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During evolution, plants have developed mechanisms to adapt to a variety of
environmental stresses, including drought, high salinity, changes in carbon dioxide levels
and pathogens. Central signaling hubs and pathways that are regulated in response
to these stimuli have been identified. In contrast to these well studied environmental
stimuli, changes in transcript, protein and metabolite levels in response to a gravitational
stimulus are less well understood. Amyloplasts, localized in statocytes of the root tip,
in mesophyll cells of coleoptiles and in the elongation zone of the growing internodes
comprise statoliths in higher plants. Deviations of the statocytes with respect to the
earthly gravity vector lead to a displacement of statoliths relative to the cell due to
their inertia and thus to gravity perception. Downstream signaling events, including
the conversion from the biophysical signal of sedimentation of distinct heavy mass
to a biochemical signal, however, remain elusive. More recently, technical advances,
including clinostats, drop towers, parabolic flights, satellites, and the International Space
Station, allowed researchers to study the effect of altered gravity conditions – real and
simulated micro- as well as hypergravity on plants. This allows for a unique opportunity
to study plant responses to a purely anthropogenic stress for which no evolutionary
program exists. Furthermore, the requirement for plants as food and oxygen sources
during prolonged manned space explorations led to an increased interest in the identi-
fication of genes involved in the adaptation of plants to microgravity. Transcriptomic,
proteomic, phosphoproteomic, and metabolomic profiling strategies provide a sensitive
high-throughput approach to identify biochemical alterations in response to changes
with respect to the influence of the gravitational vector and thus the acting gravitational
force on the transcript, protein and metabolite level. This review aims at summarizing
recent experimental approaches and discusses major observations.

Keywords: gravity, plants, systems biology, proteomics, transcriptomics, metabolomics, spaceflight,
microgravity

PLANT RESPONSE TO DEVIATIONS FROM THE VERTICAL
POSITION

Gravitropism is defined as the bending of a plant/organ along the direction of the gravity vector.
Positive gravitropism describes growth toward the gravity vector, e.g., growth of the root into the
soil. Negative gravitropism defines growth opposed to the gravity vector, e.g., growth of the shoot
into the air (Frank, 1868). Gravitropic signaling and the role of auxin in gravitropism has recently
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been reviewed (Lopez et al., 2014; Sato et al., 2015; Zadnikova
et al., 2015). In this review we will only briefly discuss the current
models of gravitropic responses and focus on the molecular
changes measured by omics techniques.

In Arabidopsis roots, the root cap, which comprises of four
tiers of columella cells and lateral root cap cells (Dolan et al.,
1993), is known to be the site of gravity perception. Early
decapping experiments showed a loss of the plant’s gravitropic
response. The ability to sense alterations of the gravity vector
was recovered by regeneration of the root cap (Barlow, 1974).
Particularly the inner cells of the second tier of columella cells
contribute to root gravitropism as shown by laser ablation
experiments (Blancaflor et al., 1998). The gravitropic response,
on the other hand, takes place in the elongation zone of the root,
physically separated from the site of perception.

In the shoot, mostly coleoptiles and pulvini of
monocotyledons and hypocotyledons of dicotyledons were
studied in respect to their gravitropic response (Sack, 1991).
Genetic studies identified the endodermal cell layer in shoots as
statocytes (Fukaki et al., 1998; MacCleery and Kiss, 1999).

Plant gravitropism can be divided into distinct phases:
susception, perception, transduction, and response (curvature)
(Perbal and Driss-Ecole, 2003; Limbach et al., 2005). Any
alteration of the influence of the gravity vector is perceived
with the help of specialized, starch-containing organelles, so
called statoliths, in gravisensing cells (statocytes), which are
sedimenting to the cell’s new physiological bottom (Haberlandt,
1900; Caspar and Pickard, 1989; Kiss and Sack, 1989; Kuznetsov
and Hasenstein, 1996; Kiss et al., 1997; Sack, 1997; Kiss, 2000;
Morita, 2010). According to the starch-statolith hypothesis,
sedimentation of the starch-filled amyloplasts triggers a signal
transduction cascade leading to an asymmetric auxin transport
and a curvature opposite of the gravitational vector. Additional
models have been proposed, including the gravitational pressure
hypothesis that is based on density differences and consequently
the pressure exerted by the cytoplasm on the plasma membrane
(Wayne et al., 1990; Wayne and Staves, 1996) or the tensegrity
model, in which the membrane is outstretched on the
cytoskeleton backbone of the cell and is in equilibrium between
tensile and compressive forces (Ingber, 1997). The latter two
models are in accordance with experimental data that still
show a gravitropic response in starchless mutants (Caspar and
Pickard, 1989). Statolith-dependent and -independent systems
might also act in parallel (Perbal, 1999). In a refined model of
the statolith hypothesis, it was suggested that not the pressure
exerted by statolith sedimentation, but their interaction with
membrane-bound receptors activates gravity perception (Braun
and Limbach, 2006). In characean rhizoids, graviperception
requires the contact of statoliths with membrane-bound receptor
molecules rather than tension or pressure exerted by the weight of
the statoliths (Limbach et al., 2005). Protein interactions between
amyloplasts and membrane receptors might involve components
of the TOC (TRANSLOCON OF OUTER MEMBRANE OF
CHLOROPLASTS) complex (Stanga et al., 2009; Strohm et al.,
2014). Experimental data so far, however, are controversial
(Staves, 1997; Staves et al., 1997; Braun et al., 2002; Hou et al.,
2003, 2004; Limbach et al., 2005; Valster and Blancaflor, 2008).

A common view is, that the biophysical signal of statolith
sedimentation or of changes in cytoplasmic pressure is
converted into a biochemical signal (Fasano et al., 2001;
Plieth and Trewavas, 2002). Models have been put forward in
which the sedimentation of statoliths leads to the activation
of mechanosensitive ion channels at the plasmamembrane,
endoplasmic reticulum, or at the tonoplast (Sievers et al., 1991;
Yoder et al., 2001; Allen et al., 2003; Perbal and Driss-Ecole,
2003). In columella cells, the nucleus and the endoplasmic
reticulum (ER) are localized at the proximal side of the root
meristem and in the periphery of the cell. This ER, called
nodal ER (Zheng and Staehelin, 2001), is thought to be a
major reservoir for the second messenger Ca2+. Statoliths
may induce opening of mechanosensitive ion channels under
contribution of the nodal ER and second messenger release (Leitz
et al., 2009). Alternatively, statoliths may facilitate the opening
of mechanosensitive ion channels under contribution of the
cytoskeleton (Sievers et al., 1991; Volkmann and Baluska, 1999;
Perbal and Driss-Ecole, 2003). The role of the cytoskeleton is still
controversially discussed, but recently the general view is, that
the actin cytoskeleton is a negative regulator of root gravitropism
(Blancaflor, 2013) and might play a role in fine-tuning the
gravitropic response.

Calcium elevations are considered a second messenger of early
gravitropic signaling events (Sinclair and Trewavas, 1997; Chen
et al., 1999; Chatterjee et al., 2000). The contribution of Ca2+
to gravitropism was mainly concluded from inhibitor studies
(Belyavskaya, 1996), calcium binding proteins (Stinemetz et al.,
1987; Heilmann et al., 2001) or cellular messengers known to be
related to Ca2+ signaling (Perera et al., 1999). Recent studies on
Arabidopsis seedlings expressing the luminescent Ca2+ reporter
Aequorin demonstrated transient increases in [Ca2+]cyt during
the gravitropic response (Plieth and Trewavas, 2002; Toyota et al.,
2008). Two waves of Ca2+ oscillations were observed, an initial
transient Ca2+ increase after 3 s and a more sustained flux after
60 s (Toyota et al., 2008). Further second messengers, including
Inositol 1,4,5- triphosphate (IP3) (Perera et al., 1999, 2001a;
Fasano et al., 2002), protons (Fasano et al., 2001), and reactive
oxygen species (ROS; Joo et al., 2001) may also play a role in the
gravitropic response. How these secondary messengers interact,
their kinetics, and how they establish a response, remains unclear.

Signal transduction eventually leads to the relocalization of
auxin carriers (Friml, 2003). Auxin is transported by influx
carriers of the AUXIN RESISTANT 1/LIKE-AUX1 (AUX1/LAX)
family and the efflux carriers of the PIN-FORMED (PIN) family
(Friml, 2003). This transport is known as the “Chemiosmotic
Hypothesis” (Kleine-Vehn and Friml, 2008) or Soda fountain
model (Hasenstein and Evans, 1988). AUX1 and PIN1 contribute
to auxin transport from vasculature into root tip through
protophloem cells. In Arabidopsis, mutation in AUX1 results in
severely agravitropic roots due to defects in auxin movements
from the root apex to the distal elongation zone (Swarup et al.,
2001). In the tip, PIN4 targets auxin to the center of the auxin
maximum, which is located in the columella cells within the root
cap. PIN3, PIN4, and PIN7 are localized in the columella cells. In
this area, AUX1 ensures the uptake of auxin by columella cells,
while the PIN proteins mediate efflux. PIN3 and PIN7 protein
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distribution is dependent on the orientation of the root in the
gravitational field. When the root is growing vertically, PIN3 and
PIN7 are distributed symmetrically in the cell. If there is any
deviation from the vertical into the horizontal position, PIN3
and PIN7 relocalize within a few minutes. The efflux carriers
are then accumulating in the plasma membrane of the cell’s
new physiological bottom (Friml et al., 2002a,b; Friml, 2003;
Kleine-Vehn et al., 2010). The relocalization of PIN3 and PIN7
are the first steps toward the establishments of a lateral auxin
gradient upon gravistimulation (Blancaflor and Masson, 2003).
While the total auxin flux in the root stays constant, auxin is
redistributed from cells on the upper to the lower side of the root
tip within 5 min after a gravitropic stimulus (Band et al., 2012),
a timescale that is in accordance with statolith sedimentation
and asymmetric changes in root pH and intracellular Ca2+-
concentration. pin3pin7 mutants are more agravitropic than pin3
and pin7 single mutants, suggesting their functional redundancy.
The corresponding auxin gradient is transported basipetally
through epidermal and cortical cells of the root cap that express
PIN2. This efflux carrier transports auxin to the elongation zones
of the root, which leads to root curvature (Chen et al., 1999;
Ottenschlager et al., 2003).

PIN-FORMED protein abundance and localization at the
plasma membrane affects gravitropic response. PIN proteins
undergo constitutive endocytotic recycling to different domains
at the plasma membrane or via the prevacuolar compartment
to the lytic vacuole for degradation (Abas et al., 2006; Kleine-
Vehn and Friml, 2008). Modulation of vesicular trafficking
affects PIN recycling and gravitropic response (Geldner et al.,
2004; Paudyal et al., 2014). Recent results indicate that
the polar auxin transport (PAT) mediated by PIN proteins
can also be modulated by small secretory peptides called
GOLVEN. A reduced concentration of those peptides impairs
the formation of auxin gradients during tropic responses
(Whitford et al., 2012). The GOLVEN signal specifically
modulates PIN2 trafficking. Auxin as well as GOLVEN treatment
increase PIN2 levels at the plasma membrane (Paciorek et al.,
2005; Whitford et al., 2012). Furthermore, Gibberellic acid
(GA) increases the level of PIN auxin transporters at the
plasma membrane and promotes asymmetric auxin distribution
during gravitropic curvature. A dilution and subsequent
reduction in GA leads to an increased concentration of
growth repressors of the DELLA protein family, which may
reduce cell elongation rate (Band et al., 2012; Löfke et al.,
2013).

Posttranslational modifications of PIN proteins additionally
affect their role in gravitropism. The Ser/Thr kinase PINOID
regulates PIN2-mediated basipetal auxin transport by regulating
plasma membrane localization of PIN2 (Sukumar et al.,
2009; Huang et al., 2010). PIN3 phosphorylation status can
also affect root gravitropism (Ganguly et al., 2012). The D6
PROTEIN KINASE (D6PK) may regulate gravitropism via the
phosphorylation status of PINs (Barbosa et al., 2014).

Despite the extensive regulation of PIN2, pin2 mutants are
actually not very agravitropic (Chen et al., 1998; Luschnig et al.,
1998; Blakeslee et al., 2007). A triple mutant together with
members of the p-glycoprotein (PGP) family of auxin efflux

transporters, PGP1 and PGP19, however, is severely agravitropic
(Blakeslee et al., 2007), indicating functional redundancy in
basipetal auxin transport.

The auxin gradient promotes differential cell elongation on
opposing sides of the stimulated organ. Auxin is known to
promote or to inhibit plant growth in a dose-dependent manner.
Growth mediated by auxin is based on the acid-growth theory
(Grebe, 2005). Auxin is able to activate proton pumps which lead
to the excretion of protons into the cell wall. This acidification
may lead to a loosening of the cell wall, allowing the cell to grow
and expand. After the growth phase, the cell wall regains stability
(Grebe, 2005). The result of an auxin-induced differential cell
elongation is a gravitropic curvature.

Auxin can rapidly mediate tropic response on a minute to
hour timescale while maintaining stable developmental zonation
in the root and then slowly influences size and location of these
differentiation zones via the regulation of PLETHORA (PLT)
transcription factors (Mahonen et al., 2014). GOLVEN peptides
act via positive regulation of PLETHORA transcription factors
(Whitford et al., 2012).

Finally, statoliths reposition in the columella cells when the
root tip reaches 40◦, which leads to the restoration of PIN3/PIN7
localization and symmetric auxin flow, about 100 min after a 90◦
gravitropic stimulus (Band et al., 2012; Sato et al., 2015). The
latter phase of the root gravitropic bending response that can last
up to 600 min, is likely orchestrated by newly synthesized target
genes of auxin signaling (Band et al., 2012).

PLANTS’ RESPONSE TO A
MICROGRAVITY ENVIRONMENT

Gravity is a constant factor of life on earth. With the aim
to achieve functional weightlessness, a status which is often
described as simulated microgravity, different approaches are
in use, such as clinostats, random positioning machines as well
as magnets for magnetic levitation (Herranz et al., 2013a). The
rotation devices are based on the assumption that biological
systems need to be exposed to the influence of the gravity
vector for a minimal period of time to allow them to adjust
to it. If the influence of the gravity vector constantly changes
its orientation, the object loses under appropriate simulation
conditions its sense of direction and thus shows a behavior
similar to the one seen under real microgravity conditions.
Real microgravity can be achieved by drop towers, parabolic
flights, sounding rockets, satellites, or space stations, like the
ISS. Experiment time is limited. Therefore, very little is known
of how altered gravity is perceived by the plant and how the
system adapts to this new environmental situation. A role for
calcium elevations in response to microgravity, as in the response
to reorientation of the plant, is still controversial (Häder et al.,
2006; Salmi et al., 2011; Hausmann et al., 2014). A transcellular
calcium gradient in spores of Ceratopteris richardii is reduced
within seconds in microgravity, indicating a fast regulation
of calcium channels similar to the auxin transport in the
root tip during gravity perception (Salmi et al., 2011). In
Arabidopsis callus cultures, instead, an increase in calcium and
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ROS was detected in response to microgravity (Hausmann et al.,
2014).

Cellular responses that are affected by microgravity include
the cell cycle, leading to decreased mitotic index and enhanced
proliferation rate in meristematic root cells (Medina and
Herranz, 2010). A second major target is the plant cell wall.
In rice, a reduced thickness of the cell wall with increased
extensibility and elongation in shoots and decreased elasticity in
roots was observed (Hoson et al., 2002, 2003; Soga et al., 2003).
Also changes in lignin levels in response to altered gravity forces
have been observed in some plant species, e.g., mung beans, but
not in others, e.g., pine and oat (Cowles et al., 1984). Changes
in photosynthesis in response to microgravity, however, are
controversial. While a reduction of the light harvesting apparatus
and a higher chlorophyll a/chlorophyll b ratio was observed,
direct measurements of photosynthetic activity revealed no
changes in net photosynthesis, photosynthetic proton flux, and
overall quantum yield (Stutte et al., 2006). The dependency
of photosynthesis on gas exchange may be one reason for
inconclusive results. The lack of convection in microgravity
leads to reduced air flow resulting in altered gas exchange and
accumulation of volatiles, e.g., ethylene (Porterfield, 2002), and is
possibly leading to alterations in photosynthetic activity.

EXPRESSION CHANGES IN RESPONSE
TO A DEVIATION FROM THE VERTICAL
ORIENTATION

Complete sedimentation of the statoliths in the columella cells
requires at least 5 min (Blancaflor et al., 1998; MacCleery and
Kiss, 1999). The minimal gravitational stimulus that elicits a
response, however, is estimated around 1 min (Blancaflor et al.,
1998). Changes in secondary messenger concentration, e.g., IP3,
pH, and Ca2+, have been observed within this time frame.
IP3 for example, is stimulated in gravitropic maize pulvini
already after 10 s (Perera et al., 1999, 2001b). Observations
of the early changes in gene expression may therefore help to
identify missing components that translate the biophysical signal
of statolith sedimentation into a biochemical signal (Table 1).
Gravitational stimulation is generally achieved by one-time
reorientation of plants in the gravity vector plane. In one of
the earliest studies of Arabidopsis thaliana seedlings 39 genes
showed an altered abundance after 15 min of gravitational
stimulation, increasing to 132 genes after 30 min compared
to constant 1 g conditions (Moseyko et al., 2002). Functional
gene categories included response to oxidative stress, plant
defense, heat shock, ethylene response, and calcium binding.
Another study on gene expression changes, this time in root
apices, identified gravity-specific gene regulations within 5–
15 min of reorientation. A cluster of five genes was induced at
least three fold by gravitropic stimulation even within 2 min
of treatment (Kimbrough et al., 2004). The identified genes
contained members of the auxin responsive family, genes that
are induced very rapidly by the application of exogenous auxin
(McClure and Guilfoyle, 1989). Taken together, these studies
indicate that alterations of the influence of the gravitational

vector is perceived as an abiotic stress signal when observed on
the whole plant level, while in individual cells of plant organs
involved in the gravitropic response, auxin signaling plays a
major role in signal transmission.

The importance of auxin, also with respect to higher
plants’ shoot gravitropism, was underlined in at least three
transcriptomic approaches. According to the Cholodny/Went
hypothesis, an asymmetric auxin transport leads to a curvature
in the direction of the gravitational vector (Went and Thimann,
1937). Auxin biosynthesis and signaling transcript levels changed
after a deviation from the vertical position or in an already
known agravitropic mutant (Esmon et al., 2006; Dong et al.,
2013; Taniguchi et al., 2014). While no expression changes
were observed after 10 min, at 30 min 30 genes changed in
abundance, of which 19 transcripts were auxin responsive genes
of the AUX/INDOLE-3-ACETIC ACID INDUCIBLE (IAA) and
SMALL AUXIN UPREGULATED (SAUR) families (Taniguchi
et al., 2014). Transcript analysis of plants of Zea mays wildtype
and zmla1mutant, a homolog of theArabidopsis LAZY1 gene and
an agravitropic mutant regulating PAT, identified 931 alterations
in transcript expression. GO annotation of the altered genes and
localization studies suggested a function for LAZY1 in auxin
signaling and translocation of auxin exporters (PIN proteins)
(Dong et al., 2013). When the focus was set on changes in
gene expression in opposing flanks of graviresponsive tissue, e.g.,
hypocotyl, shoot base or inflorescence stems, a role for auxin in
these responses became particularly clear (Esmon et al., 2006; Hu
et al., 2013; Taniguchi et al., 2014). Two hours of gravitropic and
phototropic stimulation of Brassica oleracea identified eight genes
with increased expression in elongating versus non-elongating
hypocotyl flanks under both stimuli. All are members of auxin
biosynthesis [GLYCOSIDEHYDROLASE 3.5 (GH3.5)], signaling
(SAUR50), and response (EXPANSINA1) (Esmon et al., 2006). In
addition, all eight genes contain at least one consensus AUXIN
RESPONSE FACTOR (ARF)-binding auxin response element
and no auxin-induced expression was observed in an ARF7
mutant background.

Studies also show that gene regulations in response to
gravitational or mechanical stimulations showed a great overlap.
In whole Arabidopsis seedlings, 55 of the 141 identified genes,
changed in abundance by gravitational stimulation, increased
or decreased in transcript levels by mechanical stimulation
(Moseyko et al., 2002). An even greater overlap between
mechanical and gravitational stimulation was found in root
apices, where 1730 genes were differentially regulated within
60 min of gravitropic or mechanical stimulation (Kimbrough
et al., 2004). The alterations on the transcript level induced by
both stimuli overlap by 96%.Many of the altered transcripts show
increased or decreased levels in other abiotic and biotic stresses,
too. They have functions as transcriptional regulators, in cell wall
modification, as transporters, kinases, phosphatases, in hormone
metabolism and in the cell cycle.

The first proteomic experiment to map changes in protein
expression used 2D-GE and identified 16 alterations on the
protein level in A. thaliana roots within 2 h of gravitational
stimulation, some of them showing an altered abundance after
30 min (Kamada et al., 2005). Functional categories included
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TABLE 1 | Studies that quantified differential expression of genes, proteins, and metabolites in response to a deviation from the vertical orientation.

Plant age1 Tissue Replicates Method Duration DEG/DEP/DEM Growth hardware Treatment Reference

Transcriptomics

3 weeks A. thaliana
seedlings

3 8 k array 15, 30 min 15 min: 39
30 min: 132

Petri dish, white
light, transfer to
dark 16 h prior to
treatment

90◦ (dark) Moseyko et al.,
2002

1 week A. thaliana root
apices

2 ATH1 2, 5, 15, 30,
60 min

1730 Petri dish, dark 135◦ (dark) Kimbrough
et al., 2004

3 days B. oleracea
etiolated seed-
lings, upper
and lower
flanks of
hypocotyl
(1 cm)

3 ATH1 2 h 8 Pipette tips, dark 90◦ (dark) Esmon et al.,
2006

3 weeks O. sativa, upper
and lower
flanks of shoot
base

3 Rice Genome
GeneChip

30 min, 6 h 30 min:167
6 h: 1202

Soil, white light,
transfer to dark
16 h prior to
treatment

90◦ (dark) Hu et al., 2013

4–8 cm stem A. thaliana,
upper and
lower flanks of
inflorescence
stems

1 Arabidopsis 2 10, 30 min 10 min: 0
30 min: 30

Soil, white light 90◦ (light) Taniguchi et al.,
2014

4 weeks Z. mays, third
aboveground
node of shoot

2 RNAseq – 931 Soil, white light – Dong et al.,
2013

Proteomics

1 week A. thaliana, root
apices

3 2D-GE 30 min, 3 h 16 Petri dish, white
light

90◦ (light) Kamada et al.,
2005

8–10 cm stem A. thaliana, top
4 cm of shoot

3 iTRAQ 2, 4 min 82 Soil, white light 90◦ (light; 4◦C) Schenck et al.,
2013

Transcriptomics and Metabolomics

1 week A. thaliana,
whole seedlings

1 n.a. ATH1 GC-MS 24 h Genes: 339
Metabolites: 15

Petri dish, white
light

90◦ (dark) Millar and Kiss,
2013

1At start of treatment; DEG/DEP/DEM: differentially expressed genes, proteins, metabolites; n.a.: information not available; Rep: number of biological replicates.

Ca2+ signaling, cytoskeleton stability, energy production, TCA
cycle and chaperone function. Furthermore, a shift in the
apparent molecular weight of proteins due to gravitropic
responses was observed that may be caused by an altered
glycosylation pattern. One of those proteins with a change
in molecular weight is the 20S PROTEASOME β-SUBUNIT
E1. According to the authors, the chaperone HEAT SHOCK
COGNATE 70-2 and the proteasomal subunit may regulate
dynamic processes involved in the response to changes of the
gravitational vector.

In order to identify proteins involved in early signaling events,
e.g., the conversion from the biophysical signal of sedimentation
of amyloplasts to a biochemical stimulus, a study on Arabidopsis
shoots focused on the early perception and signaling events
of plants subjected to 2 and 4 min of a deviation from the
vertical. To identify less-/agravitropic signaling mutants, the
authors performed plant reorientations at 4◦C, an approach
known as the gravity-persistent signal (GPS) approach (Wyatt
et al., 2002). GPS blocks the asymmetric auxin transport resulting
in a lack of gravitropic curvature. If transferred back to room
temperature the plant regains a bending phenotype. Using GPS

treatment, 82 alterations on the protein level after gravitational
stimulation were identified (Schenck et al., 2013). Thirty-five
percent of the differentially expressed proteins were predicted to
localize to chloroplasts or plastids, consistent with the hypothesis
that gravity-sensing is related to these organelles (Kiss et al.,
1989).

Promising candidates that were identified as being an
important part of the perception of the gravitational vector
and subsequent signaling are HEAT SHOCK PROTEIN 81-1
and GLUTATHIONE S-TRANSFERASE PHI 9 (GSTF9) and
GSTF20. HSP81-1 is involved in abiotic stress signaling, induced
by Ca2+ signaling and may interact with J-domain containing
proteins like ALTERED RESPONSE TOGRAVITY 1 and ARG1-
LIKE 2 that are already known to show reduced gravitropism
(Sedbrook et al., 1999; Guan et al., 2003). GSTF9 and GSTF20
may regulate the synthesis of plant hormones or subsequent
signaling (Chen et al., 2007; Schenck et al., 2013).

The first transcriptomic and metabolomic approach was a
combined treatment of gravi- and photostimulation (blue or
red light) of Arabidopsis seedlings (Millar and Kiss, 2013).
Despite the current methodical limitations in quantification of
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primary metabolites, the incorporation of metabolomic profiling
into gravitational research was overdue, because this level is
the last step prior to the physiological response. Gravity and
light treatments led to shifts in amino acid pools (e.g., alanine,
asparagine, glutamine, glycine, and isoleucine), decrease of
sucrose and increase of hexoses, as well as decreased levels of
secondary metabolites. Many of these altered primarymetabolites
are responsive to abiotic and biotic stresses, underlining the
hypothesis of gravitropism and phototropism as exogenous
stress stimuli of plants. As an example, changes in the pool of
phenylalanine may lead to alterations in flavonoid biosynthesis.
Those secondary metabolites are known to have an important
function in the crosstalk between ethylene and auxin (Muday
et al., 2012). On the transcript level, a 90◦ treatment for 24 h
resulted in 339 alterations in gene abundance. Regulations on
the transcript level could be correlated to changes on the
metabolite level (Millar and Kiss, 2013). Increased levels of key
enzymes of amino acid biosynthesis, THREONINE ALDOLASE
1 and GLUTAMINE-DEPENDENT ASPARAGINE SYNTHASE
1, explain the increase of corresponding metabolites. The altered
abundance of carbohydrate metabolism enzymes explains a
decrease in sucrose and increase in hexose sugars. Key enzymes
of phenylpropanoid biosynthesis, e.g., CHALCONESYNTHASE,
are decreased in abundance.

Results of all studies indicate that changes of the influence
of the gravitational vector lead to a general stress response
in plants. Analyses on the proteomic and metabolomic level
(Kamada et al., 2005; Millar and Kiss, 2013; Schenck et al., 2013)
further support the hypothesis that an altered influence of the
gravity vector is perceived as environmental stress (Millar and
Kiss, 2013; Schenck et al., 2013), emphasizing the contribution of
cytoskeleton, calcium signaling and chaperone function to plant’s
gravitational response. In tissue specific transcriptomic studies,
roots or opposing tissue flanks of the shoot, the importance
of the phytohormone auxin is underlined. Already after 2 min
alterations in auxin responsive genes were observed (Kimbrough
et al., 2004). Furthermore, genes of auxin biosynthesis, signaling
and response are differentially regulated (Esmon et al., 2006;
Dong et al., 2013; Taniguchi et al., 2014). These findings support
the widely accepted Cholodny/Went theory, suggesting auxin as
a driving factor of tropic responses. A lack of an auxin response
in whole seedlings may be caused by a higher dilution of auxin
biosynthesis, signaling and response genes in whole seedling
RNA, because the action of the phytohormone is restricted to
some cell layers in specialized tissues.

SIMULATED MICROGRAVITY AND
SPACEFLIGHT

Plants are potential components of future life support systems
for manned space travels. For this, plant responses to the space
environment, and in particular to microgravity, have to be
studied (Table 2). Transcriptomic and proteomic studies have
been performed toward this goal. In contrast to reorientation
experiments, spaceflight and real microgravity experiments pose
additional challenges. A suitable hardware providing optimal

culture and illumination conditions has to be developed and
further spaceflight-related effects on plants have to be taken into
account such as increased levels of radiation, poor exchange of
gases due to the lack of convection, vibrations, and accelerations
depending on the transport systems and operations onboard
(Porterfield et al., 1997).

In order to avoid some of these additional environmental
effects and allow a discrimination of pure microgravity-related
effects, 1 g controls are essential. Under optimal conditions these
are realized by the use of onboard 1 g reference centrifuges. It is,
however, in most cases common to compare space flight samples
to corresponding 1 g ground controls. Efforts have been made to
replicate the growth conditions in space for the ground controls
by using orbital environment simulators (OES) that replicate
light, temperature and CO2 conditions as recorded in space.
Studies utilizing both controls show that more alterations in gene
expression are observed comparing plants from space flight (SF)
to ground controls (GC) than to on board 1 g flight controls (FC)
(Correll et al., 2013; Fengler et al., 2015), suggesting that factors
independent of gravity and operational-induced side effects have
a profound effect on plant growth and development.

Another consideration is the age of plants that are transported
into orbit. Dried seeds do not correspond to environmental
changes during the transport phase. Callus cultures and plants
that are transported as seedlings or fully grown, however,
experience transient changes in accelerations, 1 g on ground,
hypergravity during flight phase and microgravity in orbit, and
other changes in growth conditions that are not only a result of
the space environment.

Different experimental conditions therefore have a great
effect on the responses of plants to the space environment. In
leaves of wheat, for example, no changes in gene expression
were detectable between ground control and space-grown plants
(Stutte et al., 2006). Growth of Arabidopsis seedlings during space
flight though, led to the alteration of 480 genes compared to
ground controls (Paul et al., 2013). The latter study was also the
first one to study responses in different plant organs separately,
indicating that different organs display unique patterns of gene
expression in response to spaceflight. From a total of 480 genes
that were differentially expressed in leaves, hypocotyls, or roots,
only 26 genes were uniformly regulated in all three organs, many
of those being involved in cell wall remodeling.

Arabidopsis plants grown in a spaceflight environment are
usually smaller than ground controls, possess smaller roots
and fewer lateral roots (Paul et al., 2012a). The cell wall
of Arabidopsis and rice plants is reduced in response to the
spaceflight environment (Hoson et al., 2002, 2003; Soga et al.,
2002). Furthermore, cell wall extensibility of shoots is increased,
while the cell wall flexibility of roots is decreased, as compared
to ground controls (Hoson et al., 2003). Transcriptomic
and proteomic approaches showed transcripts and proteins
associated with cell wall remodeling, root hair generation and
cell expansion to be highly altered during spaceflight (Paul
et al., 2012b, 2013; Correll et al., 2013; Mazars et al., 2014b;
Fengler et al., 2015; Ferl et al., 2015; Kwon et al., 2015; Zhang
et al., 2015) or during clinorotation and random positioning
(Wang et al., 2006; Barjaktarović et al., 2009). Alterations in
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gene expression that have a function in cell wall modification
could be caused by spaceflight-induced changes in several
hormone signaling pathways that are mediating growth and cell
expansion. By using spaceflight 1 g controls and 1 g ground
controls to elucidate the response to microgravity and exclude
indirect effects by the spaceflight, 27 strictly graviresponsive
transcripts were identified that were altered at least twofold in
abundance, including genes of cell wall metabolism and actin
cytoskeleton organization (Correll et al., 2013). By regulating
the transport of cell wall components, the actin cytoskeleton
is essential for a proper biosynthesis of the cell wall (Baluska
et al., 2002). Also proteomic studies of Arabidopsis microsomes
and callus cultures supported the involvement of cell wall
modifications (Mazars et al., 2014b). A subsequent comparison
of 1 g space control and 1 g ground controls of the same
flight could furthermore show that cell wall modifying proteins
are largely not altered on the protein level, suggesting that
cell wall modifying enzymes are necessary for a response
specifically to microgravity (Mazars et al., 2014a; Zhang et al.,
2015). A comparison of different studies furthermore showed
that regulation of protein activity occurs on multiple levels.
REVERSIBLY GLYCOSYLATED POLYPEPTIDEs, involved in
cell wall metabolism, did not only show a decreased abundance
on the protein level (Wang et al., 2006; Schüler et al., 2015),
but were also phosphorylated in response to clinorotation
(Barjaktarović et al., 2009). Phosphorylation was suggested to
affect the activity of the proteins and thereby cell wall metabolism.

In addition to changes in primary and lateral roots,
Arabidopsis seedlings grown in space experience reduced root
hair development (Kwon et al., 2015). This decrease may be
due to reduced levels of peroxidases and cell wall modifying
genes (Kwon et al., 2015). Out of 174 transcripts showing an
altered abundance, 56 are enriched in root hairs and eight were
shown to function in root hair development. Mutations in those
peroxidases with a decreased abundance by spaceflight, led to a
disruption of root hair formation in Arabidopsis (Kwon et al.,
2015).

In other comparable spaceflight experiments, genes involved
in production and response to ROS were altered (Paul et al.,
2012b; Correll et al., 2013). A change in ROS levels is a
secondary messenger of many abiotic and biotic stresses in
plants (Apel and Hirt, 2004). ROS concentrations in the cell
are kept in balance by an interplay of ROS production and
scavenging via different enzymes and metabolites (Pitzschke and
Hirt, 2006). Spaceflight/microgravity affects genes involved in
ROS production and homeostasis by up- or downregulation.
Increase in hydrogen peroxide levels and increased expression
and phosphorylation of ROS scavengers, e.g., SUPEROXIDE
DISMUTASE, CATALASE, GLUTATHIONE PEROXIDASE,
THIOREDOXIN, and GLUTAREDOXIN, and marker genes
were measured in short-term and long-term experiments
(Hausmann et al., 2014; Sugimoto et al., 2014). Also in
microgravity simulated by clinorotation, genes with antioxidant
activity showed increased expression levels in response to short-
term and long-term microgravity (Soh et al., 2011). In contrast,
proteins of the response to oxidative stress were decreased in
Arabidopsis calli and inC. richardii spores (Salmi and Roux, 2008;

Zhang et al., 2015). This may indicate that different isoform of
gene families are differentially regulated, as was directly observed
in some studies (Barjaktarović et al., 2007; Fengler et al., 2015).
ROS changes in plants might be a direct result of auxin signaling.
In response to microgravity treatment of roots from wildtype
and pin2 mutant plants, a peroxidase was identified that showed
altered levels in the wildtype, but not in the mutant (Tan et al.,
2011).

In order to maintain ROS homeostasis for cell function and
for signaling, proteins involved in this process are likely to
be also posttranslationally regulated. Phosphoproteomic studies
show a differential phosphorylation in response to 30 min
of microgravity of proteins which are responsive to ROS
(Barjaktarović et al., 2009). Taken together, these observations
indicate that a complex regulation of antioxidant enzymes is
necessary to maintain ROS homeostasis under microgravity, and
that different levels of regulation are involved in this process.

Besides ROS, also transcripts involved in calcium signaling
are altered under space conditions (Salmi and Roux, 2008; Soh
et al., 2011; Paul et al., 2012b; Correll et al., 2013; Mazars
et al., 2014b). Plants respond to a spaceflight environment with
disruptions of calcium localization and signaling (Klymchuk
et al., 2001; Nedukha et al., 2001; Salmi and Roux, 2008).
Increase in calcium concentrations have been measured using
genetically encoded reporters within 20 s of microgravity during
parabolic flights (Hausmann et al., 2014). In addition, up to
25 calcium dependent genes were upregulated at the end of
the 20 s microgravity phase. A proteomic approach focusing
on microsomal membranes found further evidence for a link
between calcium and auxin signaling in response to microgravity.
PHOTOTROPIN 2 (PHOT2) is decreased in abundance after
12 days of space flight (Mazars et al., 2014b). PHOT2 is a blue
light receptor and can trigger intracellular calcium increases.
It was suggest that the calcium increase activates calcium
sensors, such as TOUCH3 and PINOID BINDING PROTEIN
1 (PBP1) that interact with the AGC kinase PINOID (PID), a
regulator of PAT (Mazars et al., 2014a). In the same experiment,
TOUCH3 protein abundance was increased fourfold at the
plasma membrane, indicating a calcium dependent regulation of
PAT in response to microgravity. This hypothesis was further
supported by decreased levels of CATION EXCHANGER 1, a
protein of the vacuolar membrane that drives calcium influx from
the cytosol to the vacuole, which leads to an increased cytosolic
calcium concentration.

Taken together, these data point toward a similar response
mechanism in microgravity as described for the reorientation
of plants in the gravitational field. In microgravity, calcium is
increased, thereby activating calcium binding proteins, leading
to the activation of kinases, including CPK11 and PINOID.
Calcium influx may directly trigger production of ROS, e.g., via
the activation of calcium dependent protein kinases, or indirectly
via changes in auxin transport within the plant.

Tissues involved in the perception of the gravitational
stimulus, e.g., the root cap, express all proteins necessary
for this signaling model. However, other cell types, e.g.,
undifferentiated cell cultures, are also able to detect a loss
of the influence of gravity (microgravity) without specialized
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gravisensing tissue (Martzivanou et al., 2006). In these cells,
altered ROS production in response to changes in the influence
of the gravitational field might be a result of general, but
tissue-specific stress responses (Wang et al., 2006; Barjaktarović
et al., 2007, 2009, Salmi and Roux, 2008; Herranz et al.,
2013b; Fengler et al., 2015). Also in whole seedlings subjected
to simulated microgravity or spaceflight, transcripts of stress
related genes are oftentimes altered (Kwon et al., 2015).
Short-term microgravity environments, e.g., parabolic flights,
thereby induce similar transcript changes, i.e., cell wall, heat
shock, response to hormones, which are also observed after
long term spaceflight experiments. Transcripts of functionally
related genes were regulated in different tissues. Expression
of individual isoforms, however, was specific to different
plant organs (Paul et al., 2013). A comparison of Arabidopsis
callus cultures and seedlings grown in the same hardware
showed two independent responses to spaceflight without
similarities in transcript alterations (Paul et al., 2012b). In
seedlings as well as callus cultures a response to abiotic and
biotic stress was clearly detectable, but more pronounced
in cell cultures (Paul et al., 2012b). The response to heat
shock is the most prominent Gene Ontology (GO) in cell
cultures followed by a general stress response (Paul et al.,
2012b; Zupanska et al., 2013). Also in Arabidopsis shoots
changes in HSP transcripts were observed (Paul et al., 2005).
When plant responses to changes of the orientation with
respect to the gravitational vector or to changes of intensity
of the gravitational field were analyzed in the same study,
HSP70-3 was the only protein with altered levels under both
conditions (Schüler et al., 2015). Taking into account that
the spaceflight environment includes several abiotic stresses,
e.g., radiation, microgravity, or vibrations, over-expression of
heat shock proteins may contribute to generalized tolerance
for multiple alterations in environment conditions and may
help to maintain cytoskeletal architecture, cell shaping, and
protein remodeling (Swindell et al., 2007; Zupanska et al.,
2013).

The notion that microgravity may constitute an abiotic
stress, led some authors to screen for genes involved in
Simulated Microgravity Stress (SMS; Soh et al., 2011). SMS-
genes including WRKY transcription factors and phytohormone
induced signaling transcripts were identified. On this gene
list, some transcripts are known to be responsive to other
biotic/abiotic stresses, too. This is supported by a proteomic
approach that identified 18 altered proteins in Arabidopsis
cell culture after 8 h of 3D clinorotation (Wang et al.,
2006). Seven alterations are involved in stress responses (e.g.,
ALDEHYDE DEHYDROGENASE 2, GST, and CHITINASE).
Also in seedlings, proteins, with an altered abundance, and being
involved in general stress responses, were identified (Mazars et al.,
2014b).

In summary, experimental approaches to impose changes of
the gravitational field vary significantly in experimental setup
and plant material. However, some common conclusions can
be drawn from these studies. The plant cell wall and actin
cytoskeleton are major targets for modifications. Earlier studies
clearly show a spaceflight-induced cell wall thinning (Hoson

et al., 2002, 2003). Root hair growth is also highly reduced in
space (Kwon et al., 2015). The authors suggest a role of ROS in
the alteration in growth. Results from further studies suggest that
cell wall modifications of plants subjected to spaceflight may be
directed by changes to the actin cytoskeleton (Correll et al., 2013;
Mazars et al., 2014b).

Another response to simulated microgravity and spaceflight
seems to be a general response to abiotic and biotic stresses.
Especially cell cultures show a heat shock response. Those
chaperones may help to maintain cytoskeletal architecture and
cell shaping in a spaceflight environment (Zupanska et al., 2013).
Furthermore, the biosynthesis and response to phytohormones
and calcium signaling is altered under simulated microgravity
and spaceflight conditions supporting the hypothesis that a
highly reduced gravity environment resembles an abiotic and/or
biotic stress in plant tissues (Salmi and Roux, 2008; Soh et al.,
2011; Correll et al., 2013; Mazars et al., 2014b). Another stress
marker is the change in cellular ROS levels. In some of the
reviewed publications an increase of ROS scavengers (Sugimoto
et al., 2014), an elevated level in hydrogen peroxide (Hausmann
et al., 2014) and an alteration of genes with antioxidant activity
(Soh et al., 2011) was shown if plants were subjected to
spaceflight or simulated microgravity. In addition, dependency
of some responses on the PIN2 auxin transporter and changes
in calcium concentrations point towards a signaling mechanism
in microgravity, involving calcium, ROS and auxin, that is
comparable to the response to a reorientation in the gravitational
field.

CONCLUSION/FUTURE PERSPECTIVES

The reviewed studies identified molecular components of plant
responses to changes in the gravitational field or vector. It was
previously known that calcium and auxin play a role in these
processes. Omics profiling strategies allowed the identification
of underlying genes and proteins with altered abundance by
these messengers or that affect the function of these messengers.
Especially alterations in the concentration of auxin biosynthesis
(GH3.5) and auxin responsive (AUX/IAA, SAUR) genes have
been observed. A comparison of these studies furthermore
indicates that different plant organs and callus cultures respond
differently to changes in the influence of gravity. More cell type
specific studies are necessary to identify how different cell types
respond and how these cell types interact to form plant responses.
Since experimental time in space is limited, experiments in
ground-based facilities (GBFs) will be extensively needed to
compensate for space experiments and to provide the necessary
number of replicates for robust results.

Hardware-specific differences between individual studies as
well as differential operations of GBFs contribute to difficulties in
understanding plant responses to changes in the influence of the
gravitational field. Standardization of growth and experimental
hardware has to be pursued for ground-based and flight facilities
(Schüler et al., 2015). Validated operational parameters of
simulation approaches and 1 g flight control will have to be
an essential component in all space flight experiments. The
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generation of more robust data would also benefit from scientific
collaborations that perform the same experiments over multiple
missions using standardized hardware. Sequential extraction
protocols for RNA, proteins and metabolites would also reduce
biological material and facilitate analyses across different levels of
responses.

One of the main tasks for the future will be the integration
of different datasets, covering various levels of cellular responses,
ions, transcript changes, proteins, and hormones, into a common
database to allow researchers to cross-analyse all results between
different experimental conditions, tissues, and organisms. This
will increase statistical power as compared to individual
analyses with limited biological replicates. Larger datasets also
allow for the development of mathematical models that are
both descriptive and predictive and enable the generation of
testable hypotheses. Complementary to broad omics techniques,
reporter techniques with single cell resolution, e.g., genetically
encoded hormone-, pH- and Ca2+-reporters, should be used
to study signaling events and signal transmission, e.g., from
the columella cells to the elongation zone. Suitable hardware
to study single cell response to changes in the influence of
the gravitational vector is available in the form of microscopes

with a vertical sample stage. Microscopes for cell specific
studies under microgravity conditions have also been made
available.

Next logical steps after the development of testable
mathematical models are physiological tests of the coding
genes by experiments with mutant lines and overexpression
lines. These are necessary to further corroborate their function
in gravitational responses. Limitation in experiments with
transgenic plants in space and ground-based facilities can be
overcome with the application of chemically mutagenized lines
or newer techniques, e.g., CRISPR/Cas.
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