
alterations, etc. When the generation of ROS exceeds that of
the scavenging potential of antioxidants, oxidative stress occurs
(Figure 3).

Plants possess a specific mechanism to keep the routinely
formed ROS at physiological limit, preventing them from
exceeding toxic threshold levels, thereby playing an important
role in the acclimation process against an imposed stress
(Mittler et al., 2004). This mechanism is known as the
plant antioxidant defense system that regulates ROS levels
in the cellular system at a particular time (Figure 3). An
antioxidant system comprises two types of components:
enzymatic and non-enzymatic. The enzymatic antioxidants
include superoxide dismutase (SOD; EC 1.15.1.1), catalase
(CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11),
glutathione reductase (GR; EC 1.6.4.2), monodehydroascorbate
reductase (MDHAR; EC 1.6.5.4), dehydroascorbate reductase
(DHAR; EC 1.8.5.1), glutathione peroxidase (GPX; EC 1.11.1.9),
and glutathione-S-transferase (GST; EC 2.5.1.18), whereas non-
enzymatic antioxidants include water-soluble compounds such
as ascorbate, glutathione, proline, and α-tocopherol (Apel and
Hirt, 2004; Sharma and Dietz, 2009; Hossain et al., 2011,
2012a,b). Although ascorbate and glutathione both function
as cofactors of enzymatic antioxidants, both can also directly
quench ROS and regulate the gene expression associated with
biotic and abiotic stress responses (Hossain et al., 2012a,b).
The importance of antioxidants is based on the facts that
their increased and/or decreased levels are generally related
to an enhanced or declined stress tolerance of stressed plants.
Since the evolution of O2, antioxidants play an important
role in sustaining ROS concentration at an appropriate level
that can promote plant development and reinforce resistance
to stressors by modulating the expression of a set of genes
and redox signaling pathways (Neill et al., 2002). Keeping
into consideration the importance of antioxidants in managing
ROS levels and oxidative stress, the responses of transgenic
plants and/or organisms overexpressing antioxidant and/or its
biosynthetic pathway gene(s) against heavy metal stress are listed
in Table 1.
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FIGURE 3 | Heavy metal induced-oxidative stress, tolerance, and detoxification mechanisms in the plant cell. AsA, ascorbic acid; CAT, catalase; Cys,

cysteine; c-ECS, c-glutamylcysteinesynthetase; Glu, glutamine; Gly, glycine; GR, glutathione reductase; GS, glutathione synthetase; GSH, glutathione (reduced);

GSSG, oxidized glutathione; H2O2, hydrogen peroxide; MDHA, monodehydroascorbate; O2, oxygen molecule; O−

2 , superoxide radicals; ROS, reactive oxygen

species; SOD, superoxide dismutase; A, heavy metal.

Plant Antioxidant Defense System
The term “antioxidant” refers to a class of compounds that
protect cells from damage caused by exposure to certain highly
reactive species like ROS. The network and coordination of
antioxidants are solely responsible for removing, neutralizing,
and scavenging ROS. SOD is an enzyme involved in dismutating
superoxide radicals generated by oxidation of molecular oxygen
into H2O2 and O2 in all the cellular compartments (Fridovich,
1989).

H2O2 produced by the action of SOD is quite dangerous as
it can diffuse through the membrane very easily and damage
other cellular components, and thus, metabolites (ascorbate and
glutathione) and enzymes (monodehydroascorbate reductase;
MDHAR, dehydroascorbate reductase; DHAR and glutathione
reductase; GR) are implicated in scavenging of H2O2(Foyer et al.,
1997). Three types of SODs have been reported in plants on the
basis of the metal containing (1) the chloroplastic or cytosolic
Cu–Zn SOD; the cytosolic Cu–Zn SOD is referred to as Cu–Zn
SOD I, whereas the chloroplastic one is referred to as Cu–Zn
SOD II; (2) Mitochondrial Mn SOD, and (3) the chloroplastic
Fe SOD. APX is regarded as a housekeeping protein in the
cytosol and chloroplast, and is involved in scavenging of H2O2.
The substrate for this enzyme is ascorbate and the product,
which is a radical, is reduced to dehydroascorbate by an enzyme
MDHAR in the presence of an electron donor NADPH (Asada,
1992, 1996). CAT is an important oxidoreductase enzyme that
catalyzes decomposition of H2O2 into H2O and O2, and it is
found in most plants and is localized in the peroxisome. CAT

is a key enzyme involved in detoxifying peroxides generated
during photorespiration (Morita et al., 1994; Lin and Kao, 2000).
Although APX and CAT serves the same function of detoxifying,
different affinities (on the basis of Km values) of APX and CAT
depict the role of APX in modulating H2O2 for signaling and
CAT in detoxifying excess H2O2 during stress (Mittler, 2002).

The above mentioned enzymatic components play a relevant
role inmitigating heavymetal stress. Several studies have revealed
that treatment of heavymetal enhances ROS formation, and thus,
substantial increase in the activities of SOD, CAT, and APX was
observed (Bharwana et al., 2013; Bashri and Prasad, 2015). A
study by Wang et al. (2004) revealed a considerable increase in
the activities of POD, APX, and SOD under Cu stress in B. juncea
seedlings. Similarly, Bharwana et al. (2013) showed that under
Pb treatment, there was an appreciable rise in SOD, guaiacol
peroxidase, APX and CAT activities, and their activities were
further enhanced with the rising concentration of Pb from 50 to
100µM. Similar to this, Singh et al. (2013) reported increased
activity of SOD and CAT under As exposure (5 and 50µM).
These results suggest that cooperative action of antioxidants
is required for a detoxification mechanism under heavy metal
stress.

“OMICS” TOOLS

Metabolomics
Metabolomics refers to the identification and quantification of
all low-molecular weight metabolites required by the organisms
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TABLE 1 | Summary of transgenic plants over-expressing gene(s) of enzymatic and non-enzymatic antioxidants and their performance against heavy

metal stress.

Antioxidant and/or its

biosynthetic pathway

gene(s)

Source Target transgenic Response of transgenic plants and/or organisms References

CAT3 Brassica juncea Nicotiana tabacum Cd stress tolerance, better seedling growth, and longer

roots

Gichner et al., 2004

CAT Brassica juncea Nicotiana tabacum Zn and Cd stress tolerance, 2.0-fold higher CAT activity

than wild type, lower H2O2 level, and cell death

Guan et al., 2009

CAT1 and CAT2 Brassica oleracea Arabidopsis Low level of H2O2 and enhanced stress tolerance Chiang et al., 2013

Cu/ZnSOD and/or CAT Zea mays Brassica campestris Less reduction in photosynthetic activity than wild type

under SO2 stress

Tseng et al., 2007

MnSOD Triticum aestivum Brassica napus SOD activity was 1.5–2.5-fold greater than wild type and

enhanced Al tolerance

Basu et al., 2001

Cu/ZnSOD and APX – Festuca arundinacea Increased tolerance against Cu, Cd, and As due to

depressed oxidative stress

Lee et al., 2007

cytGR/cpGR Bacterial Brassica juncea cpGR transgenic showed lower Cd accumulation and 50

times higher GR activity than wild type plants

Pilon-Smits et al., 2000

GR Brassica rapa Escherichia coli Increased tolerance against H2O2 induced by Cd, Zn,

and Al due to an enhanced GR activity

Kim et al., 2009

DHAR/GR/GST Escherichia coli Nicotiana tabacum Overexpression enhanced metal tolerance due to

maintained redox couples such as ascorbate and

glutathione

Le Martret et al., 2011

DHAR Oryza sativa Escherichia coli DHAR-overexpressing E. coli strain was more tolerant to

oxidant and metal-mediated stress conditions than the

control E. coli strain

Shin et al., 2008

MDHAR/DHAR Arabidopsis Nicotiana tabacum DHAR but not MDHAR enhanced Al tolerance by

maintaining ascorbate level

Yin et al., 2010

GST Trichoderma virens Nicotiana tabacum Enhanced Cd tolerance simultaneously no Cd

accumulation, increased activity of SOD, CAT, GST, APX,

and GPX than wild type

Dixit et al., 2011

Sulfite oxidase (SO) Zea mays Nicotiana tabacum Increased tolerance against S due to enhanced

CAT-mediated H2O2 scavenging

Xia et al., 2012

TcPCS1 Thlaspi caerulescens Saccharomyces cerevisiae

and Nicotiana tabacum

Increased tolerance to Cd due to the decreased lipid

peroxidation and enhanced activities of SOD, POD, and

CAT

Liu et al., 2011

Serine acetyltransferase Thlaspi goesingense Escherichia coli Imparts Ni and Co tolerance due to involvement of

glutathione

Freeman et al., 2005a

gshII Escherichia coli Brassica juncea Transgenic plants had higher level of glutathione,

phytochelatin, and thiols and thus showed enhanced Cd

tolerance

Liang Zhu et al., 1999

AsPCS1/GSH1 Allium

sativum/Saccharomyces

cerevisiae

Arabidopsis Elevated production of phytochelatin and glutathione

that imparts Cd and As tolerance

Guo et al., 2008a

APS1 Arabidopsis Brassica juncea Increased Se tolerance due to its rapid reduction Pilon-Smits et al., 1999

MTH1745 Methanothermobacter

thermoautotrophicum

Oryza sativa Increased Hg tolerance, higher photosynthesis, SOD and

POD activity, and lower superoxide radicals, H2O2, and

lipid peroxidation than wild type

Chen et al., 2012b

PCs Arabidopsis Nicotiana tabacum Enhanced Cd tolerance and hampers root-to-shoot Cd

transport

Pomponi et al., 2006

PCS1 Arabidopsis Arabidopsis Enhanced As tolerance but increased Cd hypersensitivity Li et al., 2004

PCS Anabaena sp. PCC 7120 Escherichia coli Enhanced tolerance against multiple stresses such as

Cd and Cu by increasing phytochelatin production

Chaurasia et al., 2008

MT1 Mus musculus Nicotiana tabacum Enhanced Hg accumulation and tolerance Ruiz et al., 2011

MT1 Paxillus involutus Hebeloma cylindrosporum Increased Cu and Cd tolerance Bellion et al., 2007

11-pyrroline-5-

carboxylate

synthetase

Vigna aconitifolia Chlamydomonas reinhardtii Transgenic grows rapidly in toxic Cd concentration

(100µM), and bind four-fold more Cd than wild-type

cells. Proline likely acts as an antioxidant in Cd-stressed

cells and thus increases Cd tolerance

Siripornadulsil et al.,

2002

Alkyl hydroperoxide

reductase

Anabaena sp. PCC 7120 Escherichia coli Enhanced tolerance against Cu and Cd by enhancing

scavenging of H2O2 and reactive sulfur species

Mishra et al., 2009b
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during developmental stages (Arbona et al., 2013), and some
metabolites have been reported to be involved under heavy metal
stress tolerance strategies. In the following section, we discuss the
role of metabolomics under heavy metal stress.

Amino Acids and Amines
Amino acids and their derivatives have been reported to chelate
metal ions, thus conferring metal tolerance to plants. Amino
acids, particularly proline and histidine, have been found to
chelate metal ions in cells as well as in the xylem sap (Rai,
2002; Sharma and Dietz, 2006). Proline has been reported to
accumulate under heavy metal stress (Talanova et al., 2000;
Yusuf et al., 2012a). A study on microalgae has demonstrated
an increased level of proline under Cd stress (Siripornadulsil
et al., 2002). The mechanism of action of increased levels of
proline is not sequestration, but it reduces the formation of free
radicals and also maintains reducing environment by enhancing
the level of GSH (Siripornadulsil et al., 2002). Histidine, another
important amino acid, has been found to play an important
role under heavy metal stress. Krämer et al. (1996) reported
increased histidine levels in the xylem sap of Alyssum lesbiacum
(Ni hyperaccumulator) under Ni stress. Similarly, Kerkeb and
Krämer (2003) reported simultaneous uptake of Ni and Histidine
in B. juncea. Changes in the histidine content have functional
significance in metal stress tolerance (Sharma and Dietz, 2006).
NA (aminocarboxylate), an amino acid derivative synthesized
by condensation process of three S-adenosyl-L-methionine, has
been also reported to chelate metal ions. They have been found
to be involved in the movement of mineral nutrients (Stephan
and Scholz, 1993). The physiological role of NA has been
confirmed by studying the tomato mutant lacking NA synthase,
an enzyme involved in catalyzing formation of NA, which showed
accumulation of Fe and Cu (Scholz et al., 1985; Herbik et al.,
1996). Apart from its chelating action, NA has been reported to be
precursor of phytosiderophoremugineic acid involved in binding
metals such as Zn, Cu, and Fe (Treeby et al., 1989).

Organic Acids
Organic acids such as malate, citrate, and oxalate have been
reported to transport metals through xylem and are involved in
sequestrating ions in vacuole (Rauser, 1999). Citrate, synthesized
from citrate synthase, has been shown to have high affinity for
Fe, Ni, and Cd, but it is majorly involved in chelating Fe (Cataldo
et al., 1988). Malate has been reported to chelate Zn and is mainly
involved in chelating cytosolic ions (Mathys, 1977).

Glutathione and α-Tocopherol
Glutathione (GSH) is a water-soluble tripeptide thiol having low
molecular weight (c-Glu-Cys-Gly) and plays a role in the cellular
defense against the toxic actions of heavy metals (Meister and
Anderson, 1983). Glutathione reductase (GR) readily converts
an oxidized glutathione (GSSG) form to reduced form of GSH.
GR contains a conserved disulfide bridge that breaks off under
metal stress (Creissen et al., 1992; Lee et al., 1998) and plays an
important role in defense by reducing GSSG, thus allowing a high
GSH/GSSG ratio to be maintained. Studies on Luffa seedlings
showed an increasing trend in GR activity with an increasing

concentration of As (Singh et al., 2015). GR-catalyzed reduction
of glutathione disulfide (GSSG) to glutathione (GSH) is NADPH
dependent, and to maintain the proper ratio of GSH/GSSG, GSH
biosynthesis must be initiated with rapid reduction in GSSG by
GR (Kumar et al., 2012).

Alpha-tocopherol is the most active form of vitamin E and
is synthesized in the plastids of higher plants. It is found to be
involved in scavenging ROS and lipid peroxides (Munne-Bosch,
2005) by quenching 1O2 in the chloroplast and thus, prevents
cell membrane from damage under stress. Several studies have
reported changes in the levels of α-tocopherol under heavy metal
stress (Collin et al., 2008; Yusuf et al., 2010; Kumar et al.,
2012; Lushchak and Semchuk, 2012). A study by Collin et al.
(2008) reported an increased concentration of α-tocopherol in
Arabidopsis under Cd treatment, and the authors suggested that
there is an upregulation of genes related to its biosynthesis
(Figure 3).

Phenols
Synthesis of phenolic compounds under heavy metal stress is
due to their high tendency to chelate metals, which is due to the
presence of hydroxyl and carboxyl groups that bind to metal ions
particularly iron and copper (Jun et al., 2003). Winkel-Shirley
(2002) reported induction of phenolic compounds in maize
under aluminum exposure. Similarly, Diáz et al. (2001) reported
accumulation of phenols in leaves of P. vulgaris when exposed to
Cu stress. This increase in phenolics is correlated with increased
activity of enzymes involved in biosynthesis of phenols under
heavy metal stress. Phenols have been reported to be directly
involved in chelating Fe ions and thus, suppressing Fenton’s
reaction, which is the important source of ROS production.
Stimulation of CHS (Chalcone synthase) and PAL (phenylalanine
ammonia-lyase) activities has been reported in several plants
exposed to Cu, Cd, Al, Pb, and Ni (Babu et al., 2003; Sobkowiak
and Deckert, 2006; Kováčik and Klejdus, 2008; Kováčik et al.,
2009; Pawlak-Sprada et al., 2011). Lavid et al. (2001) reported that
tea plants rich in tannin are tolerant to Mn and prevent fromMn
toxicity by directly chelating the Mn.

Ionome and Ionomics
Ionome includes the role of mineral nutrients, namely nitrogen
(N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S)
and magnesium (Mg) and trace metals namely iron (Fe), copper
(Cu), manganese (Mn), molybdenum (Mo), cobalt (Co), and
zinc (Zn) in alleviating heavy metal toxicity. Although all the
mineral nutrients and trace elements are essential for growth and
development processes of plants, concentration greater than the
required level becomes toxic to the plants. Apart from posing
toxicity at higher concentration, nutrients under safe limit play
important role in alleviating toxicity induced by heavy metals.

Nitrogen is the most essential nutrient as it is the major
constituent of proteins, nucleic acids, vitamins, and hormones.
It has the potentiality of alleviating heavy metal toxicity, as it
enhances the photosynthetic capacity by increasing chlorophyll
synthesis, often synthesizes N-containing metabolites like
proline, GSH, etc. and by enhancing the activity of antioxidant
enzymes (Sharma and Dietz, 2006; Lin et al., 2011). In a study
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by Pankovic et al. (2000), it has been shown that supplementing
7.5mM (optimal level) of N to sunflower reduced the inhibitory
effect of Cd on photosynthesis by enhancing Rubisco activity and
by increasing protein content. In another study by Zhu et al.
(2011), it has been shown that supplementing N fertilizer in
the form of 16mM (NH4)2SO4, alleviated Cd-induced toxicity
in Sedum. The alleviating potential not only depends on the
supplemented level of N but also on the source of N. For instance,
when N was applied in the form of NH+

4 -N, it reduced the
Cd concentration in leaves of rice plants that was found to be
below 100mg kg−1 (Jalloh et al., 2009), but when supplemented
as NO−

3 N, it increased the Cd concentration, which suggests
antagonistic behavior of NH+

4 - while synergistic of NO
−

3 toward
Cd. Another mineral nutrient, phosphorus (P) is the major
constituent of cell membrane and nucleic acid, and majorly
required for phosphorylation reaction. It has also been reported
in alleviating metal-induced toxicity either by diluting the metal
or by decreasing the mobility of the metal by forming metal–
phosphate complex (Sarwar et al., 2010). In addition, P can also
increase GSH content and prevent membrane damage, thereby
conferring tolerance to plants (Wang et al., 2009).

Potassium (K) ion is required by the plant to maintain
anion–cation balance in cells and plays important regulatory
role in protein synthesis and enzyme activation. By improving
nutritional status of K, condition of oxidative stress in plants
can be minimized (Shen et al., 2000). Supplementation of K
at 60mg kg−1 alleviated the toxicity induced by Cd at 25mg
kg−1 by increasing the content of AsA and GSH. Similar to
nitrogen, K source may also play an important role in alleviating
toxicity. A study by Zhao et al. (2004) clearly demonstrated that
application of KNO3, K2SO4, and KCl at the rate of 55, 110, and
166mg.K.kg−1, respectively, to the soil has differential effect on
Cd (concentration 15mg Kg−1) accumulation. When KCl and
K2SO4 were applied in increasing concentration from 0 to 55mg
kg−1, there was 60–90% increase in Cd accumulation in shoots,
whereas similar increasing concentrations of KNO3 increased
the Cd content very marginally, suggesting its protective action
against Cd stress.

Sulfur (S), another mineral nutrient, serves as an important
constituent of several coenzymes, vitamins, and ferredoxin.
Wangeline et al. (2004) reported that Cd toxicity could be
alleviated by the upregulation of S-assimilation pathway, thus
suggesting toward alleviating role of S under heavy metal
toxicity. Studies on Triticum aestivum (Khan et al., 2007), B.
juncea (Wangeline et al., 2004), and Arabidopsis (Howarth et al.,
2003) have shown increased ATP-sulfurylase (ATPS) and serine
acetyl transferase (SAT) activities under Cd stress, and thereby
conferring tolerance to these plants. As ATPS activity helps in
maintaining GSH level required for regulating Ascorbate (AsA)–
GSH cycle (Khan et al., 2009), it has been reported that S at
40 mg.S.Kg−1 enhanced the AsA–GSH cycle, thereby reducing
Cd-induced toxicity in mustard (Anjum et al., 2008). Thus,
indicating toward the possibility that S supplementation to soil
system might enhance the formation of S-containing defense
compounds such as GSH and phytochelatins. Study by Astolfi
et al. (2004) has shown that Cd (100µM) exposure enhanced
the ATPS, O-acetyl serine (OAS) thiol lyase activity, which is

related to the production of phytochelatins that play the most
effective detoxifying mechanism in plants (Zhang et al., 2010).
Apart from enhancing the formation of phytochelatins, S also
regulates ethylene signaling and thereby helping under heavy
metal stress (Masood et al., 2012). Calcium (Ca) is majorly
involved in activating the enzymes and also plays an important
role in regulating metabolic activities. Due to chemical similarity
as well as due to same channels and intracellular Ca-binding
sites (Lauer Júnior et al., 2008) of Ca+2 and Cd+2, Cd present in
external medium, replaces the Ca, and thereby affects the growth
of plant. However, Ca has been shown to decrease the heavy
metal-induced toxicity (Suzuki, 2005; Farzadfar et al., 2013). It
has been reported that 30mM Ca reduced the Cd content from
46.7 to 17.4µg in Arabidopsis seedlings (Suzuki, 2005). Similar to
this, Zhenyan et al. (2005) reported enhanced Cd (concentration
0.5mM) tolerance in Lactuca sativa when supplied with 4mM
CaCl2, which was due to enhanced expression of phytochelatin
synthase. Ca reduces heavy metal-induced toxicity by reducing
their uptake, influencing physiological processes, or activating
expressions of other defense compounds.

Magnesium (Mg), an important constituent for chlorophyll
biosynthesis, plays an essential role under heavy metal toxicity.
Abul Kashem and Kawai (2007) reported that Cd (0.25µM) -
induced toxicity in Japanese mustard spinach was alleviated by
Mg at 10mM, and Cd accumulation was reduced by 40%. Mg-
induced alleviation is not due to inhibition in uptake but due
to enhanced antioxidant enzymes (Chou et al., 2011). Moreover,
Mg-induced alleviation has been also correlated with expression
of some genes OsIRT1, OsZIP1, and OsZIP3 of rice.

Trace elements are required in lesser amount for the biological
system, which include iron (Fe), copper (Cu), manganese (Mn),
molybdenum (Mo), cobalt (Co), and zinc (Zn), and their high
levels could be toxic. The essentialities of these trace metals
are due to their active participation in the redox reactions as
well as because of their roles as enzyme cofactors (Sanita di
Toppi and Gabbrielli, 1999). However, apart from their roles in
biological system, they have been reported to play a crucial role
in alleviating metal toxicity. Several trace elements have direct as
well as indirect effects on heavy metal availability and toxicity
(Sarwar et al., 2010). Direct effects include lowered solubility
of heavy metals in the soil (Hart et al., 2005; Shi et al., 2005;
Matusik et al., 2008), competition between heavy metals and
trace elements for the same membrane transporters (Baszynski
et al., 1980; Qiu et al., 2005), and heavy metal sequestration
in the vacuoles (Salt and Rauser, 1995; Zaccheo et al., 2006).
Indirect effects include dilution of heavy metal concentration by
increasing plant biomass (dilution effect) and alleviation of heavy
metal stress by increasing antioxidant defense system (Hassan
et al., 2005; Suzuki, 2005; Jalloh et al., 2009). Zn, being an
important group of metal transporter family, has been suggested
to prevent damage caused by Cd toxicity. As reported in the
case of Thalpsi violacea, plants supplied with 2 mgL−1 Cd
showed 48.5mg Kg−1 Zn accumulation than that of control
(16.8 mgKg−1), whereas when the plant was supplemented with
5mgL−1 Cd, Zn accumulation decreased upto 12.8mg Kg−1,
suggesting Cd/Zn antagonism (Street et al., 2010). Furthermore,
Zn also enhances the activities of antioxidant enzymes and
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competes with Cd to bind with the membrane protein in order
to protect plant (Wu and Zhang, 2002). Other trace metal Fe,
under Cd stress, showed reduced Cd uptake and translocation,
thus increasing plant growth. Study by Qureshi et al. (2010)
revealed that exogenous application of 40µM Fe reduces the
condition of oxidative stress by stabilizing the thylakoid complex
under Cd stress. It was also reported that at Fe concentrations
of 1.89mg L−1 (moderate) and 16.8mg L−1 (high), under low
level of Cd (0.1mM), plant height showed increment (Nada et al.,
2007).

Similarly, studies have also revealed the protective roles of
trace elements in ameliorating toxic effects of heavy metals
by protecting photosynthetic tissue and increasing antioxidant
capacity (Zornoza et al., 2010; Tkalec et al., 2014). Pa1’ove-
Balang et al. (2006) have shown that Mn-mediated amelioration
of Cd toxicity was associated with a decreased Cd uptake. Apart
from the beneficial role played by trace metals, there are some
beneficial nutrients like selenium (Se), and silicon (Si) that also
play a major role under heavy metal stress. Earlier, selenium (Se)
was considered as toxic element but later on Schwarz and Foltz
(1957) confirmed it to be an essential one. Studies on lettuce
grown under Pb and Cd toxicity supplemented with Se showed
a decrease in heavy metal accumulation as well as enhanced
uptake of essential nutrients (He et al., 2004). Belokobylsky et al.
(2004) and Feng and Wei (2012) have found that Se level up
to 5mg L−1 has beneficial effects on Spirulina platensis and P.
vittata, respectively. Filek et al. (2008) have shown that exogenous
application of Se alleviates toxic effects of Cd by enhancing the
activities of antioxidant enzymes such as SOD, CAT, GPX, and
APX. Several reports have revealed that appropriate dose of Se
can protect plants against damage by heavy metals such as Hg,
Pb, Cd, Cr, and Sb (Khattak et al., 1991; Shanker et al., 1996;
Belokobylsky et al., 2004; He et al., 2004; Feng et al., 2011). Role
of Si under heavy metal stress is also well established (Singh et al.,
2011b; Dragišić Maksimović et al., 2012; Tripathi et al., 2012).
Study by Song et al. (2009) has shown that supplementation
of Si under Cd stress decreased an uptake and root to shoot
translocation of Cd as well as enhanced the activities of enzymes
of the defense machinery in B. chinensis. Similarly, study by
Bharwana et al. (2013) revealed that Si application reduces Pb
uptake and enhances the activities of antioxidants viz., SOD,
GPX, APX, and CAT.

Themeasurement of elemental composition and their changes
as a response to some stimuli in living organisms comes under
the study of ionomics. Alteration in ionome could be direct or
indirect. Direct one includes the changes in nutrient level in
soil or due to impairment of ion transporter, whereas indirect
changes might be due to changes in cell wall structure (Salt
et al., 2008). Heavy metals due to their interaction with nutrient
elements affect the uptake and distribution of these elements and
may result in deficiency of minerals thus affecting the growth.
Sarwar et al. (2010) suggested that Cd affects the permeability of
plasma membrane and thus interferes with the nutrient uptake.
However, there exists both antagonistic as well as synergistic
interaction between heavy metals and micronutrient uptake,
which could be due to differences in plant species and nutrient
concentration. Likewise, a study by Cataldo et al. (1983) reported

antagonistic interaction between Cd and Fe, Zn, Cu, and Mn in
soybean plants, whereas Nan et al. (2002) reported synergistic
interaction between Cd and Zn in wheat and corn. In a study by
Yang et al. (1998), decreased accumulation of Fe, Mn, and Cu in
ryegrass, maize, cabbage, and white clover was observed after Cd
exposure, whereas there was increased P accumulation. Similarly,
Cui et al. (2008) reported decrease in Fe and Zn uptake in rice
after Cd treatment in hydroponic system. A study by Safarzadeh
et al. (2013) determined the effect of different doses (0, 45, and
90mg kg soil) of Cd on uptake of Fe, Zn, Cu, and Mn in seven
rice cultivar and reported decrease in Zn, Fe, Mn, and Cu uptake.
Not only the uptake decreased but also there was decrease in the
translocation of these minerals as Cu and Fe contents found to be
greater in roots than in shoots that indicate toward impairment
of ions transporters.

Similar to Cd, As has also been reported to influence nutrient
uptake and their distribution in plants. Meharg and Hartley-
Whitaker (2002) reported As-induced decrease in P uptake is due
to chemical similarity between P and arsenate and due to which
arsenate enters the plant via the phosphate transport systems.
However, the concentration of As also plays an important role
in P uptake. Burló et al. (1999) reported higher uptake of
P at lower level of As in tomato plants. Similarly, Carbonell
et al. (1998) reported increased P uptake in tomato plant
when exposed to low level of As. As not only influences P
uptake but also affects the uptake of other nutrients like N,
P, K, Ca, etc. A study by Carbonell-Barrachina et al. (1997)
observed increased concentration of N, P, K, Ca, and Mg in P.
vulgaris L. plants when exposed to arsenite. Similarly, Carbonell-
Barrachina et al. (1994) reported decreased uptake of K, Ca, and
Mg (macronutrinets), B, Cu, Mn, and Zn (micronutrinets) in
Lycopersicum esculentumMill. The effect of As concentration on
nutrient level of hyperaccumulator P. vittata L. had also been
studied by Tu and Ma (2005), and the authors reported that
both micro- and macronutrients were in the range of normal
concentration as in non-hyperaccumulators. However, there was
enhancement in P and K contents in the fronds of P. vittata L.
at lower level of As. They reported molar ratio of P/As to be 1.0
in fronds of P. vittata L., which is the threshold value for normal
growth of plants.

Heavy metal ions such as Cu+2, Zn+2, Mn+2, and Fe+2 are
essential for plant metabolism but when they are present in excess
amount become highly toxic. For instance, Zn and Mn when
present in excess impairs growth and compete with Fe. Excess
Fe in the plant system participates in the fenton reaction, thereby
creating a condition of oxidative stress (Williams and Pittman,
2010; Shanmugam et al., 2011). In order to avoid toxicity induced
by mineral elements and trace elements, these are chelated by
low molecular weight compounds and sequestrated in vacuoles
or excluded to extracellular spaces by transporters situated
in the tonoplast or plasma membrane, which plays central
role in maintaining metal homeostasis under safe limit. These
transporters belong to (1) P1B-ATPase or CPx-type ATPase,
(2) Cation Diffusion Facilitator (CDF) also known as Metal
Tolerance Proteins (MTPs), (3) Natural Resistance-Associated
Macrophage Proteins (NRAMPs), and (4) ZRT–IRT-like Protein
(ZIP) transporters.
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P1B-ATPases (also Known as Heavy Metal ATPases:

HMAs)
P1B-ATPases (also known as Heavy Metal ATPases: HMAs) are
found in a wide range of organisms ranging from prokaryotes to
eukaryotes including yeasts, insect, mammals, and plants. Being
energized by ATP hydrolysis, they translocate heavy metals (Zn,
Co, Cu, Cd, and Pb) out of cytoplasm (to plasma membrane and
into vacuole) and thus play important roles in their transport,
compartmentalization, and detoxification (Williams et al., 2000;
Grennan, 2009). HMA members (HMA2, HMA3, and HMA4)
export Zn and Cd. For instance, HMA4 protein that plays a role
in nutrition and transport of Zn from root to shoot also protects
plants from Cd via its efflux (Mills et al., 2005). Hussain et al.
(2004) demonstrated that thoughHMA2 andHMA4 are essential
for Zn homeostasis in Arabidopsis, double mutants of HMA2
and HMA4 (hma2 and hma4) exhibited increased sensitivity of
plant to Cd, suggesting that they may also play a role in Cd
detoxification. Similarly, loss of function in HMA2 and HMA4
has been shown to increase Cd sensitivity in Arabidopsis under
phytochelatins deficient, cad1-3 as well as CAD1 backgrounds
(Wong and Cobbett, 2009). A recent study on 349 wild
varieties of A. thaliana with combined approach of genome-
wide association mapping, linkage mapping, and transgenic
complementation revealed that HMA3 is solely responsible for
variation in amount of Cd accumulated. Varieties with high Cd
accumulation indicate toward reduced HMA3 function (Chao
et al., 2012). Similarly, Song et al. (2014) found expression of C-
type ATP-binding cassette (ABC) transporter (OsABCC) family
in Oryza sativa and reported its involvement in detoxifying
and reducing As accumulation in grains. They reported higher
expression of these transporters under higher level of As.

Cation Diffusion Facilitators (CDFs) or Metal

Tolerance Proteins (MTPs)
Cation Diffusion Facilitators (CDFs), also known as Metal
Tolerance Proteins (MTPs) family, were first reported by Nies
and Silver (1995) and found in diverse group of organisms
such as bacteria, fungi, animals, and plants. Members of this
family are involved in cellular heavy metals homeostasis with
principal selectivity for Zn2+, Mn2+, and Fe2+ (Podar et al.,
2012). Despite their specificities for Zn2+, Mn2+, and Fe2+, many
CDFs may also transport other heavy metals such as Co2+, Ni2+,
and Cd2+ (Ricachenevsky et al., 2013). CDFs transporters are
involved in heavy metals efflux from the cytoplasm either to
the extracellular space or into the organelles (Haney et al., 2005;
Peiter et al., 2007; Ricachenevsky et al., 2013). TwelveMTP genes
have been recognized so far in A. thaliana and 10 in O. sativa
(Gustin et al., 2011). In A. thaliana, the first CDF gene was
characterized as the Zinc Transporter 1 gene (ZAT1) and later
renamed as METAL TOLERANCE PROTEIN 1 (AtMTP1) (van
der Zaal et al., 1999; Delhaize et al., 2003). The AtMTP1 gene is
expressed constitutively in roots as well as in shoots, and when
overexpressed in Arabidopsis, it enhances Zn tolerance (van der
Zaal et al., 1999). However, RNA interference (RNAi)-mediated
silencing (Desbrosses-Fonrouge et al., 2005) or T-DNA insertion
mutation (Kobae et al., 2004) of this gene increases Zn sensitivity,
indicating its important role in regulation of Zn homeostasis.

In A. halleri, a Zn hyperaccumulator plant, AhMTP1 gene is
believed to have a role in Zn hypertolerance (Shahzad et al., 2010).
Unlike AtMTP1 gene, AtMTP3 is expressed predominantly
in roots and reported to be engaged in maintenance of Zn
homeostasis by excluding Zn under Zn oversupply (Arrivault
et al., 2006). Another member of MTPs family, AtMTP11, has
been reported to transport as well as provide Mn tolerance
(Delhaize et al., 2007; Peiter et al., 2007). In rice, an ortholog
of MTPs, OsMTP1, has been characterized and supposed to be
located on chromosome 5 and highly expressed in mature leaves
and stem (Lan et al., 2012; Yuan et al., 2012).

Menguer et al. (2013) demonstrated that OsMTP1 gene
localized on tonoplast, and when heterologously expressed in the
yeast-mutant zrc1 and cot1, complemented Zn hypersensitivity.
Besides, its expression also alleviated Co sensitivity, rescued
Fe hypersensitivity of the ccc1 mutant, and restored growth of
the Cd-hypersensitive mutant ycf1, indicating potential role of
this gene in possible biotechnological applications, such as bio
fortification and phytoremediation.

Natural Resistance-Associated Macrophage Proteins

(NRAMPs) Transporters
Nramp is a highly conserved family of integral membrane
proteins that are conserved in different species and located in
the plasma membrane of root apical cells (Simões et al., 2012).
They are involved in proton-coupled active transport of various
heavy metals(Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+, and
Pb2+) in wide range of organisms including bacteria, fungi,
animals, and plants (Hall and Williams, 2003; Cailliatte et al.,
2009). However, the physiological role of NRAMP was primarily
related with Fe and to a lesser extent for Mn transport (Cailliatte
et al., 2009). AtNRAMP1 and 6, forms the first group, and
AtNRAMP2–5 constitute the second group (Mäser et al., 2001).
Of these, AtNRAMP1, 3, 4, and 6 have been shown to encode
functional plant heavy metal transporters (Krämer et al., 2007;
Cailliatte et al., 2009). Yeast mutants defective in heavy metals
uptake have been utilized to investigate transport specificities of
plant Nramps. Study revealed that AtNRAMP1 can complement
the fet3fet4 yeast mutant that is defective in both low and high-
affinity Fe transporters, whereas overexpression ofAtNRAMP1 in
Arabidopsis increases plant resistance to toxic Fe concentrations
(Curie et al., 2000). Furthermore, AtNRAMP3 and AtNRAMP4
have been shown to mediate the remobilization of Fe from
the vacuolar store and are essential for seed germination under
low Fe conditions (Thomine et al., 2003; Lanquar et al., 2005),
indicating a role of Nramps in Fe homeostasis.

Since the roles of NRAMPs family proteins were previously
related with Fe uptake and transport in biological systems,
however, increasing numbers of studies indicated that members
of this family have wide range of specificities for pumping
cations inside and/or outside the cell. Cailliatte et al. (2010)
demonstrated that NRAMP1, localized on plasma membrane,
restores the capacity of the iron-regulated transporter1 (a ZIP
familymetal transporter) mutant to take up Fe and Co, indicating
that NRAMP1 has a broad selectivity for heavy metals in-
vivo. An AtNRAMP4 homolog, TjNRAMP4, was cloned from
the Ni hyperaccumulator Thlaspi japonicum, and its expression
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increased Ni2+ sensitivity of wild-type yeast due to elevated
Ni accumulation, indicating that this protein might transport
Ni into the cytoplasm (Mizuno et al., 2005). Besides regulating
uptake and distribution of essential heavy metals, Nramps have
also been found to be involved in the transport of non-essential
heavy metals. In Arabidopsis, AtNRAMP3 disruption increases
Cd2+ resistance, whereas overexpression of this gene confers
increased Cd2+ sensitivity, indicating that it plays a role in Cd2+

transport and sensitivity in plant (Thomine et al., 2000; Mäser
et al., 2001).

A O. sativa Nrat1 (OsNrat1) gene, a Nramp aluminum
transporter and localized at all cells of root tips, when expressed
in yeast transports only Al3+ but not the Mn, Fe, and Cd,
indicating that this transporter gene specifically transports only
Al (Xia et al., 2011). Furthermore, in knockout of Nrat1, Al
sensitivity increased, whereas in wild type, its expression is up-
regulated by Al in root that is believed to be required for a
prior step of final Al detoxification through sequestration of Al
into vacuoles. Study of Cailliatte et al. (2009) demonstrated that
Arabidopsis transgenic plants overexpressing AtNRAMP6 gene
were hypersensitive to Cd, although plant Cd content remained
unchanged, thereby indicating that modification in expression
pattern of AtNRAMP6 affects distribution and availability of
Cd within the cell. However, Sano et al. (2012) have shown
that Nicotiana tabacum NRAMP1 gene (NtNRAMP1), a plasma
membrane transporter, when overexpressed in tobacco BY-2
cells increases resistance of the cells to both Fe and Cd, and
suggested that NtNRAMP1 moderates Fe-uptake and prevents
toxicity resulting from excess Fe or Cd application. Tiwari et al.
(2014) also demonstrated that OsNRAPM1, localized on plasma
membrane of endodermis and pericycle cell, when expressed
in Arabidopsis provides tolerance against As and Cd with their
enhanced accumulation in root and shoot, and proposed that
modification in this gene may be helpful in reducing the risk
of food chain contamination by these toxic heavy metals. These
studies clearly indicate that NRAMP genes are able to encode
multi-specific heavy metals transporters. In recent years, a new
Nramp5 belonging to rice (Os Nramp5) has been characterized,
which is responsible for accumulation of Mn in rice and has
been reported to encode proteins localized on plasmamembrane,
thus suggesting that Nramp5 is a major transporter responsible
for transport of Mn and Cd (Sasaki et al., 2012). To gain deep
insights into the roles of NRAMP genes transporter in heavy
metals uptake and homeostasis in plants, a more systematic
characterization of the different members of the NRAMP family
is further required.

ZRT, IRT-Like Proteins (ZIP) Transporters
Members of the ZIP family named on the first member identified
ZRT IRT- like Protein in Arabidopsis, expressed in roots of
iron deficient plants and found to be capable of transporting
various heavy metals such as Fe, Zn, Mn, Cd and Ni within
cellular systems (Mäser et al., 2001). The key feature of the ZIP
family is that these proteins can transport heavy metals from the
extracellular space or from organelles lumen into the cytoplasm.
In Arabidopsis, 15 genes viz. ZIP1-12, IRT1, IRT2, and IRT3 of
the ZIP family are reported (Milner et al., 2013). Among these

members, AtIRT1, AtIRT2, and AtIRT3 transporters are well
characterized, with AtIRT1 being the most studied (Eide et al.,
1996; Lin et al., 2009; Vert et al., 2009) for their involvement in
regulation of Zn and Fe homeostasis in plants. Rest of the ZIP
familymembers has been studied for theirmembrane localization
and heavy metals they transport into or outside of a specific
organelle (Milner et al., 2013). In a model legume Medicago
truncatula, six ZIP family transportersMtZIP1,MtZIP3,MtZIP4,
MtZIP5, MtZIP6, and MtZIP7 have been tested for their ability
to complement yeast heavy metals uptake mutants, and each
family member was able to rescue the growth of Zn, Mn, and
Fe uptake mutants, indicating their function in heavy metals
transport (López-Millán et al., 2004).

Apart from the abovementioned transporters, recently
another transporter arsenate reductase (ACR) has been
characterized in yeast Saccharomyces cerevisiae, a model system
for As resistance. It was reported that a 4.2-kb region conferred
arsenite (AsIII) resistance in S. cerevisiae; they found three
ACR genes, namely ACR1, ACR2, and ACR3 (Bobrowicz et al.,
1997). These authors also reported that ACR1 regulates ACR2
and ACR3 by transcriptional factor and any loss in ACR1
function yeast conferred arsenite and arsenate hypersensitivities
(Bobrowicz et al., 1997; Ghosh et al., 1999). Later on, Landrieu
et al. (2004a,b) reported that ACR2 represents arsenate reductase
that showed homology to yeast ASCR2 (ScACR2). Similarly,
Ellis et al. (2006) reported other transporter PvACR2 from
P. vittata and OsACR2.1 and OsACR2.3 from O. sativa (Duan
et al., 2007). Earlier, ACR2 (called as CDC25) was thought to
be involved in As metabolism in A. thaliana. Recent studies
on A. thaliana have revealed the involvement of new arsenate
reductase (ACR), namely HAC1 (Chao et al., 2014) or ATQ1
(Sánchez-Bermejo et al., 2014). Chao et al. (2014) reported that
loss of function of HAC1 in A. thaliana resulted in decreased
As accumulation in roots, and thus, there was diminished As
efflux to external medium. Another transporter, OsABCC1
localized in phloem cells of O. sativa, has been reported to be
involved in sequestration of As to vacuole (Song et al., 2014).
However, in anaerobic paddy fields, As (mainly Arsenite) uptake
is regulated by transporters of Si, namely Lsi1 (low silicon 1;
influx transporter) and Lsi2 (low silicon 2; efflux transporters)
(Ma et al., 2008). Apart from these transporters, there are some
other transporters as well that transfer arsenate and arsenite.
Likewise, a transporter from P. vittata, PvACR3 has been
reported to compartmentalize As into the vacuoles and loss in its
function results in As hypersensitivity (Indriolo et al., 2010).

Transcriptomics
Investigations on the basic mechanisms of heavy metal tolerance
and adaptation are the area of great scientific interest and an
intensive research. Various stressors induce an expression of a set
of genes in plants (Nakashima et al., 2009).

At molecular level, the regulation of gene expression is
very important for the biological processes, which determines
the fate of plant development as well as tolerance to heavy
metal stress. Stressors trigger large number of genes and several
proteins in order to link the signaling pathways that confer
stress tolerance (Umezawa et al., 2006; Valliyodan and Nguyen,
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2006; Manavalan et al., 2009; Tran et al., 2010). These genes are
classified into two groups: the regulatory genes and the functional
genes (Tran et al., 2010). The genes of regulatory group encode
various transcription factors (TFs), which can regulate various
stress-responsive genes cooperatively and/or separately and thus,
constitute a gene network. However, the genes of functional
group encode metabolic compounds such as amines, alcohols,
and sugars, which play a crucial role in heavy metal stress
tolerance. The TFs, which are reported to be master regulators,
control an expression of gene clusters and usually members of
multigene families. Studies reveal that a single TF can control
the expression of many target genes via specific binding of the
TF to the cis-acting element in the promoters of its target genes
(Wray et al., 2003; Nakashima et al., 2009). Most of the TFs
contain a DNA-binding domain that interacts with cis-regulatory
elements in the promoters of its target genes and via a protein–
protein interaction domain that helps in oligomerization of TFs
with other regulators (Wray et al., 2003; Shiu et al., 2005).
This type of transcriptional regulatory system is referred as
“regulon” (Nakashima et al., 2009). Various TFs families such as
AREB/ABF, MYB, AP2/EREBP, WRKY, bHLH, bZIP, MYC, HSF,
DREB1/CBF, NAC, HB, ARID, EMF1, CCAAT-HAP2, CCAAT-
DR1, CCAAT-HAP3, CCAAT-HAP5, C2H2, C3H, C2C2-Dof,
C2C2-YABBY, C2C2-CO-like, C2C2-Gata, E2F-DP, ABI3VP1,
ARF, AtSR, CPP, E2F-DP, SBP, MADS, TUB, etc. are known
to influence stress response in plants (Singh et al., 2002; Shiu
et al., 2005; Shameer et al., 2009). LeDuc et al. (2006), in a
transcriptome analysis on plants, reported that plants treated
with heavymetals could induce transcription factors that regulate
corresponding transcriptional processes.

Liang et al. (2013) reported first FER regulatory gene involved
in Fe uptake in tomato, and the functional analog of FER is
FER-like Deficiency Induced Transcripition Factor (FIT) that has
been conferred to play an important role under Fe deficiency
in Arabidopsis (Yuan et al., 2005). In addition to this, there
are several other subgroups of bHLH family viz., AtbHLH38,
AtbHLH39, AtbHLH100, and AtbHLH101 that have been shown
to be upregulated under Fe deficiency in roots and leaves
of Arabidopsis (Wang et al., 2007; Yuan et al., 2008). Later,
several researchers proposed that AtbHLH38 or AtbHLH39
interacts with FIT and forms heterodimers and directly activates
transcription factors for ferric chelate reductase and ferrous
transporters, which are the two major genes regulating Fe uptake
under deficient condition (Varotto et al., 2002; Vert et al., 2002;
Yuan et al., 2008). In Arabidopsis, IRT1 has been reported to be
the most essential ferrous transporter. Beside transporting Fe, it
can also transport Zn, Mn, Co, Ni, and Cd, and thus, these metals
get accumulated under Fe deficiency (Vert et al., 2002; Schaaf
et al., 2006). A recent study by Wu et al. (2012) in Arabidopsis
revealed that expression of FIT with AtbHLH38 or AtbHLH39
further activates expression of several other transporters viz.,
HMA3, (MTP3), Iron Regulated Transporter2 (IRT2) that play
regulatory role in maintaining Fe content under Cd exposure.

Transcriptome analysis in A. thaliana and B. juncea exposed
to Cd stress has revealed the induction of basic region leucine
zipper (bZIP) and zinc finger transcription factors (Ramos et al.,
2007). ERF1 and ERF5, two transcription factors belonging

to AP2/ERF superfamily (characterized by AP2/ERF domain;
Nakano et al., 2006), have been reported to be induced when
A. thaliana was exposed to Cd (Herbette et al., 2006). Similar
induction of TFs has been reported in A. halleri under Cd stress
(Weber et al., 2006). Differential expression of ERF factors under
Cd indicates toward their responses to various levels of Cd
stress. A study by Nakashima and Yamaguchi-Shinozaki (2006)
reported down-regulation of dehydration-responsive element-
binding protein (DREB) transcription factor (involved in cold
and osmotic stress responsive genes) in roots ofA. thaliana under
heavy metal treatment and suggested it could be acclimation
response and DREB might have helped in normalizing osmotic
potential, so that flow of heavy metal-contaminated water could
be reduced, thus helping plants to avoid toxic effects of heavy
metal. Therefore, acquiring a deep knowledge of the interrelated
mechanisms, which regulate the expression of these genes, is a
crucial issue in plant biology and necessary to generate genetically
improved crop plants for extreme environments like heavy metal
stress (Umezawa et al., 2006; Valliyodan and Nguyen, 2006;
Nakashima et al., 2009). Summary of an involvement of TFs in
conferring heavy metal and other abiotic stresses tolerance is
given in Table 2.

Mitogen-Activated Protein Kinase MAPK Cascade
MAPK cascade are activated in response by plants when exposed
to heavy metal stresses. This cascade has its significance in
activation of signal transduction pathway used in hormone
synthesis (Jonak et al., 2002). This cascade involves three
kinases viz., MAPK kinase kinase (MAPKKK), the MAPK
kinase (MAPKK), and the MAPK, which are activated by
phosphorylation process. The finally formed phosphorylated
MAPK cascade phosphorylates substrates in cells including
transcription factors in nucleus. Therefore, MAPK regulates the
transduction of information downstream. Jonak et al. (2004) have
shown four isoforms of MAPK that are activated under Cu or
Cd stress in Medicago sativa. All these pathways finally lead to
regulation of transcription factors that in turn activate genes
for activation of metal transporters, biosynthesis of chelating
compounds, and other defensing compounds.

Proteomics
Proteomics is a well-established technique in the post-genomic
era (Liu et al., 2013). Proteomics deals with the study of large-
scale expression of proteins in an organism encoded by its
genome (Anderson and Anderson, 1998). Proteomics not only
serves as a powerful tool for describing complete protein changes
in any organisms but it can also be used to compare variation
in protein profiles at organ, tissue, cell and organelle levels
under various stress conditions including heavy metal stress
(Ahsan et al., 2009). Although genomic analysis has enhanced our
understanding regarding plants’ response to heavy metal toxicity,
transcriptomic changes in the genome are not always reflected
at protein level (Gygi et al., 1999; Hossain and Komatsu, 2013).
For instance, putative Zn and Mg transporter protein MHX was
more abundant in Arabidopsis even though its corresponding
transcript level was not different (Elbaz et al., 2006). This
suggests that transcription of any gene is not a guaranty
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TABLE 2 | Summary of transcription factors (TFs) whose overexpression in plants confers heavy metal stress tolerance.

Name of TF Family of TF Studied plant Plant response References

WRKY6 WRKY Arabidopsis

thaliana

Plant exhibits dual WRKY-dependent signaling mechanism that

modulates Asv uptake and transposon expression and provides a

coordinated strategy for Asv tolerance and transposon gene silencing

Castrillo et al., 2013

WRKY22, WRKY25,

and WRKY29

WRKY Arabidopsis

thaliana

TFs induced by Cu and Cd involve in stress response via MAPK and

oxylipin signaling

Opdenakker et al., 2012

WRKY45 WRKY Arabidopsis spp. Involved in Zn and Fe stress response and homeostasis van de Mortel et al., 2006

ART1 C2H2 Oryza sativa Constitutively expressed in roots and regulates genes related to Al

tolerance and thus increases Al tolerance

Yamaji et al., 2009

ASR5 – Oryza sativa Overexpression enhanced Al tolerance. Authors suggested that this

protein is localized in nucleus and acts as a transcription factor to

regulate the expression of different genes that collectively protect rice

cells from Al-induced stress

Arenhart et al., 2013

ZIP39 bZIP Oryza sativa Overexpression regulates endoplasmic reticulum (ER)

stress-responsive genes and thus regulates ER stress response

Takahashi et al., 2012

HsfA4a HSF Oryza sativa Expression of this TF increases Cd tolerance by inducing

up-regulation of MT gene expression

Shim et al., 2009

Hsfs HSF Arabidopsis spp. TF up-regulated by Cd stress and plays a role in Cd stress tolerance Herbette et al., 2006;

Weber et al., 2006

CaPF1 AP2/EREBP Pinus Virginiana

Mill.

Overexpression of TF enhanced production on of APX, GR, and SOD

which confer tolerance against oxidative stress induced by Cd, Cu,

and Zn

Tang et al., 2005

OXS2 C2-H2 ZF Arabidopsis

thaliana

Enhanced Cd tolerance Blanvillain et al., 2011

ACEl – Saccharomyces

cerevisiae

TF binds metal-regulatory elements (MREs) upstream promoter of

target gene for induction of MT which plays a role in Cu homeostasis

Fürst et al., 1988

ACE1 – Arabidopsis

thaliana

Overexpression protects plant against Cu stress by inducing activity

of SOD and POD, and suppressing inhibition in chlorophyll

biosynthesis

Xu et al., 2009

ACE1 – Saccharomyces

cerevisiae

TF binds MREs upstream promoter of target gene for induction of MT

which plays a role in Cu homeostasis

Dixon et al., 1996

ACP1 AP2/EREBP Physcomitrella

patens

Expression of this gene enhances metal responding genes which

confer tolerance against Cd and Cu

Cho et al., 2007

OSISAP1 Zinc-finger

protein

Nicotiana

tabacum

Overexpression enhances tolerance against various abiotic stresses

including heavy metal like Cu, Cd, Mn, Ca, Zn, and Li

Mukhopadhyay et al.,

2004

STOP1 C2-H2 ZF Arabidopsis

thaliana

Expression protects plants from Al toxicity by proton pump regulation Iuchi et al., 2007

bHLH38 and bHLH39 bHLH Arabidopsis

thaliana

Overexpression enhanced Cd tolerance by increased Cd

sequestration in roots and also improved Fe homeostasis in shoots

Wu et al., 2012

bHLH100 bHLH Arabidopsis spp. Involved in Zn and Fe stress response and homeostasis van de Mortel et al., 2006

– MYB, bHLH,

bZIP

Sedum alfredii These TFs families were up-regulated by Cd and involved in Cd

hyperaccumulation and tolerance

Gao et al., 2013

PYE bHLH Arabidopsis

thaliana

Expression is implicated in regulating plant growth response against

Fe deficiency

Long et al., 2010

that gene would be translated into a functional protein. This
may occur due to the potential impact of post-transcriptional
and translational modifications, protein folding, stability and
localization, protein–protein interactions, which are considered
important determinants of a protein function (Dalcorso et al.,
2013b). Therefore, depth analyses of proteomics offer a new
platform for identifying target proteins, which take part in
heavy metal detoxification, and in studying complex biological
processes and interactions among the possible pathways that
involve a network of proteins (Ahsan et al., 2009).

Furthermore, it is known that proteins directly take part in
plant stress responses, and plant adaptations to heavymetal stress

are always accompanied with deep proteomic changes. Therefore,
technique of proteomics can be exploited for deciphering the
possible relationships between proteins abundance and plant
stress adaptation. It can contribute to better understanding of
physiological mechanisms under heavy metal stress such as
perception of stress and further signaling cascade that leads
to changes in the expression of huge numbers of genes at
transcriptional level and in metabolite profile, which could
be used for an acquisition of an enhanced plant tolerance
under heavy metal toxicity (Kosová et al., 2011). Studies have
revealed that an abundance of defense proteins was increased
for scavenging of ROS, and molecular chaperones play a role
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in re-establishing the conformation of a functional protein that
contributes in helping heavymetal stressed plants tomaintain the
redox homeostasis (Zhao et al., 2011; Sharmin et al., 2012; Wang
et al., 2012). Under heavy metal stress, modulations of various
metabolic pathways occur such as photosynthesis, respiration,
nitrogen metabolism, sulfur metabolism, etc. particularly in
photosynthesis and mitochondrial respiration that help stressed
plants to produce more reducing power such as NADPH,
NADH, and FADH2 and assimilatory power ATP to compensate
high energy demand of heavy metal-challenged plants (Hossain
and Komatsu, 2013). For example, an increased abundance
of RUBISCO large sub unit (LSU)-binding proteins, oxygen-
evolving enhancer protein 1 and 2, NAD(P)H-dependent oxido-
reductase, and photosystem I and II-related proteins is an
adaptive feature to withstand heavy metal stress (Semane et al.,
2010). The cellular mechanism of stress sensing and further
transduction of signals into the cell appear to be the first
reactions in the plant cell against heavy metal. Furthermore, an
intracellular communication of stress signals plays a fundamental
role in signal transduction pathways under stress, which
ultimately activate defense-related genes and thus signaling
cascades (Hossain et al., 2012c). Therefore, to decipher an
underlying molecular mechanism of alterations in the protein
signature of a plant cell in order to withstand stress, a deep
study on the cellular as well as organelle proteomics would be
of great importance in developing heavy metal-tolerant crops.
Alterations in protein profile under heavy metal stress, which
could be utilized for developing heavy metal-tolerant plants, are
given in Table 3.

Apart from inducing synthesis of amino acids (proline
and histidine), amines, organic acids, and plant antioxidant
α-tocopherol and glutathione, some nitrogen containing
metabolites like some peptides (phytochelatins, metallothioneins,
and ferritins) have been reported to play an important role under
heavy metal stress. In the following section, we will discuss about
the roles of peptides in heavy metal tolerance.

PEPTIDES

Phytochelatins (PCs) have been the best-characterized chelators
in plant systems. PCs belong to a family of metal-binding
protein having general structure (c-Glu-Cys)nGly (n = 2–
11) (Cobbett and Goldsbrough, 2002). These are synthesized
by the transpeptidation of the γ-Glu-Cys moiety of GSH, and
the transpeptidation reactions are carried out by enzyme named
phytochelatin synthase (PCS). It has been reported that PCS were
activated under heavy metal exposure (Rauser, 1995; Cobbett,
2000), and similar PC synthase activity has been observed in
several other crops (Klapheck et al., 1995; Chen et al., 1997;
Mishra et al., 2009a). Loeffler et al. (1989) confirmed that metals
induce PC synthesis, in in-vivo as well as in in-vitro cultures,
and were continuously synthesized until activated metal ions
chelated. Haag-Kerwer et al. (1999) reported induction of PCs
in B. juncea after the accumulation of Cd in the cells, and thus
plays important role in detoxifying heavy metals (Hirata et al.,
2005). Due to the presence of thiol group, they have the capability
of chelating metals and forming complexes (Cobbett, 2000),

which are then sequestrated in the vacuole. From the preceding
discussion, it is clear that chelation by PCs is not a simple process
but involves a complex molecular mechanism, where firstly, the
PCS gets activated by metal ion and biosynthesis of PCs takes
place; secondly, formation of complexes and sequestration in
vacuole; thirdly, more complexation with the sulfides or organic
acids in the vacuole, and finally detoxified. Besides detoxifying
heavy metals, PCs also play a major role in metal ion homeostasis
and thus regulating the metal ion availability in plant cells (Guo
et al., 2008b).

Like PCs, metallothioneins (MTs) are synthesized and
activated under heavy metal toxicity. They belong to a family
of low molecular weight protein having cysteine-rich metal
binding peptide. Due to the presence of mercaptides, they have
the ability of binding metal ions. Metal-binding activities of
MTs have been expressed in Escherichia coli in presence of
Cd, Zn, and Cu (Tommey et al., 1991). In addition, Zhou
and Goldsbrough (1994) reported restoration in Cu tolerance
ability of MT-deficient yeast strains, when provided with the
Arabidopsis MTs. Similar to this, Zhigang et al. (2006) conferred
increased tolerance ofA. thaliana to Cd and Cu, when ectopically
substituted with B. juncea MT. Moreover, comparative study of
mutant and wild-type A. thaliana has clearly revealed that MT
mutant was hypersensitive to Cd and accumulated much lower
amount of Cd than wild type, thus conferring role of MTs in
both heavy metal tolerance as well as accumulation (Zimeri et al.,
2005). In terms of transcript amount, expression of MT genes
varies during different developmental stages of plant as well as
under varying environmental condition (Rauser, 1999). Beside,
chelating metal ionsMTs can also catalyze antioxidant protection
mechanism as well as plasma membrane repair (Hamer, 1986).

Ferritins are other multimeric proteins that could accumulate
iron atom (Harrison andArosio, 1996). However, animal ferritins
have been reported to store other metals like Cu, Zn, Cd, etc.,
whereas plants ferritin could store only Fe. These are synthesized
in plants when there is excess Fe in the surroundings and thus
represents first-line defense against Fe-induced oxidative stress
(Ravet et al., 2009). These are not only involved in storing or
releasing Fe but also involved in scavenging free reactive iron
(Ravet et al., 2009).

PLANT GROWTH HORMONES

In spite of five classical plant hormones, i.e., gibberellins (GAs),
cytokinins (CKs), auxins, abscisic acid (ABA), and ethylene,
jasmonate (JA), brassinosteroids (BR), and salicylic acid (SA) are
also well known for regulating many physiological processes and
heavy metal stress tolerance (Freeman et al., 2005b; Gangwar
et al., 2010; Gangwar and Singh, 2011; Peleg and Blumwald, 2011;
Choudhary et al., 2012a,b; Vriet et al., 2012). Furthermore, it
is also expected that some more growth hormones are yet to
be discovered in future. In laboratory as well as filed studies,
two strategies have been used for plant hormone-mediated
increase in stress tolerance as well as crop yield. These strategies
include exogenous application of plant hormones and genetic
manipulation of their endogenous contents. Both approaches
have given promising results for increasing crop yield and
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TABLE 3 | Summary of heavy metal-induced changes in protein expressions and their potential uses in developing heavy metal tolerant plants.

Metal Technique(s)

used

Plant

species

Alterations in protein(s) expression profile Plant response References

Cd 2DE, MALDI-

TOF-MS,

LC–ESI-

QTOF-MS

Arabidopsis

thaliana

∼1100 Spots reported, 41 spots showed significant

changes including phytochelatins,

glutathione-S-transferases, ATP sulfurylase, glycine

hydroxymethyl transferase, trehalose-6-phosphate

phosphatase

Alterations in these proteins in

plant roots help to withstand Cd

stress via modulating S

assimilation

Roth et al., 2006

2DE, MALDI-

TOF/TOF-

MS

Phytolacca

americana

32 Proteins are differentially expressed, 14 enhanced, and

11 reduced under Cd treatment. Major changes were in

photosynthetic pathway, S and GSH metabolism,

transcription, translation and chaperones, 2

cys-peroxiadse and oxido-reductases proteins

These alterations play a key role

in enhancing Cd hypertolerance

in plant

Zhao et al., 2011

2DE, MALDI-

TOF/TOF-

MS

Arabis

paniculata

18 Proteins differentially expressed upon Cd treatment

which were mainly related with photosynthetic pathway

and antioxidant defense system such as

ribulose-5-phosphate 3-epimerase (RPE), RuBisCO

activase, Protein thylakoid formation 1 (THF1), Mn-SOD,

APX, GST

Plant adopted alterations mainly

in antioxidative/xenobiotic

defense and hence exhibited

increased Cd tolerance

Zheng et al., 2011

2-D DIGE,

MALDI-

TOF/TOF

Populus sp. A number of changes in the expression of proteins with

various functions were identified; in particular a decreased

abundance of oxidative stress regulating proteins, whereas

pathogenesis-related proteins showed a drastic increase in

abundance. Furthermore, a large number of proteins

involved in carbon metabolism showed a decrease in

abundance, while proteins involved in remobilizing carbon

from other energy sources were up-regulated

Due to deep proteomic

changes, plant experienced

lesser negative impact of Cd on

physiological parameters and

hence plant showed Cd

tolerance

Kieffer et al., 2008

2DE, MALDI-

TOF-MS

Oryza sativa 36 Proteins either up-and/or down-regulated by Cd

treatment. Most of the proteins were related to oxidative

stress and antioxidative system

Antioxidative system related

proteins play a role in Cd

tolerance

Lee et al., 2010

2DE Thlaspi

caerulescens

48 Tentatively spots identified which represent core

metabolic functions, e.g., photosynthesis, nitrogen

assimilation, carbohydrate metabolism as well as putative

signaling and regulatory functions

The possible roles of some of

the proteins were related with

metal accumulation and

tolerance

Tuomainen et al., 2006

As 2DE, MALDI-

TOF-MS

Oryza sativa 23 Proteins up-regulated related with defense proteins like

S-adenosylmethionine synthetase (SAMS), GSTs, cysteine

synthase (CS), GST-tau, and tyrosine-specific protein

phosphatase proteins (TSPP), and an omega domain

containing GST

SAMS, CS, GSTs, and GR

presumably work synchronously

and GSH plays a key role in

protecting rice roots against As

stress

Ahsan et al., 2008

IPG, 2-DE,

MALDI-

TOFMS,

ESI-MS/MS

Oryza sativa 12 Proteins differentially expressed related with energy

production and metabolism. RuBisCO large subunit and

chloroplast 29 kDa ribonucleoproteins were decreased

Reduction in photosynthetic

machinery proteins was related

with As toxicity

Ahsan et al., 2010

2DE, MALDI-

TOF-MS,

LC-MS/MS

Chlamydomonas

reinhardtii

15 Proteins overexpressed like oxygen-evolving enhancer

protein, rubisco small subunit 1, chaperones, Fe-SOD,

Mn-SOD, and heat shock like proteins

Organism exhibited time course

acclimation against As stress by

modulating protein signatures

Walliwalagedara et al.,

2012

Hg 2-DE,

MALDI-TOF-

TOF-MS

Suaeda salsa 43 Proteins with significant changes reported. They include

proteins related to metabolic processes, photosynthesis,

stress response, protein fate, energy metabolism, signaling

pathways, and immunosuppression

Alterations in these proteins

was linked with Hg toxicity

Liu et al., 2013

2DE,

ESI-MS/MS

Oryza sativa 25 Proteins differentially expressed by Hg involved in

cellular functions including the redox and hormone

homeostasis, chaperone activity, metabolism, and

transcription regulation

Plant exhibited Hg toxicity due

to alterations in these proteins

Chen et al., 2012a

2DE Oryza sativa 33 Proteins were highly reproducible. Most of the proteins

showed homology to RuBisCO protein, and some to

defense/stress-related proteins, like the pathogenesis

related class 5 protein (OsPR5), the probenazole-inducible

protein (referred to as the OsPR10), SOD, and the oxygen

evolving protein

Severe fragmentation of

ribulose-1,5-bisphosphate

carboxylase/oxygenase and

induction of stress-related

proteins causes Hg toxicity

Hajduch et al., 2001

(Continued)
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TABLE 3 | Continued

Metal Technique(s)

used

Plant

species

Alterations in protein(s) expression profile Plant response References

Cr 2DE,

MALDI-TOF,

MALDI-TOF-

TOF

Miscanthus

sinensis

36 Proteins differentially expressed. The identified proteins

included: heavy metal-inducible proteins such as

carbohydrate and nitrogen metabolism, molecular

chaperone proteins, and novel proteins such as inositol

monophosphatase, nitrate reductase, adenine

phosphoribosyl transferase, formate dehydrogenase, and

a putative dihydrolipoamide dehydrogenase

Miscanthus plant experienced

Cr toxicity due to altered

vacuole Cr sequestration,

nitrogen metabolism, and lipid

peroxidation in roots

Sharmin et al., 2012

2DE, MALDI-

TOF-MS-MS

Zea mays 58 Proteins identified related with photosynthesis and

chloroplast organization, the redox homeostasis and

defense response, RNA processing, protein synthesis and

folding, DNA damage response, mitochondrial oxidative

phosphorylation, and miscellaneous with unknown function

Plant exhibited Cr toxicity due to

the deep changes in proteomics

Wang et al., 2013

Cu 2DE Oryza sativa Changes RuBisCO, defense/stress-related proteins, like

the pathogenesis related class 5 protein (OsPR5), the

probenazole-inducible protein (referred to as the OsPR10),

and SOD

Alterations in these protein

resulting in Cu stress

Hajduch et al., 2001

SDS-PAGE

and 2DE

Oryza sativa 13 Proteins identified such as metallothionein-like protein,

membrane-associated protein-like protein, putative

wall-associated protein kinase, pathogenesis-related

proteins, and the putative small GTP-binding protein Rab2

which were up regulated by Cu stress. Three proteins, a

putative small cytochrome P450 (CYP90D2), a putative

thioredoxin and a putative GTPase, were down regulated

by Cu stress

Plant experienced Cu toxicity

due to a decline in thioredoxin

and CYP90D2 and thus

engineering of this protein may

enhance Cu tolerance

Zhang et al., 2009a,b

2DE-MS Populus sp. 450 Proteins were reproducibly separated, including

metabolic processes proteins such as photosynthesis, S

assimilation, sugar metabolism, chaperones, and defense

related proteins such as GST, DHAR, APX

Plant adjusts its metabolism

against Cu stress by changing

protein expression. These

proteomic temporal features

should be taken into account

for the future development of

metal tolerant plants

Lingua et al., 2012

IPG, 2-DE,

MALDI-TOF-

MS

Ectocarpus

siliculosus

Up-regulation of photosynthesis (PSII Mn-stabilizing

protein of OEC33), glycolysis, and pentose phosphate

metabolism; higher accumulation of HSP70 and vBPO

Cu stress leads to up-regulation

of certain proteins such as

HSP70 and vBPO for proper

protein folding and ROS

detoxification, respectively

Ritter et al., 2010

IPG, 2-DE,

LC-MS/MS

Cannabis

sativa

Induced aldo/keto reductase, PCs expression,

suppression/no change in ROS scavenging enzymes

Cu induced aldo/keto reductase

acts as a Cu chaperone reduce

Cu ions to Cu(I), promote

PCs-mediated vacuolar

transport in order to reduce Cu

toxicity

Bona et al., 2007

SDS-PAGE

and 2DE

Oryza sativa 25 Protein spots were differentially expressed in Cu-treated

samples. Among them, 18 protein spots were

up-regulated, and 7 protein spots were down-regulated.

Antioxidants proteins such as glyoxalase I, peroxiredoxin,

aldose reductase, and DnaK-type molecular chaperone

up-regulated. Moreover, down-regulation of key metabolic

enzymes like alpha-amylase or enolase revealed also

observed

Plant showed physiological

alterations under Cu stress due

to the change in metabolic

pathway related proteins

Ahsan et al., 2007

Zn iTRAQ Arabidopsis

thaliana

521 Proteins identified. Among them, several were

membrane proteins. IRT1, an iron and zinc transporter,

and FRO2, a ferric-chelate reductase, increased greatly in

response to excess Zn

Plant exhibits Zn stress in which

V-ATPase activity might play a

central role

Fukao et al., 2011

2DE-MS Populus sp. 450 Proteins were reproducibly separated, including

metabolic processes proteins such as photosynthesis, S

assimilation, sugar metabolism, chaperones, and defense

related proteins such as GST, DHAR, APX

Plant adjusts its metabolism

against Zn stress by changing

protein expression

Lingua et al., 2012

(Continued)
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TABLE 3 | Continued

Metal Technique(s)

used

Plant

species

Alterations in protein(s) expression profile Plant response References

Ni 2DE, MALDI-

TOF-MS

Brassica

juncea

61 Proteins differentially expressed. The majority of

proteins were found to be involved in S metabolism and

protection against oxidative stress. The induced

expression of photosynthesis and ATP generation-related

proteins were also observed

An increased expression of

defense proteins and those

related with energy metabolism

suggesting the Ni tolerance in

plant is an energy-demanding

process

Wang et al., 2012

2-DE,

LC-MS/MS

Alyssum

lesbiacum

12 Proteins differentially expressed. They include proteins

of S metabolism, antioxidants, heat shock

Modulation in S metabolic and

defense related proteins

enhanced Ni tolerance of plant

Ingle et al., 2005

Mn IPG, 2-DE,

Nano-LC-

MS/MS, ESI

MS/MS

Vigna

unguiculata

8 Differentially expressed proteins indentified involved in

CO2 fixation, stabilization of the Mn cluster of the

photosystem II, pathogenesis-response reactions, and

protein degradation

Coordinated interplay of

apoplastic and symplastic

reactions help plant to

withstand Mn toxicity

Führs et al., 2008

2DIEF/SDS-

PAGE, 2D

Blue native

BN/SDS-

PAGE

Hordeum

vulgare

A range of proteins differentially expressed in response to

Mn. A putative inorganic pyrophosphatase, a

probenazole-inducible protein (PBZ1), a protein belonging

to a universal stress protein (Usp) family, a chloroplast

translational elongation factor (Tu) and the 50S ribosomal

protein L11

In young leaves toxicity resulted

due to Mn-induced Mg and Fe

deficiencies

Führs et al., 2010

enhancing stress tolerance in a variety of crop species (Vriet et al.,
2012). Although SA andGAs both are cost effective and can easily
be availed for their exogenous application in crop fields under
stress conditions, high cost of synthetic BRs and the variability
of the results have discouraged the use of exogenous BRs in
agriculture and horticulture (Khripach et al., 2000; Gomes, 2011).
In this context, modulation of endogenous BRs levels by genetic
engineering has emerged an efficient strategy for enhancing crop
yield under normal as well as adverse growth conditions (Divi
andKrishna, 2009). Herein, we have summarized recent advances
made in enhancing heavy metal tolerance as well as achieving
high yield with desired agronomic traits by using salicylic acid
(SA), brassinosteroids (BRs), and gibberellins (GA).

Salicylic Acid (SA)
In recent years, SA has gained much scientific attention due to
its function as an endogenous signaling molecule conveying local
and systemic plant–pathogen defense responses. Besides this, it
has been reported that SA also plays a role in plant response
against abiotic stresses such as heavy metal toxicities, chilling,
drought, osmotic stress, and heat. In this sense, SA appears to
be an “effective therapeutic agent” for plants as in the case of
mammals (Rivas-San Vicente and Plasencia, 2011). Salicylic acid
is a phenolic compound biosynthesized in all the plant kingdoms
through the phenylpropanoid pathway (Métraux, 2002).

Being well characterized and studied role of SA in pathogen
resistance, an exogenous application of SA could also provide
protection against several types of abiotic stresses such as
heavy metals, high or low temperature, salinity, radiation,
etc. (Horváth et al., 2007; Hayat et al., 2010). Since under
stress condition, reduced plant growth could result from an
altered hormonal status, and thus, an exogenous application
of plant hormones like SA has been an attractive approach

to attenuate heavy metal stress. Studies carried out so far
demonstrated that SA treatment to plants evoke acclimatization
effect, which causes an enhanced tolerance toward heavy metal
stress primarily due to the adjustment of metabolic processes
such as enhanced antioxidative capacity. In one of the first works,
it was demonstrated that SAmay induce protective effects against
Cu toxicity in tobacco and cucumber (Strobel and Kuc, 1995).
Later, an increasing numbers of studies have demonstrated SA-
mediated amelioration of toxicities produced by various heavy
metals. Zhou et al. (2009) reported that 0.2mM of SA ameliorates
Hg toxicity in alfalfa by increasing activity of APX, POD, and
NADPH oxidase, and amounts of ascorbate, glutathione, and
proline, and decreased lipid peroxidation, and an increase in
NADPH oxidase activity. It indicates a role of ROS signaling in
such an amelioration process.

In maize plant, Cd declined the growth by inhibiting
chlorophyll synthesis, ribulose 1,5-bisphosphate carboxylase
and phosphoenolpyruvate carboxylase, and enhancing oxidative
damage such as lipid peroxidation and electrolyte leakage,
whereas SA pretreatment of seeds reversed these toxic effects
(Krantev et al., 2008). In cucumber, an exogenous application
of SA has also been reported to enhance Mn tolerance
by modulating nutrients’ statuses and antioxidant defense
system (Shi and Zhu, 2008). Similarly, in pea seedlings,
Cd toxicity caused decline in growth due to an inhabited
photosynthetic process and enhanced oxidative damage, whereas
SA pretreatment alleviated damaging consequences of Cd on
growth and photosynthesis (Popova et al., 2009). Moreover, Guo
et al. (2009) have demonstrated that SA pretreatment alleviated
Cd toxicity in rice by enhancing antioxidant components such
as SOD, CAT, POD, glutathione, and non-protein thiols, which
in turn depressed oxidative damage induced by Cd. Conversely,
Metwally et al. (2003) reported that SA down-regulates activities
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of antioxidant enzymes such as CAT and APX under Cd stress
and concluded that SA alleviates Cd toxicity not at the level of
antioxidant defense system but by affecting other mechanisms of
Cd detoxification. Contrary to this, SA at higher concentration
may also cause tissue damage and cell death by inducing oxidative
stress (Horváth et al., 2007). For instance, SA has been shown
to potentiate generation of ROS in photosynthetic tissue under
abiotic stresses and thus causes tissue damage (Borsani et al.,
2001). Therefore, it can be concluded that the concentration of
SA appears to be important in regulating stress responses. The
SA-mediated alterations in genes that are involved in mediating
stress tolerance are listed in Table 4.

It is known that SA also involves in the regulation of
oxidative stress caused by various stress factors (Yang et al.,
2004). An enhanced level of SA under heavy metal stress suggests
a connection between the extent of plant tolerance to heavy
metal, which is mediated by the SA signal and the redox balance
(Metwally et al., 2003; Sharma and Dietz, 2009). In the SA
signaling under heavy metal stress, several signaling molecules
such as nitric oxide (NO), H2O2, Ca+2, etc. and their interactions
have been reported (Rodríguez-Serrano et al., 2009; Xu et al.,
2014). Moreover, Cui et al. (2012b) have reported a cross-talk
of haem oxygenase-1 and SA in alleviation of Cd stress in M.
sativa. In spite of considerable progress in the understanding of

TABLE 4 | Summary of plant hormone-mediated alterations in genes and their relation with an increased heavy metal stress tolerance.

Plant hormone Alteration in gene(s) Studied plant Response References

Salicylic acid Heam oxygenase-1 (HO-1) Medicago sativa Alleviation of Cd-triggered oxidative stress by

re-establishing redox homeostasis

Cui et al., 2012b

Serine acetyltransferase Thlaspi spp. Elevated level of glutathione and increased Ni tolerance Freeman et al., 2005b

Citrate synthase Cassia tora Enhanced Al tolerance through an efflux of citrate Yang et al., 2003

SR3 Phaseolus vulgaris This gene up-regulated by SA and provides resistance

against Hg, Cd, As, and Cu

Zhang et al., 2006

gsh1, gsh2, or gr1 and gst Arabidopsis thaliana SA did not influence expression of these genes except

gst and thus did not affect Cu and Cd tolerance

Xiang and Oliver, 1998

MT1 and MT2 Arabidopsis thaliana SA did not alter expression of these genes hence did not

impart Cu tolerance

Murphy and Taiz, 1995

Brassinosteroids Antioxidant defense related

genes

Raphanus sativus Increased resistance against Cr toxicity due to

diminished production of ROS and an enhanced defense

system

Choudhary et al., 2012b

Fe-SOD, CAT1, APX, GST1,

GR, POD, GSH1, PAL, PPO,

SKDH, and CAD

Solanum lycopersicum Alleviates Cd-induced inhibition on photosynthesis by

up-regulating defense system and decreasing oxidative

stress

Ahammed et al., 2013

Genes encoding polyamines,

IAA and ABA metabolic genes,

and Cu homeostasis

Raphanus sativus Lower ion leakage due to a maintenance of Cu

homeostasis and hence an enhanced Cu tolerance

Choudhary et al., 2012a

HSP83, HAT2, GH3.9, SAL2,

NIA1, GAS4, SAUR36,

DWARF1, DWARF4, and

BR6OX

Arabidopsis thaliana BR-exhibited synergistic effect with Cd and increased

Cd sensitivity of plants

Villiers et al., 2012

NADPH oxidase and RBOH,

MAPK1, and MAPK3

Cucumis sativus BR-mediated production of H2O2via NADPH oxidase

increased stress tolerance in cooperation with kinases

Xia et al., 2009

Induced NO production that

up-regulates ABA biosynthetic

gene vp14

Zea mays BR-induced NO production that up-regulates ABA

biosynthesis gene vp14 and thus confers stress

tolerance

Zhang et al., 2011

Set of stress marker genes Brassica napus Increased tolerance against abiotic stresses such as

drought and cold

Kagale et al., 2007

UBC32, a stress-induced

functional ubiquitin conjugation

enzyme (E2)

Arabidopsis thaliana Protects plants from abiotic stress through endoplasmic

reticulum (ER)-associated protein degradation (ERAD)

component and UBC32 plays a crucial role in such

protection

Cui et al., 2012a

Gibberellic acid IRT1 Arabidopsis thaliana GA-suppressed up-regulation of IRT1 and enhanced

accumulation of NO that enhanced Cd tolerance

Zhu et al., 2012

CAX2 Nicotiana tabacum GA did not influence expression of this gene and did not

alter Mn and Cd tolerance

Hirschi et al., 2000

GA-biosynthesis and redox

genes

Glycine max Increased Cu tolerance due to decreased oxidative

damage and enhanced antioxidant defense system

Khan and Lee, 2013

adenosine 5′-phosphosulfate

reductase (APR)

Arabidopsis thaliana GA plays a role in abiotic stress tolerance via regulating S

assimilation pathway

Koprivova et al., 2008
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SA signaling, molecular events, which are involved in the SA
signaling in order to alleviate heavy metal stress, are still poorly
known (Figure 4).

Brassinosteroids (BRs)
Brassinosteroids are group of hormones having ability of
regulating ion uptake in plant cells and very effectively reducing
the heavy metal accumulation in plants. BRs can also impart
plant stress tolerance against variety of biotic and abiotic
stresses such as heavy metal, salinity, drought, low and high
temperatures, and pathogen attack (Bajguz and Hayat, 2009;
Hao et al., 2013). An increasing numbers of studies have shown
that an exogenous application of BRs is widely used in order to
improve crop yield as well as stress tolerance in various plant
species (Divi and Krishna, 2009; Peleg and Blumwald, 2011; Li
et al., 2013). Cadmium, a heavy metal, very toxic even when
present in trace amount, have been found to retard chlorophyll
biosynthesis, activity of several enzymes, and inhibit light and
dark reactions of photosynthesis by limiting the energy/reducing

sources (Vassilev and Yordanov, 1997). However, it has been
reported that Cd-induced toxicity can be lowered with BR.
For instance, Janeckzo et al. (2005) reported that Cd-induced
inhibition in pigments content, cotyledon growth could be
minimized with exogenous epibrassinolide (EPL: another BR).
Hayat et al. (2007) have verified the role of HBL under Cd
stress in B. juncea. In Vigna radiata L. Wilczek, Al stress caused
a reduction in length, fresh and dry mass of root and shoot;
activity of carbonic anhydrase; water use efficiency; relative water
content; chlorophyll content; and the rate of photosynthesis,
whereas addition of BR reversed these toxic effects and protected
the plants via elevated level of proline in an association with an
antioxidant defense system which at least in part was responsible
for the amelioration of Al stress (Ali et al., 2008). In B. juncea,
BR alleviates Cd toxicity through enhanced level of antioxidants
(Hayat et al., 2007). The Cr, a known toxic metal, reduced
the growth performance of Raphanus sativus L., whereas BR
protects plants from adverse consequences of Cr toxicity by
regulating antioxidant defense system (Sharma et al., 2011).

FIGURE 4 | Schematic representation of plant hormone-mediated alleviation of heavy metal toxicity in plants. Heavy metals’ signals are perceived by

receptors, and receptors transduce signals via cAMP, pH, etc. causing alterations in electron transport systems of the cell, which results into an excess production of

reactive oxygen species (ROS). ROS cause damage to macromolecules and thus create oxidative stress inside the cell. On the other hand, in the presence of plant

hormones, signals received by them initiate a cascade of signal transduction involving haem oxygenase, two transcription factors induced by brassinosteroids (BES1

and BZR1) and a gibberellic acid-mediated GA-GID1-DELLA signaling pathway. These factors, in turn, initiate expression of the nuclear genes encoding defense

proteins, transcription factors (TFs), heat shock proteins (HSP), and metal transporter proteins (MTs). MTs protect electron transport chains against heavy metals by

regulating their uptake. Defense proteins protect plant against ROS under heavy metal stress (Numbers 1 and 2 designated to chloroplast and mitochondria show the

sources of ROS in cell).
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Micronutrients such as Cu and Ni are essential for growth
and development, but in excess, they cause severe toxic effects.
Cu, which has increasingly attained interest due to its use in
fungicides, fertilizers, and pesticides, is also highly toxic to plants,
but when seeds of B. juncea primed with epibrassinolide (a
form of BR) were exposed to Cu stress, improvement in shoot
emergence and biomass accumulation, along with reduced Cu
uptake and accumulation, was noticed (Sharma and Bhardwaj,
2007). Similar protective responses of exogenous BR on B. juncea
and V. radiata under Cu and Ni toxicities have been reported
(Alam et al., 2007; Sharma et al., 2008; Fariduddin et al., 2009;
Yusuf et al., 2012b). Besides higher plants, BR has also been
found to be effective in alleviating heavy metals such as Cu,
Pb, and Cd toxicities in algae, Chlorella vulgaris, through the
regulation of antioxidant defense system (Bajguz, 2010). The BR-
mediated alterations in the gene expressions and their roles in
stress tolerance are listed in Table 2.

Gibberellic Acid (GA)
The gibberellins (GAs) are a large family of tetracyclic
diterpenoid plant growth hormone associated with the plant
growth and developmental processes (Matsuoka, 2003). To
alleviate deleterious effects of stress, different types of plant
hormones have been used that might complement decreased
and/or imbalanced hormone level during exposure of stress. Of
these, GA has been a focus of plant scientists (Hisamatsu et al.,
2000; Iqbal et al., 2011; Zhu et al., 2012).

Several studies revealed that GA alleviates various abiotic
stresses including heavymetal toxicity. InA. thaliana, GA (5µM)
is reported to ameliorate Cd toxicity by reducing Cd uptake
and lipid peroxidation (Zhu et al., 2012). Furthermore, authors
demonstrated that GA reduces NO level which in turn down-
regulates expression of IRT1 gene, a Fe transporter (might be
involved in Cd absorption) as indicated by no effect of GA in
reduction of Cd uptake in an IRT1 knockout mutant irt1. It
is reported that an exogenous addition of GA reprograms the
growth of soybean under stress conditions by enhancing the
levels of daidzein and genistein contents, suggesting protective
role of GA in mitigating adverse consequences of stressors
(Hamayun et al., 2010). In wheat seedlings, Ni (50mM) has
been shown to decline growth, chlorophyll content, and carbonic
anhydrase activity by enhancing oxidative stress, whereas an
addition of GA ameliorates Ni-induced toxic effects (Siddiqui
et al., 2011). Gangwar et al. (2011) have also reported that
an exogenous addition of GA ameliorates toxic effects of Cr
(50–250µM) on growth and ammonium assimilation of pea
seedlings by regulating oxidative stress and an antioxidant
system. In B. napus L., GA (50µM) has been shown to alleviate
Cd (10–400µM)-induced negative impact on seed germination
and growth by regulating oxidative stress and damage (Meng
et al., 2009). It has been observed that Pb and Zn affect
seed germination in Cicer arietinum cv. Aziziye-94 by altering
hormonal balance, and an exogenous application of GA reverses
the toxic effect of heavy metals (Atici et al., 2005). Furthermore,
Sharaf et al. (2009) have also reported that GA mitigates
detrimental effects of Cd and Pb on broad bean and lupin plants
by regulating activities of proteases, CAT, and POD. These studies

clearly indicate that GA plays an important role in protecting
plant metabolism against various stresses; however, this may
occur via various routes suggesting complex GA signaling during
plant acclimation against stresses. The GA-mediated alterations
in genes and their relation with stress tolerance are summarized
in Table 4.

CONCLUSION AND FUTURE PROSPECTS

Around 3.1 billion people from developing countries live in rural
areas, and out of this population, ∼2.5 billion people depend
on agricultural practices for their livelihood, which contributes
30% to economic growth because of the gross domestic products
obtained from agriculture (FAO, 2012). It is expected that
world population will be about 10 billion by the middle of
the twenty-first century, and we will witness serious food
shortages (Smith et al., 2010; Naika et al., 2013). Furthermore, the
situation will likely to be severe due to increased anthropogenic
activities that have resulted into unwanted changes in the
environment such as soil, air, and water pollution with various
factors including heavy metal. These situations (pollution and
population) are posing a continuously increasing burden on
global crop productivity, and hence, there are demands for
crop varieties that should be adaptive and resistant to various
stresses.

In contrast to biotic stress, which is under the control of
monogenic trait, abiotic stress tolerance is a genetically complex
process that involves many components of signaling pathways,
multigenic in nature, and thus, comparatively more difficult to
control and engineer (Vinocur and Altman, 2005). Therefore,
plant-engineering strategies for heavy metal tolerance depend
on the expression of gene(s) whose product(s) are involved
either in signaling and regulatory pathways or in the synthesis
of functional and structural proteins and metabolites that
confer heavy metal stress tolerance. Recently, several efforts are
being made to improve heavy metal stress tolerance capacity
through genetic engineering with several achievements; however,
the genetically complex mechanisms of heavy metal stress
tolerance and transfer of technology to field conditions make
it difficult. Advances in various functional tools, resources,
and “omics” have helped in the molecular characterization
of the genes, metabolites, and proteins involved in heavy
metal stress tolerance. Furthermore, genetic engineering of
heavy metal-responsive genes (particularly TFs), metabolites,
and proteins has shown surprising results but its full potential
remains to be exploited. The design of future experiments that
use a multidisciplinary approach with well-integrated “omics,”
i.e., transcritomics, metabolomics, proteomics, etc. ultimately
required to significantly improve heavy metal tolerance as well
as tolerance to other abiotic stresses in economically important
crop plants.
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