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The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is
regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms
studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and
encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These
two genes are conserved in other legume species, and form two sub-clades within the
larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia
and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation
of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins
or proanthocyanidins are being synthesized, and provide feedback regulation to MBW
complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves
regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing
anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated
by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features
of the MBW gene regulation networks are also conserved within legumes, including the
ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8
clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-
specific MBW complexes has resulted in subspecialization for controlling anthocyanin
or proanthocyanidin synthesis.

Keywords: anthocyanin, condensed tannin, flavonoid, proanthocyanidin, repressor, transcription factor

INTRODUCTION

Anthocyanins and proanthocyanidins (syn. condensed tannins) are related flavonoid compounds
that are produced by plants throughout development, and in response to biotic and abiotic
stresses (Dixon and Paiva, 1995). Anthocyanins are red/purple/blue pigments that provide
color to flowers, fruits and vegetative tissues in plants, fulfilling a variety of physiological
requirements. In flowers and fruits, anthocyanins provide visual cues to pollinators and
seed distributers, respectively, and can form highly elaborate patterns (e.g., stripes, spots),
especially when combined with other types of pigments (Davies et al., 2012). In vegetative

Abbreviations: MBW,MYB-BHLH-WDR.
Footnotes: The nucleotide sequences reported in this manuscript have been submitted to NCBI with accession numbers
KT699106, KT699107, KT699108 and KT699109.
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tissues, anthocyanins are commonly produced in response to
environmental conditions that may compromise photosynthetic
activity (e.g., high light, cold, nutrient deficiency), which can
result in photoinhibition and the production of reactive oxygen
species (ROS; Gould, 2004). Anthocyanins ameliorate the effect
of these stresses by screening underlying photosynthetic tissue
from excess light (Neill and Gould, 2003; Hughes et al., 2005;
Albert et al., 2009; Hatier et al., 2013), and may also act as
antioxidants in planta to neutralize ROS (Gould et al., 2002;
Landi et al., 2014). Proanthocyanidins are structurally related to
anthocyanins, being composed of anthocyanidin-based subunits
(flavan-3-ols) that are polymerized into proanthocyanidin
molecules (Zhao et al., 2010). The accumulation and distribution
of proanthocyanidins varies widely between plant species, being
found in seed coats of most angiosperms, but also accumulating
in flowers, fruits, and leaves in some taxa (Dixon et al., 2005).
They act as feeding deterrents for chewing insects and herbivores
because of their astringency properties, and may also have
structural functions (Barbehenn and Constabel, 2011).

Anthocyanins and proanthocyanidins offer health benefits
to humans and other animals. Dietary anthocyanins have been
associated with improvements in a range of risk factors for
chronic diseases including metabolic syndrome, cardiovascular
disease, and certain cancers (Martin et al., 2011), and there
is increasing interest in fortifying fruits and vegetables with
increased quantities of anthocyanins (Butelli et al., 2008; Espley
et al., 2013). In contrast, proanthocyanidins offer a range of
health and production benefits to grazing ruminants (e.g.,
sheep, cattle), due to their protein-binding properties. Dietary
protein from forage legumes is rapidly fermented in the rumen,
producing methane gas within stable foams and resulting in
the potentially lethal condition, pasture bloat. The inclusion
of proanthocyanidins in the diet prevents pasture bloat, by
protecting protein from premature fermentation. This increases
animal weight and milk production because of improved
amino acid absorption, and also reduces methane and nitrogen
emissions (Douglas et al., 1999; Beauchemin et al., 2007).
The major forage legumes grown for pastoral agriculture are
alfalfa (Medicago sativa) and white clover (Trifolium repens),
which lack significant quantities of proanthocyanidins in their
leaves. Therefore, there is strong interest in developing high-
proanthocyanidin forage legumes using genetic technologies
(Dixon et al., 2013).

Anthocyanin and proanthocyanidin biosynthesis is regulated
primarily at the transcriptional level, by MBW transcription
factor complexes (Koes et al., 2005). Both anthocyanin and
proanthocyanidin biosynthesis share the same WDR protein and
bHLH2/AN1/TT8 clade bHLH factor, which form the MBW
complex together with R2R3-MYB proteins (Zhang et al., 2003;
Baudry et al., 2004; Davies et al., 2012). These R2R3-MYB
proteins provide specificity to the complex and determine which
pathways are regulated (anthocyanins vs. proanthocyanidins;
Ramsay and Glover, 2005; Heppel et al., 2013). While all three
components are necessary to activate anthocyanin synthesis, the
R2R3-MYB genes largely determine the pigmentation patterning,
as these are typically encoded by small gene families with diverse
spatial expression patterns (Schwinn et al., 2006; Albert et al.,

2011; Lowry et al., 2012). For proanthocyanidin regulation,
multiple R2R3-MYB factors have been identified that act within
MBW complexes. However, unlike the small gene families of
anthocyanin-related R2R3-MYB genes, the proanthocyanidin-
related MYBs studied to date appear to differ in their functions.
For example, MYB14 from Trifolium arvense and Medicago
truncatula activates the accumulation of proanthocyanidins when
expressed in T. repens or Medicago (Hancock et al., 2012; Liu
et al., 2014), while other proanthocyanidin-related MYBs are
either less effective or are unable to activate proanthocyanidin
synthesis when expressed alone (Sharma and Dixon, 2005;
Verdier et al., 2012). It is not yet clear how these MYB
genes act together, although it seems likely that they may act
upon different subsets of target genes, to cooperatively activate
proanthocyanidin synthesis (Deluc et al., 2008; Terrier et al.,
2009; Liu et al., 2014).

The MBW complex operates within a gene regulation
network that involves reinforcement and feedback repression.
Current models suggest that the MBW complex activates the
expression of the bHLH2/AN1/TT8 clade bHLH factor to provide
reinforcement, and also activates the expression of R2R3-MYB
and R3-MYB repressors to provide feedback repression (Albert
et al., 2014a). In both petunia and Arabidopsis, the R2R3-MYB
repressors (At-MYBL2 contains a partial R2 domain) are also
expressed in leaves during non-stress conditions, preventing
inappropriate synthesis of anthocyanins (Dubos et al., 2008;
Albert et al., 2011). The R2R3-MYB repressors actively repress
transcription through motifs (EAR, TLLLFR) in their C-terminal
domains (Aharoni et al., 2001; Matsui et al., 2008; Albert et al.,
2014a), while the small R3-MYB proteins act competitively to
inhibit the formation of functional MBWcomplexes (Schellmann
et al., 2002; Yuan et al., 2013; Albert et al., 2014a).

The R2R3-MYB repressors that regulate anthocyanin
(Aharoni et al., 2001; Dubos et al., 2008;Matsui et al., 2008; Albert
et al., 2011, 2014a; Salvatierra et al., 2013) and proanthocyanidin
synthesis (Huang et al., 2014; Cavallini et al., 2015; Yoshida et al.,
2015) act upon MBW complexes (Matsui et al., 2008; Albert
et al., 2014a), which differs from the R2R3-MYB repressors that
were first identified as regulators of cinnamic acid derivatives
(e.g., At-MYB4; Tamagnone et al., 1998; Jin et al., 2000). Many
features of the MBW gene regulation network are likely to be
conserved in eudicots (Albert et al., 2014a), if not more widely
across angiosperms (Albert et al., 2014b), but it is not yet known
which features are conserved and which differ in legumes.

The synthesis of anthocyanins and proanthocyanidins in
white clover (T. repens) is tightly regulated, forming intricate
anthocyanin pigmentation patterns in leaves (Albert et al.,
2015) and restricted accumulation of proanthocyanidins to
specific organs and tissues (Abeynayake et al., 2012; Hancock
et al., 2012). Improving the content and distribution of
proanthocyanidins in white clover is highly desirable for
agricultural purposes, but this first requires an understanding
of how the gene regulation networks determine anthocyanin
and proanthocyanidin synthesis. The roles of repressors for
proanthocyanidin regulation in forage legumes are currently
unknown, yet these have been proposed as interesting gene
targets for increasing the anthocyanin or proanthocyanidin
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content through mutagenesis and/or breeding strategies (Albert
et al., 2014c).

The aim of this research was to investigate how the
anthocyanin and proanthocyanidin biosynthetic pathways are
regulated in legumes, and determine if R2R3-MYB repressors
perform similar roles for regulating flavonoid synthesis, as
they do in other groups of angiosperms. In this study, two
distinct R2R3-MYB repressors were identified and characterized
in white clover for their roles for regulating anthocyanin and
proanthocyanidin synthesis.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Trifolium repens cultivar ‘Sustain’ plants were germinated
from seed while T. repens plants with the ‘red leaf ’ or ‘red
leaflet’ anthocyanin leaf markings were clonally propagated
(four biological replicates). Plants were grown in pots within
a greenhouse that was heated at 15◦C and vented at 25◦C
with ambient lighting. Clonal copies of plants with the ‘red
leaflet’ marking were also grown outside during winter [July
2013; mean monthly air temperature 6.1◦C/9.7◦C (min/max);
mean min ground temperature 3.3◦C; mean relative humidity
88.7%], to expose plants to cold temperatures that induce the
anthocyanin leaf marking (Albert et al., 2015). Expanding leaves
were sampled for RNA isolation early during the illuminated part
of the day, while temperatures will still cool outside (>10◦C).
Inflorescences were sampled from the ‘red leaflet’ genotype
grown in the greenhouse at two developmental stages; when the
first flowers were beginning to open (Inf. A), and when half of the
inflorescence had open flowers, but before any flowers senesced
(Inf. B). Tissue was immediately frozen in liquid nitrogen upon
collection. The presence of proanthocyanidins were detected
by staining with p-dimethylaminocinnamaldehyde (DMACA; Li
et al., 1996).

RNA Isolation
Total RNA was isolated from ∼100 mg leaf tissue with the
ISOLATE II RNA Plant mini kit using lysis buffer APR (Bioline,
Auckland, New Zealand). The presence of proanthocyanidins in
inflorescences required modification of the cell lysis conditions,
to prevent proanthocyanidins from binding nucleic acids
and inhibiting RNA isolation and purification. Frozen tissue
(∼100 mg) was immediately homogenized in lysis buffer BPR
supplemented with 4% (w/v) cetyltrimethyl ammonium bromide
and 4% (w/v) polyvinylpyrrolidone, and then processed as per
manufacturer’s instructions.

Gene Isolation
First stand cDNA was synthesized from 4 µg total RNA
(mixed tissues and developmental stages from leaves and
inflorescences) using Tetro cDNA synthesis kit (Bioline), primed
with NAg11 (Supplementary Table S1). PCR using degenerate
oligonucleotides (NAg3/NAg4) was performed using 2 µL
of first strand cDNA, 250 nM of each oligonucleotide with
MyTaqTM Red polymerase mastermix (Bioline) in 50 µL

reactions. Amplification was performed with the following
cycling conditions: 94◦C 2 min; (94◦C 15 s, 58-1◦C/cycle 30 s,
72◦C 1 min) × 10; (94◦C 15 s, 48◦C 30 s, 72◦C 1 min) × 30; 72◦C
5 min, 12◦C hold. PCR products were sequenced, and primers
were designed to extend sequences by 3′ RACE. 3′ RACE PCR
was performed upon cDNAs primed with NAg11, essentially as
described in Albert et al. (2015); primers NAg34/NAg12, and
NAg35/NAg13 were used for the primary and secondary PCR
reactions, respectively, for Tr-MYB133; primers NAg72/NAg12,
and NAg73/NAg13 were used for the primary and secondary
PCR reactions, respectively, for Tr-MYB134. The sequences
were extended further by 5′ RACE using the SMARTer

R©
RACE

cDNA amplification kit (Clontech), following the manufacturer’s
instructions, with gene-specific primers: Tr-MYB133, NAg49
and NAg47; Tr-MYB134, NAg45, and NAg46. Full cDNAs were
amplified with primers NAg100/NAg103 and NAg72/NAg96 for
Tr-MYB133 and Tr-MYB134, respectively.

Phylogenetic Analysis
A maximum likelihood phylogenetic tree was generated, with
1000 bootstrap replicates, upon amino acid sequences for R2R3-
MYB repressors which were aligned using MUSCLE in Geneious
software (v7; Kearse et al., 2012) and manually adjusted.

Quantitative Reverse
Transcription-Polymerase Chain
Reaction (qRT-PCR)
First strand cDNA was prepared from 1 µg DNAseI-treated total
DNA using iScript reverse transcriptase mastermix (Biorad), and
diluted 20-fold with water. Quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) was performed essentially
as described in Dorling et al. (2011) upon four biological
replicates per treatment, with three technical replicates, using
Kapa SYBR

R©
FAST Universal qPCR reagents for Tr-MYB133,

Tr-MYB134, Tr-AN1, DFR, GAPDH, and PP2 assays (KAPA
Biosystems) or Kapa probe FAST Universal qPCR reagents for
ACTIN, ANR, and Tr-MYB14 (Supplementary Table S1 for
primer and probe sequences). Relative transcript abundance was
determined relative to the geometric mean of ACTIN, GAPDH,
and PP2 (Dorling et al., 2011).

Luciferase Assays
The ANR, Tr-MYB133, and Tr-MYB134 promoters from
T. repens were amplified and cloned into a dual luciferase vector,
pNWA62, as has previously been done for the DFR promoter
(Albert et al., 2015). Effector constructs that constitutively express
transcription factors from a CaMV35S promoter were generated
by cloning the coding sequence into pENTR-D Topo, and LR-
recombination (Life technologies) into the gateway adapted
binary vector pRSH1. Binary vectors containing the effector
and dual luciferase reporter constructs were transformed into
Agrobacterium tumefaciens (GV3101). Agrobacterium strains
were grown and cells were resuspended in 10 mM MgCl2
containing 250 µM acetosyringone and cultured for 4 h at
room temperature, and cultures were infiltrated into Nicotiana
benthamiana leaves. Dual luciferase assays were performed with
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six biological replicates, using DLAR-2B reagents (Targeting
Systems) as described in Albert et al. (2014a). Data are expressed
as ratios of firefly:renilla luciferase activity.

Statistical Analyses
One-way ANOVAwas performed with post hoc Fishers LSD (5%)
using Genstat software (version 15). Analyses were performed
upon log10-transformed data to normalize variances.

RESULTS

Two Distinct Clades of Flavonoid
R2R3-MYB Repressors Exist in Legumes
A candidate gene approach was taken to identify R2R3-
MYB repressor genes that may be associated with regulating
anthocyanin and/or proanthocyanidin synthesis in white clover.
Fa-MYB1 from strawberry (Aharoni et al., 2001), Ph-MYB27
from petunia (Albert et al., 2011, 2014a) and At-MYBL2
(a truncated R2R3-MYB repressor) from Arabidopsis (Dubos
et al., 2008; Matsui et al., 2008) were used as queries to
search sequence databases for Lotus japonicus, M. Truncatula,
and Glycine max using BLASTp. Criteria used for screening
putative repressors were the presence of the bHLH interaction
motif ([D/E]Lx2[R/K]x3Lx6Lx3R; Zimmermann et al., 2004)
and either an EAR motif (LxLxL, DLNxxP; Kagale et al.,
2010) or similarity to the TLLLFR repression motif present
in At-MYBL2 (Matsui et al., 2008). The putative repressors
identified from Lotus (Lj-MYB133, Lj-MYB134), Medicago
(Medtr4g85530, Medtr5g079670), and Glycine (Glyma20g01610,
Glyma07g33960, Glyma02g41440) fall into two well-supported
clades, represented by Lj-MYB133 and Lj-MYB134 from Lotus
(Figure 1; Supplementary Figure S1). These sequences were
aligned, and degenerate oligonucleotides were designed to the
conserved DNA binding domain.

Two genes putatively encoding R2R3-MYB repressors were
isolated from T. repens using a combination of PCR with
degenerate oligonucleotides, and 3′ and 5′ rapid amplification
of cDNA ends (RACE). The genes were named Tr-MYB133
and Tr-MYB134, based upon their sequence similarity to the
corresponding homologs from L. japonicus (Shelton et al., 2012).
Both Tr-MYB133 and Tr-MYB134 have the bHLH interaction
motif present in the MYB DNA binding domain, and contain
an LxLxL-type EAR repression motif in the C-terminus (Tr-
MYB133 LDLNLELSL; Tr-MYB134 LNLEL).

Subsequent to isolating Tr-MYB133 and Tr-MYB134, an RNA-
seq dataset became available from T. repens leaf tissue. Two
additional R2R3-MYB repressors were identified, Tr-MYB4 and
Tr-MYB7. These sequences belong to the MYB4-like clade of
repressors, which are involved in regulating phenylpropanoid
metabolism (e.g., cinnamic acid derivatives), rather than
anthocyanins/proanthocyanidins directly, and therefore these
were not pursued further.

The sequences of the putative R2R3-MYB repressors from
T. repens were compared with other R2R3-MYB repressors and
used to construct a phylogenetic tree (Figure 1). Tr-MYB133 and
Tr-MYB134 fall within the well-supported clade of anthocyanin

and proanthocyanidin repressors, which includes the functionally
characterized anthocyanin repressors Fa-MYB1 and Ph-MYB27,
and the proanthocyanidin repressors Vv-MYBC2-L1 and Pt-
MYB165. The legume sequences form two distinct subclades,
separating Tr-MYB133 and Tr-MYB134, raising the possibility
that these two genes may have subspecialized, at least within
legumes.

Tr-MYB133 and Tr-MYB134 Repress
MBW Complex Activity
The activities of Tr-MYB133 and Tr-MYB134 were investigated
by promoter activation/repression assays, using Agrobacterium-
infiltrated N. benthamiana leaves. The promoters for
DIHYDROFLAVONOL 4-REDUCTASE (DFR), a biosynthetic
gene common to anthocyanin and proanthocyanidin pathways,
and the proanthocyanidin biosynthetic gene ANTHOCYANIDIN
REDUCTASE (ANR) were isolated from T. repens, and cloned
into a dual luciferase reporter construct. Effector constructs
expressing Tr-MYB133 or Tr-MYB134 were assayed with
combinations of MBW constructs that have been characterized
previously; the proanthocyanidin regulator Ta-MYB14 from
Trifolium arvense (94% amino acid identity to Tr-MYB14;
Hancock et al., 2012), the anthocyanin activator Tr-RED LEAF
and bHLH factor Tr-AN1 (Albert et al., 2015).

The DFR promoter was activated when the R2R3-MYB
anthocyanin regulator Tr-RED LEAF was co-infiltrated
(Figure 2A), presumably forming MBW complexes with
endogenous WDR and bHLH proteins (bHLH1 clade/JAF13)
that are expressed in Nicotiana leaves (Albert et al., 2014a;
Montefiori et al., 2015). Co-expression of Tr-AN1 (bHLH2
clade) enhanced the activation. However, co-transformation
with Tr-MYB133 or Tr-MYB134 reduced the activity of the DFR
promoter. Similarly, the R2R3-MYB proanthocyanidin regulator
Ta-MYB14 activated the DFR promoter when the bHLH Tr-AN1
was coinfiltrated, but this was repressed by Tr-MYB133 and Tr-
MYB134. The ANR promoter was activated when Ta-MYB14 was
coinfiltrated with Tr-AN1, but this was repressed by Tr-MYB133
and Tr-MYB134 (Figure 2B). The anthocyanin regulator Tr-RED
LEAF was unable to activate the ANR promoter, even when the
bHLH Tr-AN1 was coinfiltrated.

Tr-MYB133 and Tr-MYB134 Participate in
Gene Regulation Networks
The expression patterns for Tr-MYB133, Tr-MYB134 and
anthocyanin/proanthocyanidin biosynthesis and regulatory
genes were examined to establish whether these genes are
associated with the accumulation of these metabolites. This
was conducted using T. repens germplasm and tissues that
accumulate anthocyanins or proanthocyanidins, due to the
expression of endogenous anthocyanin-related R2R3-MYB
genes (e.g., Tr-RED LEAF), or the proanthocyanidin regulator
Tr-MYB14, respectively.

Wild-type plants from cultivar ‘Sustain’ lack anthocyanin leaf
markings (Figure 3A). In contrast, T. repens with ‘red leaf ’
patterning have dark red leaves due to the accumulation of
anthocyanins, which is regulated by the R2R3-MYB gene RED
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FIGURE 1 | Maximum likelihood phylogenetic tree of R2R3-MYB proteins. Nodes with bootstrap support >50% from 1000 replicates are shown. Accession
numbers for sequences used to construct this tree are provided in Supplementary Table S2. At, Arabidopsis thaliana; Am, Antirrhinum majus; Fa, Fragaria ananassa;
Gt, Gentiana triflora; Gm, Glycine max; Lj, Lotus japonicus; Md, Malus domestica; Mt, Medicago truncatula; Ph, Petunia hybrida; Pt, Populus trichocarpa; Sl,
Solanum lycopersicum; Ta, Trifolium arvense; Taf, T. affine; Tr, T. repens; To, T. occidentale; Vv, Vitis vinifera.

LEAFRL (Albert et al., 2015). Clonal copies of aT. repens genotype
with the ‘red leaflet’ (distinct from ‘red leaf ’) anthocyanin leaf
marking were grown in a greenhouse (warm), or outside during
winter (cold). Anthocyanin pigmentation associated with the ‘red
leaflet’ locus (Vrl) only occurs in response to cold temperatures
(Figure 3A). However, the R2R3-MYB activator responsible for
‘red leaflet’ patterning has not yet been conclusively identified
or mapped to the Vrl locus (Albert et al., 2015). Developing
inflorescences contain very little anthocyanin, and petals appear
white or pale pink, although anthocyanin spots are present on the
calyx.

The presence and spatial localization of proanthocyanidins
was determined by staining tissues with DMACA, which reacts

with polymerized flavanols to form an insoluble blue/purple
precipitate. DMACA does not react with anthocyanin or other
flavonoids (e.g., flavonols). Proanthocyanidins do not accumulate
to high levels in white clover leaves (including high-anthocyanin
genotypes; Figure 3B), although upon close examination
DMACA staining is observed in trichomes (Figure 3C;
see also Hancock et al., 2012). In contrast, inflorescences
contain proanthocyanidins and stain strongly with DMACA
(Figures 3D,E; see also Abeynayake et al., 2012).

Transcript abundance for genes involved in anthocyanin and
proanthocyanidin biosynthesis and regulation was determined
by quantitative RT-PCR (Figure 3F). Transcript abundance for
DIHYDROFLAVONOL-4 REDUCTASE (DFR), a biosynthetic
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FIGURE 2 | Tr-MYB133 and Tr-MYB134 repress flavonoid biosynthetic
genes. Promoter activation/repression dual luciferase assays upon (A) the
Tr-DFR (anthocyanin and proanthocyanidin biosynthetic gene) promoter or (B)
the Tr-ANR promoter (proanthocyanin biosynthetic gene), using
Agrobacterium-infiltrated Nicotiana benthamiana leaves. Combinations of
activator R2R3-MYB genes Tr-RED LEAF (anthocyanin) or Ta-MYB14
(proanthocyanidin) were tested with or without the bHLH factor Tr-AN1, and
the R2R3-MYB repressors Tr-MYB133 or Tr-MYB134. Firefly luciferase activity
was normalized to Renilla luciferase activity (LUC/REN); mean ± SEM n = 5
biological replicates are shown. Mean that are significantly different are
indicated by different letters, as determined by post hoc Fisher’s LSD (5%).

gene common to anthocyanin and proanthocyanidin pathways,
strongly correlated with the presence of anthocyanins; the
highest transcript levels were detected in the high-anthocyanin
genotype (RL), and the ‘red leaflet’ plants exposed to cold (C)
had ∼120-fold higher transcript levels for DFR than plants
grown under glasshouse conditions (W). DFR transcripts were

also detected in developing inflorescences at modest levels.
By contrast, transcripts for the proanthocyanidin biosynthetic
gene ANTHOCYANIDIN REDUCTASE (ANR) were detected in
developing inflorescences, particularly in immature buds (Inf.
A), but were only detected at trace levels in leaves (Figure 3F).
Transcript abundance for the bHLH factor Tr-AN1were elevated
in leaf samples accumulating anthocyanin (RL, C) or in
developing inflorescences, which accumulate proanthocyanidins.
Transcripts for the proanthocyanidin regulator, Tr-MYB14, were
abundant in developing inflorescences, particularly in immature
buds (Inf. A), but were not detected in the leaf samples.
Tr-MYB133 expression correlated with the accumulation of
anthocyanins, with high transcript abundance detected in leaves
of the high-anthocyanin genotype (RL), and ‘red leaflet’ plants
exposed to cold (C) had ∼9-fold higher transcript levels for
Tr-MYB133 than plants grown under glasshouse conditions
(W). Tr-MYB133 transcripts were detected in inflorescences at
low levels. By contrast, Tr-MYB134 expression was associated
with proanthocyanidin accumulation, with highest transcript
abundance detected in immature inflorescences. Trace levels of
Tr-MYB134 were detected in leaf samples.

A transgenic white clover line expressing Ta-MYB14 from a
CaMV35S promoter (Hancock et al., 2012) was also analyzed
(Supplementary Figure S2). This line exhibits the ‘red midrib’ and
‘red V’ anthocyanin leaf markings, and thus anthocyanin-related
R2R3-MYB genes are also expressed in leaves (Albert et al.,
2015). Tr-MYB134 was highly expressed in leaves ectopically
expressingTa-MYB14, while transcript abundance of Tr-AN1was
not significantly altered compared to controls.

The expression patterns for Tr-MYB133 and Tr-MYB134
raised the possibility that these genes might be directly
regulated by MBW complexes containing anthocyanin- or
proanthocyanidin-specific R2R3-MYB activators, respectively.
The ability for the anthocyanin R2R3-MYB regulator Tr-
RED LEAF and the proanthocyanidin regulator Ta-MYB14
to regulate Tr-MYB133 and Tr-MYB134 was investigated by
promoter activation assays. The promoters of Tr-MYB133 and
Tr-MYB134 were isolated and cloned into a dual luciferase
reporter construct. Tr-RED LEAF strongly activated the Tr-
MYB133 promoter (acting with endogenous bHLH and WDR
proteins), even without the addition of the bHLH partner
Tr-AN1 (Figure 4A). Co-infiltration with Tr-MYB133 weakly
repressed this activation. Ta-MYB14 only weakly activated
the Tr-MYB133 promoter and required the co-infiltration of
the bHLH Tr-AN1. Co-infiltration with either Tr-MYB133
or Tr-MYB134 strongly repressed the activation by Ta-
MYB14.

The Tr-MYB134 promoter was responsive to the activity of
Ta-MYB14, which was enhanced by the addition of Tr-AN1
(Figure 4B). Tr-RED LEAF did not activate the Tr-MYB134
promoter unless the bHLH factor Tr-AN1 was co-infiltrated, and
this was repressed by eitherTr-MYB133 or Tr-MYB134. However,
Ta-MYB14 alone did activate the Tr-MYB134 promoter, and was
enhanced with the addition of Tr-AN1. Co-infiltration with Tr-
MYB133 or Tr-MYB134 repressed the activation by Ta-MYB14.
The promoter activation assays agreed with the qPCR data, with
the Tr-MYB133 promoter being more responsive to anthocyanin
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FIGURE 3 | MYB133 and MYB134 are expressed in tissues accumulating anthocyanin and proanthocyanidins. (A) Anthocyanin pigmentation phenotypes
of samples used for qRT-PCR. White clover ‘Sustain’ (WT) lacks anthocyanins in leaves, while a genotype with the ‘Red leaf’ (RL) anthocyanin mark accumulates
anthocyanins throughout the lamina. A genotype with the ‘Red leaflet’ trait lack anthocyanins when grown under warm conditions (W), but are induced with cold
temperature (C). Inflorescences have low quantities of anthocyanins, although anthocyanin spots (arrows) are present on the calyx. (B–E) Tissues stained with
DMACA to detect proanthocyanidins (purple). (B) White clover leaves lack proanthocyanidins, except in their trichomes (C). (D) Proanthocyanidins accumulate in
inflorescences and (E) within individual florets. (F) Relative transcript abundance of genes involved in anthocyanin and proanthocyanidin synthesis and regulation was
determined by qRT-PCR. Mean ± SEM n = 4 biological replicates is shown.
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FIGURE 4 | Tr-MYB133 and Tr-MYB134 are regulated by different MBW
complexes. Promoter activation/repression dual luciferase assays upon (A)
the Tr-MYB133 promoter or (B) the Tr-MYB134 promoter, using
Agrobacteria-infiltrated N. benthamiana leaves. Combinations of activator
R2R3-MYB genes Tr-RED LEAF (anthocyanin) or Ta-MYB14
(proanthocyanidin) were tested with or without the bHLH factor Tr-AN1, and
the R2R3-MYB repressors Tr-MYB133 or Tr-MYB134. Firefly luciferase activity
was normalized to Renilla luciferase activity (LUC/REN); mean ± SEM n = 5
biological replicates are shown. Means that are significantly different are
indicated by different letters, as determined by post hoc Fisher’s LSD (5%).

regulators, while the Tr-MYB134 promoter was more responsive
to the proanthocyanidin regulator Ta-MYB14.

DISCUSSION

In all angiosperm species studied to date, anthocyanin
and proanthocyanidin biosynthesis is regulated by MBW
complexes. The current understanding of how anthocyanins
and proanthocyanidins are regulated has recently been extended
to include the activities of repressive R2R3- and R3-MYB

proteins, which operate within a conserved gene-regulation
network (Dubos et al., 2008; Matsui et al., 2008; Albert et al.,
2014a,b). In this study, the roles of R2R3-MYB repressors for
regulating anthocyanin and proanthocyanidin biosynthesis were
investigated in the forage legume, white clover. Two R2R3-MYB
repressors, which are conserved in model legumes, were shown
to repress the activity of anthocyanin and proanthocyanidin
MBW complexes. These two repressors have subfunctionalized
in terms of their regulation, providing a mechanism that allows
anthocyanin and proanthocyanidin synthesis to be regulated
separately.

Two Clades of Repressors in Legumes
are Associated with Proanthocyanidin
and Anthocyanin Regulation
Within the available sequence databases for M. truncatula,
L. japonicus and G. max, two distinct R2R3-MYB genes
exist that encode putative repressors of anthocyanin and/or
proanthocyanidin biosynthesis in legumes. Using a candidate-
gene approach, orthologs of these two genes were isolated
from the forage legume, T. repens. These genes form two
distinct clades when analyzed with other R2R3-MYB repressors,
but share the bHLH interaction domain and EAR active
repression motif, which are necessary for active R2R3-MYB
repressors to assert their repressive activity (Aharoni et al.,
2001; Albert et al., 2014a). These two genes are located on
different linkage groups in Medicago and Glycine, and it is
likely this will also be the case in Lotus and Trifolium,
although data are currently not available for these genera [Lj-
MYB133 is not present in the current genome assembly of
L. japonicus (Shelton et al., 2012), and the T. repens genome
is not available]. The conservation and retention of these two
genes in legumes suggests that they may have non-redundant
functions.

Tr-MYB133 and Tr-MYB134 have similar repressive activities,
but based upon the transcript abundance patterns have different
roles regulating flavonoid synthesis. In luciferase assays,
Tr-MYB133 and Tr-MYB134 both repressed the promoters
of the flavonoid genes DFR (common to anthocyanin and
proanthocyanidin synthesis) and ANR (proanthocyanidin-
specific; Figure 2). Interestingly, they did not exhibit
specificity for the MBW complexes they acted upon, repressing
complexes containing the R2R3-MYB activators Tr-RED LEAF
(anthocyanin) and Ta-MYB14 (proanthocyanidin). While these
two transcription factors have similar repressive activity, their
expression patterns differ. The expression of Tr-MYB133 was
strongly associated with the accumulation of anthocyanin
pigments, while Tr-MYB134 expression was tightly associated
with proanthocyanidin synthesis (Figure 3). This suggested
that Tr-MYB133 and Tr-MYB134 have subspecialized to
predominantly regulate anthocyanins and proanthocyanidins,
respectively.

Subspecialization of R2R3-MYB repressors for anthocyanins
vs. proanthocyanidins has yet to be demonstrated conclusively in
other groups of plants, although several observations suggest this
is likely to occur. In both grape (Vitis vinifera) and strawberry
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(Fragaria sp.), proanthocyanidins are synthesized at early stages
of fruit development, while anthocyanins are produced during
the late stages of ripening (Schaart et al., 2012; Huang et al.,
2014). In grape, the R2R3-MYB repressor Vv-MYBC2-L1 has a
bi-phasic expression pattern that correlates with the synthesis of
both proanthocyanidins (early) and anthocyanins (late) during
berry development (Huang et al., 2014). In contrast, Vv-MYBC2-
L3 expression is associated with proanthocyanidin accumulation,
and not anthocyanins (Cavallini et al., 2015). In strawberry,
however, Fa-MYB1 expression is associated with anthocyanins
and not proanthocyanidins (Aharoni et al., 2001; Lin-Wang
et al., 2010; Schaart et al., 2012). Thus, it appears that R2R3-
MYB repressor gene family members have subspecialized for
proanthocyanidin or anthocyanin biosynthesis in grape and
strawberry, and it is anticipated that this may also occur in more
diverse species.

The association of Tr-MYB133 with anthocyanin synthesis,
and Tr-MYB134 with proanthocyanidin synthesis may occur
because these genes are themselves directly regulated by pathway-
specific MBW complexes. In petunia, the R2R3-MYB repressor
Ph-MYB27 is targeted by the MBW complexes that regulate
anthocyanin synthesis to provide feedback repression, and it
is proposed that this is conserved across eudicots (Albert
et al., 2014a). This was examined by promoter activation assays
upon the promoters of Tr-MYB133 and Tr-MYB134, using the
anthocyanin R2R3-MYB Tr-RED LEAF (Albert et al., 2015)
and the proanthocyanidin R2R3-MYB Ta-MYB14 (Hancock
et al., 2012). These assays agreed with the gene expression
data (Figures 3 and 4), demonstrating that the Tr-MYB133
promoter is more effectively activated by MBW complexes that
contain an anthocyanin-related R2R3-MYB, compared to the
proanthocyanidin regulator.

The Tr-MYB134 promoter was activated by MBW complexes
containing either the anthocyanin- or proanthocyanidin-related
R2R3-MYBs. Interestingly, Tr-RED LEAF was unable to activate
the Tr-MYB134 promoter without the addition of Tr-AN1, which
differs to the activation observed for the Tr-MYB133 promoter.
The findings from the promoter activation assays appear to
contrast slightly with the gene expression studies. White clover
plants with the ‘red leaf ’ anthocyanin leaf marking ectopically
express the Tr-RED LEAF MYB gene (Albert et al., 2015),
yet express Tr-MYB134 poorly (Figure 3). However, in tissues
expressing Tr-MYB14 and accumulating proanthocyanidins, Tr-
MYB134 was expressed. Similar observations have been made
in Medicago, where ectopic expression of the proanthocyanidin
regulators Mt-MYB5 and Mt-MYB14 resulted in 80- and 10-fold
increases, respectively, in the expression of Medtr5g079670, the
ortholog of Tr-MYB134 (Liu et al., 2014). This suggests that Tr-
MYB134 is normally regulated by the proanthocyanidin-related
R2R3-MYB factors, and this is conserved in other legumes.

MYB-bHLH-WDR Gene Regulation
Networks Control Anthocyanin and
Proanthocyanidin Synthesis in Legumes
Recently, a multi-species model was proposed for the MBW
complex and the gene regulation networks that they operate

within, integrating the activities of both activator and repressor
transcription factors (Albert et al., 2014a). While this model was
proposed for anthocyanin regulation, this also has implications
for proanthocyanidin regulation, since anthocyanin and
proanthocyanidin regulation occurs by a similar mechanism and
shares MBW components. Key features of the models include (i)
R2R3-MYB repressors are expressed in tissues to prevent ectopic
synthesis of anthocyanins/proanthocyanidins; (ii) feedback
repression occurs by both R2R3-MYB proteins containing
active repression domains (EAR, TLLLFR), and by the mobile
competitive R3-MYB proteins; (iii) MBW complexes can contain
multiple MYB proteins (e.g., MYB activator + MYB repressor),
bridged by dimerized bHLH proteins; (iv) hierarchical activation
of the AN1-clade bHLH factor occurs to provide reinforcement.

Many commonalities exist between the proposed model
(Albert et al., 2014a) and the findings from this study and
with data from other legume species, although there are
some interesting differences. While the core features of the
MBW complex are highly conserved in legumes—including the
requirement for the bHLH2/AN1/TT8 clade bHLH and WDR
proteins for anthocyanin and proanthocyanidin regulation (Pang
et al., 2009; Hellens et al., 2010; Verdier et al., 2012) and MBW
complex assembly (Liu et al., 2014)—the involvement of MYB
repressors differ. It was anticipated that Tr-MYB133 and Tr-
MYB134 might be expressed highly in leaves to prevent ectopic
accumulation of anthocyanins and proanthocyanidins. However,
Tr-MYB133 and Tr-MYB134 were only expressed highly
in tissues accumulating anthocyanins or proanthocyanidins,
respectively, and do not appear to have roles preventing
ectopic accumulation of these metabolites. This contrasts with
petunia and Arabidopsis, where the R2R3-MYB repressor Ph-
MYB27 and (truncated R2) R3-MYB repressor At-MYBL2 are
expressed highly in leaves under non-stress conditions, while
exposure to light-stress results in a dramatic reduction of
expression (Dubos et al., 2008; Albert et al., 2011). This de-
repression is likely to be important to allow plants to respond
to changing environmental conditions, where the accumulation
of anthocyanins is advantageous (e.g., to ameliorate light stress).
Thus, the loss of the repressors Ph-MYB27 or At-MYBL2
results in enhanced accumulation of anthocyanins in petunia
and Arabidopsis, respectively (Dubos et al., 2008; Albert et al.,
2014a). It is unlikely that losing MYB133 or MYB134 activity
in clover or other legumes (e.g., Medicago) will significantly
alter the distribution of anthocyanins or proanthocyanidins,
although it is anticipated the anthocyanin/proanthocyanidin
content would increase in tissues that already accumulate these
compounds. The difference in the regulation of MYB133 and
MYB134 compared to repressors from other species raises
questions about how legumes prevent ectopic accumulation of
anthocyanins/proanthocyanidins and whether these activities are
performed by additional repressive MYB family members, or by
other transcription factors.

R2R3-MYB proteins provide feedback repression to MBW
gene regulation networks in legumes (Figure 5). This feature
of MBW gene regulation networks was observed in petunia
and proposed to be conserved in eudicots. Such feedback
regulation likely allows for fine-tuning of gene expression
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FIGURE 5 | Tr-MYB133 and Tr-MYB134 participate in MBW regulatory networks. (A) Anthocyanin MBW gene regulation network. MBW complexes
containing anthocyanin R2R3-MYB activate genes required for anthocyanin biosynthesis and transport, resulting in anthocyanin pigment accumulation. The
AN1/TT8 clade bHLH (Tr-AN1) is also activated, to provide reinforcement, while Tr-MYB133 is activated to provide feedback repression upon the MBW complex.
(B) The proanthocyanidin MBW gene regulation network activates genes required for proanthocyanidin biosynthesis and transport, and Tr-MYB134 to provide
feedback repression. Proanthocyanidin MBW activation complexes may include other MYB activators, such as MYB5 or PAR (not shown). The AN1/TT8 clade bHLH
gene does not appear to be a high affinity target of MYB14.

(Albert et al., 2014a; Cavallini et al., 2015).We have demonstrated
that this also occurs for Tr-MYB133 and Tr-MYB134 in
white clover, but these two genes have subspecialized to
provide feedback repression for anthocyanin (Figure 5A) and
proanthocyanidin biosynthesis (Figure 5B), respectively. These
two repressors have the amino acid motif that is required to
bind bHLH proteins, contain EAR repression motifs in their

C-termini, and are from the Ph-MYB27/Fa-MYB1 clade of R2R3-
MYB repressor (Figure 1). Thus, it is anticipated that Tr-MYB133
and Tr-MYB134 will be incorporated into MBW complexes,
and recruited to promoters by activator R2R3-MYB proteins,
as occurs for Ph-MYB27 (Albert et al., 2014a). It remains to
be determined if competitive R3-MYB proteins also provide
feedback repression upon anthocyanin and proanthocyanidin
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synthesis in legumes, as occurs in petunia and Arabidopsis (Zhu
et al., 2009; Albert et al., 2014a).

The activation of genes encoding R2R3-MYB repressors by
MBW complexes appears to be widely conserved in eudicots.
In petunia, ectopic expression of anthocyanin MYBs (Ph-DPL,
Ph-PHZ) resulted in elevated expression of the repressor Ph-
MYB27, and this was shown to occur by direct activation
upon the Ph-MYB27 promoter by anthocyanin MBW complexes
(Albert et al., 2014a). Similarly, ectopic expression of the
anthocyanin MYB Vl-MYBA1 (Cutanda-Perez et al., 2009) or the
proanthocyanidin MYBs Vv-MYBPA1 or Vv-MYBPA2 (Terrier
et al., 2009) in grape cultures resulted in ectopic expression of
Vv-MYBC2-L1. This agrees with the temporal expression pattern
for Vv-MYBC2-L1, which correlates with both proanthocyanidin
and anthocyanin synthesis during berry development (Huang
et al., 2014). Interestingly, while the temporal expression of Vv-
MYBC2-L3 suggests it may be associated with proanthocyanidin
regulation (Cavallini et al., 2015), its expression was not
elevated in grape cultures expressing Vv-MYBPA1/Vv-MYBPA2
(Terrier et al., 2009). It is not yet known if the apparent
sub-specialization of particular R2R3-MYB repressor genes
for anthocyanin or proanthocyanidin synthesis in grape (Vv-
MYBC2-L3 – proanthocyanidins) or strawberry (Fa-MYB1 –
anthocyanins; Aharoni et al., 2001; Schaart et al., 2012; ; Huang
et al., 2014; Cavallini et al., 2015) occurs because they are
regulated by distinct MBW complexes, or whether they regulated
by developmental signals during fruit development and ripening.

The anthocyanin MBW complexes activate the expression of
the Tr-AN1/Mt-TT8 bHLH genes. The ‘red leaf ’ anthocyanin leaf
marking in white clover occurs because the R2R3-MYB gene Tr-
RED LEAF is ectopically expressed (Albert et al., 2015), which
results in enhanced expression of Tr-AN1 (Figure 3). Similarly,
Medicago plants expressing the anthocyanin R2R3-MYB gene
Mt-LAP1 have enhanced expression of Mt-TT8 (Peel et al.,
2009). Thus, the reinforcement of bHLH expression by MBW
complexes containing anthocyanin R2R3-MYB genes also occurs
in legumes, as it does in petunia and Arabidopsis (Baudry et al.,
2006; Albert et al., 2014a). Interestingly, it is less convincing that
the proanthocyanidin regulator MYB14 is a strong activator of
the AN1/TT8 bHLH genes. Ectopic expression of Mt-MYB14 in
Medicago only increased the expression of Mt-TT8 ∼2-fold (Liu
et al., 2014), and overexpression of Ta-MYB14 in white clover
did not significantly enhance Tr-AN1 expression (Supplementary
Figure S2). Thus, Tr-AN1/Mt-TT8 may be a lower affinity target
of MYB14, and these bHLH genes may be primarily regulated
by developmental signals. Alternatively, they may be regulated
by other proanthocyanidin-related R2R3-MYB genes that are
present in legumes (e.g., Mt-MYB5, Mt-PAR), or by MBW
complexes that contain more than one type of proanthocyanidin
MYB (Verdier et al., 2012; Liu et al., 2014).

The models presented in this study (Figure 5) build upon
the genetic and molecular data that supports the existence
of MBW complexes for regulating both anthocyanins and
proanthocyanidins in legumes (Pang et al., 2009; Peel et al., 2009;
Hellens et al., 2010; Verdier et al., 2012; Liu et al., 2014; Albert
et al., 2015), integrating the activities of R2R3-MYB repressors.
The use of transient assays in N. benthamiana to investigate the

activity of MBW genes, including MYB133 and MYB134, has
been instrumental in overcoming the challenges posed by white
clover – a species that is recalcitrant to molecular and genetic
analysis (outcrossing, allotetraploid). The major limitation with
such assays are that endogenous bHLH (bHLH1) and WDR
proteins are expressed (Albert et al., 2014a; Montefiori et al.,
2015), which can sometimes obscure the essential roles of the
bHLH and WDR components. However, mutants for these
MBW components in legumes completely lack anthocyanins and
proanthocyanidins, such as Mendel’s classic ‘A’ (bHLH2) and
‘A2’ (WDR) genes in pea (Hellens et al., 2010) and Mt-WDR1 in
Medicago (Pang et al., 2009), which highlights the essential role
of these proteins for MBW complex activity. It is anticipated that
the models presented in this study will be further strengthened
by the analysis of mutants for MBW components and the MYB
repressors inMedicago.

CONCLUSION

Two R2R3-MYB genes encoding flavonoid repressors are
conserved in legumes, operating within theMBWgene regulation
networks that control anthocyanin and proanthocyanidin
synthesis. The MBW gene regulation network identified in
white clover fulfills many of the key features proposed to
be conserved in eudicots. This includes the involvement of
R2R3-MYB repressors to provide feedback repression upon
the MBW activation complexes and reinforcement in the
expression of the bHLH factor. However, Tr-MYB133 and Tr-
MYB134 are regulated by distinct MBW complexes, associated
with anthocyanin and proanthocyanidin synthesis, respectively.
This subspecialization provides a mechanism that allows for
anthocyanin and proanthocyanidins to be regulated separately.
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