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Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering
(angiosperms) plants and the origin and vast diversification of the floral form has been
one of the focuses of plant evolutionary developmental biology. The evolving diversity
and increasing complexity of organisms is often due to relatively small changes in genes
that direct development. These “developmental control genes” and the transcription
factors (TFs) they encode, are at the origin of most morphological changes. TFs such as
LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental
processes of plant reproduction including the floral transition in angiosperms and the
specification of the male and female organs in both gymnosperms and angiosperms.
In addition to advances in genome wide profiling and forward and reverse genetic
screening, structural techniques are becoming important tools in unraveling TF function
by providing atomic and molecular level information that was lacking in purely genetic
approaches. Here, we summarize previous structural work and present additional
biophysical and biochemical studies of the key master regulators of plant reproduction –
LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the
impact of structural biology on our understanding of the complex evolutionary process
leading to the development of the bisexual flower.

Keywords: evolution, SEPALLATA3, AGAMOUS, LEAFY, protein crystallography, small angle X-ray scattering,
homology modeling
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INTRODUCTION

The evolution of streptophytes (green plants), chronicled by the
fossil record, follows a trajectory from simple green algae, to
the earliest land plants (mosses, hornworts, liverworts), to free-
sporing vascular plants (lycopsids including extant clubmosses,
quillworts and spike mosses and monilophytes such as ferns and
horsetails) and finally culminating withmore complex seed plants
(Figure 1). As the climate changed and became less favorable
to spore-forming lycophtyes and monilophytes, spermatophytes
(seed plants) were able to supplant these spore-forming vascular
plants to become the majority of land plant species. The radiation
of seed plants was due in large part to their ability to reproduce
without the necessity of water for the dispersal of pollen or
successful fertilization, as in the case of mosses and ferns. The
reproductive adaptations in seed plants acted as a driver for
terrestrial colonization and played a key role in their radiation
across a wide range of habitats.

Extant seed plants are further divided into two sister groups,
the gymnosperms and the angiosperms. Gymnosperms have
naked seeds unprotected by a carpel and generally develop as
the result of a single fertilization event. Exceptions exist as is
the case of the genus Ephedra and Gnetum (Friedman, 1990;
Friedman and Carmichael, 1996). In contrast, angiosperm seeds
are enclosed and protected by the carpel and result from a double
fertilization event that ensures the simultaneous development
of the zygote and nutritive tissues, the endosperm (Lord and
Russell, 2002). In addition to these variations in fertilization
and seed development, the most striking difference between
gymnosperms and angiosperms is the evolutionary innovation
of the angiosperm flower. This novel arrangement joins the
male and female organs into one reproductively competent
structure. While the evolution of green plants from algae to seed
plants follows a relatively smooth path in the fossil record, the
evolution of the flower in angiosperms represents an evolutionary
leap lacking an extensive step-wise fossil record. Since the
time of Charles Darwin, the “abominable mystery” of flower
origins and the unprecedented explosive radiation of angiosperm
species have been the subject of extensive study and speculation
(Burkhardt et al., 1985; Friedman, 2009).

In contrast to gymnosperm cones, which are unisexual and
lack an enveloping perianth (sterile outer organs), angiosperm
flowers have both male and female reproductive organs on a
single axis surrounded by sepals and petals. A typical angiosperm
flower is composed of four organs arranged in four concentric
whorls. The outermost whorl contains the green protective
sepals, followed by a whorl of petals involved in flower opening
and pollinator attraction, the next whorl contains the stamens
that produce pollen and constitute the male gametophyte, and
finally the inner most whorl comprising the pistil, composed of
one or more carpels, that contain the ovules. This basic floral
architecture can vary across angiosperms. For example, basal
angiosperms may contain tepals, sterile outer organs that cannot
be differentiated into distinct sepals and petals. In addition, the
number of flower parts and their arrangement around the central
axis of the flower may vary as in orchids where the male and
female organs are fused. However, the essential characteristic of

the flower, co-localized male and female organs, is retained across
all angiosperm species and acts as a defining trait.

Angiosperm and Gymnosperm Evolution
One of the central questions in plant evolutionary developmental
biology is how the flower, a bisexual compacted reproductive
structure, evolved and what were the underlying molecular
mechanisms for this dramatic morphological change.
Extant gymnosperms and angiosperms separated ∼300 Mya
(Zhang et al., 2004), with angiosperms quickly achieving
an unprecedented level of species dominance, with over
350,000 extant species, in a dramatically short evolutionary
timescale. However, simple morphological comparisons between
gymnosperm cones and angiosperm flowers offer limited
insight into flower evolution (Bateman et al., 2006; Frohlich
and Chase, 2007). An understanding of the abrupt appearance
of the flower from gymnosperm cones requires not only a
fossil record to probe the changing morphologies of plant
reproductive structures, but also a molecular basis derived from
genome sequencing, molecular biology and structural biology.
Impressive progress has been made in understanding the gene
networks that regulate plant reproduction in angiosperms and,
albeit to a lesser extent, also in gymnosperms. Due to extensive
forward and reverse genetic studies (Coen and Meyerowitz,
1991; Saedler et al., 2001; Theissen and Saedler, 2001; Krizek
and Fletcher, 2005) and whole genome sequencing in model
plants such as thale cress (Arabidopsis thaliana), snapdragon
(Antirrhinum majus) and petunia (Petunia x hybrida), as well as
the large scale gene sequencing initiatives such as the 1000 plant
genomes project (https://sites.google.com/a/ualberta.ca/onekp/
home) and the complete sequencing and annotation of the first
gymnosperm genome from Norway spruce (Nystedt et al., 2013),
many of the genes which regulate the transition from vegetative
to reproductive growth in angiosperms and gymnosperms have
been identified.

Gene Regulatory Networks Controlling
Plant Reproductive Development
Despite the morphological difference between angiosperm and
gymnosperm reproductive structures, a comparison of the
genes responsible for male and female organ development
demonstrates a high degree of conservation. Based on studies
in angiosperm model plants such as Arabidopsis, development
is switched from a vegetative to a reproductive program based
on exogenous environmental and endogenous developmental
signals such as plant age. This switch is orchestrated by the
high level regulator of reproductive development, LEAFY (LFY),
a gene that is conserved in gymnosperms and angiosperms
(Vazquez-Lobo et al., 2007; Moyroud et al., 2010) and which
has recently been identified in green algae, suggesting ancestral
functions predating land plants (Sayou et al., 2014). Interestingly,
while existing primarily as a single copy gene in most
angiosperms, gymnosperms have two paralogous LFY-like genes-
LFY and NEEDLY (NLY ; Frohlich and Meyerowitz, 1997;
Vazquez-Lobo et al., 2007), the only known exception being the
gymnosperm genus Gnetum where NLY is absent (Frohlich and
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Meyerowitz, 1997; Frohlich and Parker, 2000). In addition to
conservation of LFY, the genes that determine the identity of male
and female reproductive organs, the MADS-box genes, are also
present in both angiosperms and gymnosperms (Gramzow et al.,
2010, 2014; Melzer et al., 2010; Wang et al., 2010). However, in
contrast to gene loss in angiosperms as observed for NLY, the

MADS-box genes have undergone multiple duplication events,
leading to a more extensive gene network in angiosperms versus
their sister gymnosperms (Figure 1). LFY, NLY and the MADS-
box genes all encode transcription factors (TFs). These TFs act
as master regulators and are able to direct extensive downstream
gene networks. Recent work examining the function of LFY, NLY

FIGURE 1 | Evolution of key genes controlling plant reproductive development. (A) Evolution of LEAFY (LFY ) from green algae to angiosperms. LFY exists
mostly as a single-copy gene in all streptophytes (green plants), with the exception of gymnosperms where a LFY-like paralog, NEEDLY (NLY ), originated after a
major duplication event (the only possible exception being the genus Gnetum). In gymnosperms, LFY and NLY are consistently expressed in both male
(pollen-bearing) and female (seed-bearing) cones, in a spatiotemporal coordinated manner. In the angiosperm lineage, NLY was subsequently lost, with LFY now
regulating the expression of genes responsible for both the male and female organs in the unified bisexual flower. (B) MADS-box homeotic gene family. MADS-box
genes are present in the most simple green algae and, as plants became more complex, the MADS-box gene family expanded via multiple duplication and
specification events. Putative orthologs of class B, C, and E-like (AGL6) floral homeotic genes have been isolated from different gymnosperms (conifers,
gnetophytes, ginkgophytes, and cycads) as shown schematically by yellow and blue colored ovals. In contrast, SEP-like genes, the second subfamily conferring
E-class function, as well as A-class genes, seem to be absent in extant gymnosperms but are present in all angiosperms. In gymnosperms, expression patterns of
putative B and C-class gene orthologs resemble those of B and C-class genes in angiosperms, with B-class genes being expressed on male reproductive organs,
whereas C-class genes are expressed in both male and female organs. In gymnosperms C-class proteins alone or C and B-class proteins together seem capable of
forming tetrameric complexes (without any additional partners), which define, respectively, the female and male organs in these organisms as indicated. In
angiosperms tetramer formation is dependent on the SEPALATTA (E-class) TFs which act as hubs by mediating interactions among proteins from different floral
homeotic classes, strictly determining floral organ identity. Question marks indicate uncertainty as to physiological oligomerisation state, AP1, APETALA1; AP3,
APETALA3; PI, PISTILLATA; AG, AGAMOUS; STK, SEEDSTICK; SEP, SEPALLATA; AGL6, AGAMOUS LIKE 6.
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and the MADS TFs at the protein level has greatly advanced
our understanding of how relatively small changes in a few key
regulatory TFs can result in large differences at the morphological
level of the organism. Current hypotheses point to changes in a
few key genes, and the TFs they encode, as determining factors
in the evolution of plant reproduction and the formation of the
flower (Theissen, 2000, 2005; Zahn et al., 2005a,b; Theissen and
Melzer, 2007; Melzer et al., 2010).

The Role of LFY and LFY/NLY in
Angiosperms and Gymnosperms
In angiosperms such as Arabidopsis or Antirrhinum, the switch
to reproductive growth involves the conversion of the shoot
apical meristem (SAM) to an inflorescence meristem (IM). The
IM will in turn generate the floral meristem (FM) on its flanks.
The development of a FM can be divided into two main steps
(1) the formation of a specific zone within the IM, called the
anlage, from which the FM will arise and (2) the growth of
the FM primordia and subsequent differentiation into the floral
organs. It is a balance between inflorescence identity genes such
as TERMINAL FLOWER 1 (TFL1) and FM identity genes such
as LFY that determines the acquisition of flower identity. TFL1
is predominantly expressed in the IM and acts as a repressor,
preventing LFY and the MADS-box gene, APETALA1 (AP1),
expression (Liljegren et al., 1999). Increasing levels of LFY
act as a committing step in FM identity, with LFY repressing
expression of TFL1 and inducing the expression of FM identity
genes such as AP1 (Parcy et al., 1998; Wagner et al., 1999;
Kaufmann et al., 2010; Moyroud et al., 2010; Winter et al.,
2011).

In gymnosperms, LFY and NLY expression patterns
overlap in male and female cones early in development
with expression patterns diverging later into mutually exclusive
but complementary domains, resulting in higher LFY expression
levels in male cones and higher NLY expression in female cones
(Shindo et al., 2001; Dornelas and Rodriguez, 2005; Vazquez-
Lobo et al., 2007). Originally, the NLY gene was thought to
exclusively specify gymnosperm female reproductive structures
(seed-bearing cone) in Pinus radiata (Mouradov et al., 1998),
whereas its paralogous gene LFY appeared restricted to the
male pollen-carrying cones (Mellerowicz et al., 1998). However,
subsequent findings of LFY orthologs being expressed in female
cones of gnetophytes and congeneric conifers (Carlsbecker
et al., 2004; Dornelas and Rodriguez, 2005), demonstrated
concurrent expression of both genes in male and female
reproductive structures. Thus, LFY and NLY from gymnosperms
are both necessary to act as regulators of male and female cone
development, likely fulfilling a similar critical role in plant
reproduction as the single copy angiosperm LFY.

The Roles of the MADS-Box Genes and
MADS TFs in Organ Identity
Once the FM is specified, LFY activates additional floral organ
identity genes including theMADS-box genesAP3,AG, and SEP3
(Weigel and Meyerowitz, 1993; Busch et al., 1999; Wagner et al.,
1999; Lamb et al., 2002; Lohmann and Weigel, 2002; Winter

et al., 2011). To date there is no direct evidence that gymnosperm
LFY or NLY directly regulate MADS-box genes in gymnosperms
as LFY does in angiosperms, although this is possible and
warrants study. Once expressed, the overlapping patterns of the
MADS-box genes will specify floral organ identity as outlined
in the ABC(D)E model (Schwarz-Sommer et al., 1990; Coen
and Meyerowitz, 1991) and for review see (Sablowski, 2010).
In essence, the MADS-box genes can be divided into classes
A−E with A+E genes necessary for sepal development, A+B+E
genes specifying petals, B+C+E genes specifying stamen, C+E
genes specifying carpels and D+E specifying ovules (Theissen
and Saedler, 1995; Theissen, 2000; Honma and Goto, 2001;
Ng and Yanofsky, 2001; Theissen and Saedler, 2001; Favaro
et al., 2003). In Arabidopsis the class A genes are APETALA1
(AP1) and APETALA2 (AP2), class B genes are APETALA3
(AP3) and PISTILLATA (PI), class C is AGAMOUS (AG) and
class E are SEPALLATA1,2,3,4 (SEP1,2,3,4). Except for AP2,
all the floral homeotic genes in the ABC(D)E model encode
MADS-domain TFs. The molecular mechanism of action of
these proteins is explained by the floral quartet model, in
which the A-E class genes encode TFs which are able to homo
and heterotetramerise in specific combinations, resulting in the
activation or repression of distinct downstream target genes and
thus specifying floral organ identity (Honma and Goto, 2001;
Theissen, 2001).

Gymnosperms possess B- and C-like MADS-box genes with
their expression patterns resembling B- and C- class genes in
angiosperms (Tandre et al., 1995; Sundstrom et al., 1999; Becker
et al., 2002, 2003; Jager et al., 2003; Melzer et al., 2010; Wang
et al., 2010; Gramzow et al., 2014). Indeed, several studies
have described the expression of C-like genes in both male
and female cones, while B-like gene expression appeared to be
restricted to male cones (Sundstrom and Engstrom, 2002; Wang
et al., 2010). Complementation studies have demonstrated that
B and C homologs are well-conserved between gymnosperms
and angiosperms as B and C genes from gymnosperms can
nearly fully restore a wild type flower phenotype (Winter et al.,
2002; Zhang et al., 2004). In addition, the gymnosperm MADS-
domain TFs from the B and C class appear competent to
form homo and heterotetramers, similarly to their angiosperm
orthologs (Figure 1; Wang et al., 2010). Interestingly, the SEP
subfamily members are absent in gymnosperms but are present
in all major lineages of extant angiosperms (Zahn et al., 2005a).
Based on phylogenetic analysis, the closest relative of the SEP
subfamily is the AGL6 subfamily, which is found in both
angiosperms and gymnosperms (Becker and Theissen, 2003; De
Bodt et al., 2003; Martinez-Castilla and Alvarez-Buylla, 2003;
Nam et al., 2003; Zahn et al., 2005a). Similarly to class E
SEP genes in angiosperms, AGL6-like genes are predominantly
expressed in reproductive tissues in gymnosperms (for review
see, Melzer et al., 2010) and represent the closest homologs
to the SEP subfamily. Changes in the regulation of B and C
class genes during evolution coupled with the appearance of
the SEP-like genes and the dependence on the SEP TFs to
form tetrameric MADS protein complexes, have been proposed
to be crucial for the appearance of the bisexual flower. By
requiring the SEP TFs to form transcriptionally active complexes

Frontiers in Plant Science | www.frontiersin.org 4 January 2016 | Volume 6 | Article 1193

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Silva et al. Structural Biology in the Evolutionary Development of the Flower

with other homeotic MADS TFs, male and female organ
identity may have become more easily co-regulated due to
the multiple roles of the SEPs in specifying all reproductive
organs.

The gene regulatory networks directing plant reproduction
in gymnosperms and angiosperms are becoming more well-
defined and the changes in key genes in gymnosperms and
angiosperms which may be at the nexus of flower origins
have been identified based on genetics studies in angiosperms
and large scale sequencing initiatives in most plant lineages.
However, only recently has the structure-function relationship
of the proteins encoded by these key genes been determined.
Here, we summarize available structural studies and provide
new data to show how changes at the protein level in the
key regulators LFY, NLY, and MADS-domain TFs potentially
result in new functionality. Using biophysical data as a
foundation, we probe the molecular mechanisms underlying the
emergence and evolution of the novel reproductive architecture
of the angiosperm flower and discuss how biochemistry and
structural biology can provide new insights into evolutionary
developmental biology.

MATERIALS AND METHODS

Sequence Alignments
Sequence alignments were performed using the server NPS@
(Network Protein Sequence Analysis; Combet et al., 2000).

Sequences were aligned with ClustalW (Thompson et al., 1994)
using the default parameters for both pairwise alignment and
multiple alignment sections. Where appropriate, secondary
structure predictions were carried out with PREDATOR (DSSP)
using the NPS@ server. Protein sequences used were obtained
from GenBank and the 1000 Plants (1KP) initiative (http://
www.onekp.com). Resulting alignments and secondary structure
predictions were rendered with ESPript (Robert and Gouet,
2014).

For the LFY/NLY sequence alignments (Figures 2 and 3)
the sequences used are as follows: AtLFY (A. thaliana
LFY, AED97525.1), OsLFY (Oryza sativa japonica LFY,
RFL, AHX83808.1), AmtLFY (Amborella trichopoda LFY,
AmboLFY, AGV98899.1), PrLFY (Pinus radiata LFY, PRFLL,
AAB51587.1), GbLFY (Ginkgo biloba LFY, ADD64700.1),
WmLFY (Welwitschia mirabilis LFY, AAF23870.1), PrNLY
(P. radiata NLY, AAB68601.1), PaNLY (Pinus armandii NLY,
ADO33969.1), GbNLY (G. biloba NLY, AAF77074.1), and
WmNLY (W. mirabilis NLY, AAD38872.1). For MADS-domain
TFs sequence alignments (Figures 4 and 5) the sequences
used are: A. thaliana SEP3 (AEE30503.1), SEP1 (AED92208.1),
SEP2 (AEE73791.1), AP3 (AEE79216.1), PI (AED92817.1), AP1
(AEE34887.1), AG (AEE84111.1), AGL6 (AEC10582.1), SOC1
(AEC10583.1), SVP (AEC07320.1), and FLC (AED91498.1);
Gnetum gnemon GGM2 (CAB44448.1), GGM3 (CAB44449.1),
GGM15 (CAC13991.1), GGM9 (CAB44455.1), and GGM11
(CAB44457.1); Picea abies DAL11 (AAF18373.1), DAL12
(AAF18375.1), DAL13 (AAF18377.1), DAL2 (CAA55867.1),

FIGURE 2 | Sequence alignment and secondary structure prediction of AtLFY, PrLFY, and PrNLY N-terminal domains, linker and start of conserved
C-terminal DBD. Aligned amino acid sequences of AtLFY (Arabidopsis thaliana LFY), PrLFY (Pinus radiata LFY, PRFLL) and PrNLY (Pinus radiata NLY), with
respective secondary structure prediction indicated in black below each respective sequence; α-helices are represented by spirals and β-strands by arrows, all other
regions are predicted to be unstructured. Sequence numbering is shown on the left and dots mark every 10th residue for the first sequence. Highly conserved
regions are boxed, with similar residues represented in red against a yellow background, invariant residues represented against a red background and
non-conserved residues indicated in black. Partial AtLFY DBD secondary structure, as derived from its X-ray structure (PDB 2VY1), is shown in blue above the
sequences. Alignment was prepared with NPS@ (Combet et al., 2000).
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FIGURE 3 | Continued
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FIGURE 3 | Continued

Sequence alignment and homology models of the DNA binding
domain (DBD) of LFY and NLY. (A) Sequence alignment of LEAFY (LFY) and
NEEDLY (NLY) DBDs. Aligned C-terminal DBD amino acid sequences of AtLFY
(A. thaliana LFY, GenBank AED97525.1), OsLFY (Oryza sativa japonica LFY,
RFL), AmtLFY (Amborella trichopoda LFY, AmboLFY), PrLFY (Pinus radiata
LFY, PRFLL), GbLFY (Ginkgo biloba LFY), WmLFY (Welwitschia mirabilis LFY),
PrNLY (Pinus radiata NLY), PaNLY (Pinus armandii NLY), GbNLY (G. biloba
NLY), and WmNLY (W. mirabilis NLY). All sequences are numbered and dots
mark every tenth residue above the sequences. Highly conserved regions are
boxed, with similar residues represented in red against a yellow background,
invariant residues represented against a red background and non-conserved
residues indicated in black. The secondary structure annotation of AtLFY
DBD, as derived from its three-dimensional X-ray structure (PDB 2VY1), is
depicted in blue on top of the aligned sequences [alpha helices (α); strict
β-turn (TT); 310-helix (η)]. Residues involved in interactions with the DNA are
highlighted in dark-green (direct contact with DNA bases) and light-green
(sugar phosphate backbone contacts); residues involved in dimerisation are
depicted in blue. Red triangles indicate residues important for determining
DNA half-site specificity. The AtLFY protein sequence (AED97525.1) differs
from the AtLFY sequences in Hames et al. (2008) and (Sayou et al., 2014;
AAA32826) by a four residue deletion after resdiue 152 resulting in a -4
sequence shift. (B) Homology model of Pinus radiata NEEDLY (PrNLY) DBD
based on AtLFY DBD X-ray structure (PDB 2VY1). Monomers are represented
in green and blue as cartoons with a partial transparent surface; bound DNA
is represented in orange and gold. PrNLY DBD adopts the same seven α-helix
fold, contacting the DNA through both the minor and major grooves with
complete conservation of all DNA-binding amino acid residues determined for
AtLFY DBD. (C) Close-up view of the dimerisation interface of PrNLY.
Monomers are colored as per (B) and side chain residues involved in putative
hydrogen bonding interactions are shown and labeled. (D) Close-up view of
the dimerisation interface of PrLFY. Colors and residues as per (C).

DAL1 (CAA56864.1), and DAL14 (AGR53802.1). Numbers
indicated correspond to GenBank accession numbers.

Homology Modeling
The homology model of the DNA-binding domain (DBD)
of Pinus radiata NLY (PrNLY) and LFY (PrLFY) proteins

were built using the SWISS-MODEL server (Arnold et al.,
2006; Biasini et al., 2014, swissmodel.expasy.org). Based on
the sequence alignment between PrNLY and AtLFY DBDs the
PrNLY partial sequence [E242-Q404] was fed to the server, as
well as the AtLFY DBD PDB structure (PDB 2VY1, GenBank
accession AAA32826). The homology model of PrNLY DBD
comprises residues [R246-K401]. The same procedure was
applied to PrLFY for which the partial sequence [Q251-H410]
was fed to the server; the PrLFY homology model comprises
residues [R252-K407]. Each of the models was superimposed
on the AtLFY DBD structure (Hames et al., 2008) using
COOT (Emsley et al., 2010); the DNA coordinates added to
the composite homology models were taken from the AtLFY
structure. The cartoon model representation was made using
the program Pymol (The PyMOL Molecular Graphics System,
2010).

SEP3(75−178) Mutagenesis, Expression,
and Purification
SEP3(75−178) construct (wild type) was cloned into the expression
vector pESPRIT002 (Hart and Tarendeau, 2006; Guilligay et al.,
2008) using the AatII and NotI restriction sites. The plasmid
contains an N-terminal 6x-His tag followed by a TEV protease
cleavage site. All mutants produced were generated using the
SEP3(75−178) construct as the template and using Phusion
polymerase (NEB) according to the manufacturer’s protocol.
The oligonucleotides used for mutagenesis are provided in
Table 1.

SEP3(75−178) and all the tetramerisation mutant constructs
were overproduced in Escherichia coli BL21 (DE3) CodonPlusRIL
(Agilent Technologies; Puranik et al., 2014); all dimerisation
mutant constructs were overproduced in E. coli Rosetta2 (DE3)
pLysS cells (this study). Cells were grown at 37◦C in Luria-Bertani
(LB) culture medium supplemented with kanamycin (50 mg/mL)
and chloramphenicol (37 mg/mL), until an OD600 of 0.7–0.8

FIGURE 4 | Sequence alignment of MADS TFs M-domain. Aligned M-domain amino acid sequences of A. thaliana SEP3, SEP1, SEP2, AP3, PI, AP1, AG,
AGL6, SOC1, SVP, and FLC; the gymnosperm Gnetum gnemon GGM2, GGM15 (AP3/PI-like), GGM3 (AG-like), and GGM9, GGM11 (AGL6-like); and the
gymnosperm Picea abies DAL11, DAL12, DAL13 (AP3/PI-like), DAL2 (AG-like), and DAL1, DAL14 (AGL6-like) proteins. Sequence numbering is indicated on the left,
with every tenth residue marked by black dots above the sequences. Highly conserved regions are boxed, with similar residues represented in red against a yellow
background, invariant residues represented against a red background and non-conserved residues indicated in black.
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FIGURE 5 | MADS TFs oligomerisation domain. (A) Sequence alignment spanning the SEP3 crystallographic structure (PDB 4OX0). All sequences are from
A. thaliana SEP3, SEP1, SEP2, AP3, PI, AP1, AG, AGL6, SOC1, SVP, and FLC and the gymnosperm G. gnemon GGM2 and GGM3 proteins. Numbering is indicated
at the start of the sequences and every tenth residue indicated by a black dot above the SEP3 sequence. Highly conserved regions are boxed in blue with a white
background; strictly conserved residues are depicted by a red square below the sequence. The secondary structure elements of AtSEP3 K-domain (PDB 4OX0), are
shown in blue above the sequences (α; TT; η). Residues involved in dimerisation and tetramerisation in SEP3 K-domain structure are highlighted in violet and cyan,
respectively. The kink region between helices 1 and 2 is framed in red; Gly and Pro residues present within the kink regions are highlighted in green; Gly residues in
the N-terminal region of helix 2 are highlighted in yellow. (B) Structure of SEP3 K-domain (PDB 4OX0). The oligomerisation domains of SEP3 are represented as
cylinders; each monomer, composed of two distinct helices (helices 1 and 2), is colored uniquely in green, dark green, blue, and light blue. N and C-terminal regions
are indicated. (C) Close-up of the SEP3 kink between helices. Glycine and proline residues are depicted as sticks colored by atom with carbons in orange.

was reached. At this point, protein expression was induced by
addition of 1 mM isopropyl-β-D-galactopyranoside (IPTG) and
the temperature reduced to 20◦C; expression was continued
for 16 h (overnight). Cells were harvested by centrifugation
at 6000 rpm for 30 min at 4◦C and then resuspended in
Buffer A [30 mM Tris pH 8.0, 300 mM NaCl, 5% (v/v)
glycerol, 2 mM TCEP] to which benzonase (Sigma) and protease
inhibitors (Roche EDTA-free) were added. Cells were disrupted
by sonication, followed by centrifugation at 25000 rpm for
40 min at 4◦C, to remove cell debris. The cell lysate was then
passed onto a column containing 1 mL of Ni-Sepharose High-
Performance resin (GE-Healthcare), previously equilibrated with
Buffer A. Bound protein was washed in two steps: high salt
(30 mM Tris pH 8.0, 1 M NaCl, 5% glycerol, 2 mM TCEP) and
low imidazole concentration (buffer A + 20 mM Imidazole);
and subsequently eluted with Buffer B (30 mM Tris pH 8.0,

300 mM NaCl, 5% glycerol, 250 mM Imidazole, 2 mM TCEP).
Fractions of interest were pooled and dialysed overnight at
4◦C, against Buffer A and in the presence of 2% (w/w) TEV
protease, in order to cleave the 6xHis tag. The protein sample
was passed over the same 1 mL Ni-Sepharose column, in order to
deplete the His-tagged TEV protease and remove uncut protein
from the cleaved protein sample. The purified protein was then
concentrated and applied onto a size exclusion Superdex 200
10/300 GL column (GE Healthcare), pre-equilibrated with Buffer
A. SEP3(75−178) and all mutants were purified following this same
protocol.

EMSA Experiments
AG, SEP3 full length wild type, and SEP3 mutants (L171A,
L115R, SEP3�C) were cloned into a pSPUTK plasmid and used
for in vitro transcription translation (Promega SP6 High Yield
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Expression System). SEP3�C contains residues 1–160 with a –
LADG-stop terminating sequence corresponding to a complete
truncation of the C-terminal domain. Protein expression was
performed as per the manufacturer’s protocol and used without
further purification. SOC1 promoter DNA (121 bp SOC1
specific DNA) comprising two CArG boxes was used as per
(Kaufmann et al., 2009). Two SOC1 promoter DNA fragments
were generated with either the first or second CArG boxmutated.
Mutations were generated using a 1 kb SOC1 promoter DNA
as the template (inserted into pCR blunt vector) and using
Phusion polymerase (NEB) according to the manufacturer’s
protocol. CArG-box 1 was mutated with the forward primer
5′-CGTGTCTAAAGAGGCATTTGACATATGACGTCCCTCG
GATTACTAAAG-3′ and the reverse primer 5′-CTTTAG
TAATCCGAGGGACGTCATATGTCAAATGCCTCTTTAGA
CACG (CArG-box 1 mutation is underlined); and CArG-
box 2 mutated with the forward primer 5′-GTGGCA
CCAAAAAAATATACATATGACGAGATAAAATTGTTAATC
G-3′ and the reverse primer 5′- CGATTAACAATTTT
ATCTCGTCATATGTATATTTTTTTGGTGCCAC-3′ (CArG-
box 2 mutation is underlined). Final 145 bp mutated SOC1

TABLE 1 | Oligonucleotides used for SEP3(75−178) mutagenesis.

Mutant Oligonucleotides

M150A 5′-CTCTCAGGACACAGTTTGCGCTTGACCAGCTCAAC-3′
5′-GTTGAGCTGGTCAAGCGCAAACTGTGTCCTGAGAG-3′

L154A 5′-CAGTTTATGCTTGACCAGGCGAACGATCTTCAGA
GTAAGG-3′
5′-CCTTACTCTGAAGATCGTTCGCCTGGTCAAGCATAAA
CTG-3′

L171A 5′-CTGACTGAGACAAATAAAACTGCAAGACTAAGGTTA
GCTGATGG-3′
5′-CCATCAGCTAACCTTAGTCTTGCAGTTTTATTTGTCTC
AGTCAG-3′

Splice�161−174 5′-CCAGCTCAACGATCTTCAGAGTAAGCTAGCTGATGGA
TGAGAGACAAATAAAACTCTAAGACTAAGG-3′ (forward)
5′-CCTTAGTCTTAGAGTTTTATTTGTCTCTCATCCATCAG
CTAGCTTACTCTGAAGATCGTTGAGCTGG-3′ (reverse)

Y98K 5′-CTTAGTAGCCAGCAGGAGAAGCTCAAGCTTAAGGA
GCG-3′
5′-CGCTCCTTAAGCTTGAGCTTCTCCTGCTGGCTACTA
AG-3′

Y105N 5′-CTCAAGCTTAAGGAGCGTAATGACGCCTTACAAAGA
ACCC-3′
5′-GGGTTCTTTGTAAGGCGTCATTACGCTCCTTAAGCT
TGAG-3′

L115R 5′-CAAAGAACCCAAAGGAATAGGTTGGGAGAAGATCTT
GGACCTC-3′
5′-GAGGTCCAAGATCTTCTCCCAACCTATTCCTTTGGG
TTCTTTG-3′

L131V 5′-CTAAGTACAAAGGAGCTTGAGTCAGTTGAGAGACAG
CTTGATTC-3′
5′-GAATCAAGCTGTCTCTCAACTGACTCAAGCTCCTTT
GTACTTAG-3′

L135M 5′-CTTGAGTCACTTGAGAGACAGATGGATTCTTCCTT
GAAGC-3′
5′-GCTTCAAGGAAGAATCCATCTGTCTCTCAAGT
GACTCAAG-3′

L135A 5′-GTCACTTGAGAGACAGGCTGATTCTTCCTTGAAGC-3′
5′-GCTTCAAGGAAGAATCAGCCTGTCTCTCAAGTGAC-3′

DNA fragments were then PCR amplified using the primers 5′-
CTAAAGAGGCATTTGACATATGACGTCCCTCG (fwd) and
5′-GATTAACAATTTTATCTCCAAAAAAGGATATTTTTTTG
G (rev) for CArG-box 1, and 5′-CTAAAGAGGCATTTG
CTATTTTTGGTCCCTCG (fwd) and 5′-GATTAACAATTTTA
TCTCGTCATATGTATATTTTTTTGG (rev) for CArG-box 2
mutated DNAs, respectively. SOC1 DNA labeled with DY-682
(Dyomics GmbH, wild type) or Cy5 (Eurofins, mutated CArG-
boxes) was used at a concentration of approximately 5–10 nM
for all reactions in a protein binding buffer containing 7 mM
HEPES, pH 7.0, 1 mM BSA, 1 mM EDTA, 1 mM DTT, 2.5%
CHAPS, 6% glycerol, 0.06 mg/ml salmon sperm DNA, 1.3 mM
spermidine. 4 μl of TnT protein mix was added directly without
purification to the binding buffer to a final volume of 20 μl.

AG Expression and Purification
AG(74−173) was cloned into a pESPRIT002 vector using NotI and
AatII restriction sites. The construct contained an N-terminal
TEV protease cleavable poly-histidine tag (Hart and Tarendeau,
2006; Guilligay et al., 2008). The protein was overexpressed
in E. coli BL21 Star (DE3)pLysS cells (Life Technologies).
Cells were grown in Luria Bertani medium in the presence
of 50 mg/ml kanamycin and 35 mg/ml chloramphenicol at
37◦C and 180 rpm to an optical density A600 = 0.8 after
which time the temperature was lowered to 20◦C and 0.2 mM
isopropyl β-D-1-thiogalactopyranoside (IPTG) was added for
induction. After 16 h, the cells were harvested by centrifugation
at 6000 rpm and 4◦C for 15 min and resuspended in lysis buffer
containing 30 mM Tris pH 8.0, 300 mM NaCl, 1 mM TCEP,
5%(v/v) glycerol, 20%(w/v) sucrose and 1x protease inhibitors
(Roche EDTA-free). Cells were lysed by sonication and the
insoluble fraction pelleted by centrifugation at 25000 rpm and
4◦C for 30 min. The pellet was resuspended in denaturation
buffer [30 mM Tris pH 8.0, 300 mM NaCl, 1 mM TCEP,
5% (v/v) glycerol, 8 M Urea] and incubated for 1 h at
room temperature. The solubilized fraction was applied to a
5 ml Ni-NTA column pre-equilibrated with denaturation buffer,
followed by a wash with 10 CV of wash buffer (30 mM
Tris pH 8.0, 300 mM NaCl, 1 mM TCEP, 5% glycerol, 8 M
Urea, 30 mM imidazole) and eluted with 3 CV of elution
buffer (30 mM Tris pH 8.0, 300 mM NaCl, 1 mM TCEP, 5%
glycerol, 8 M Urea, 300 mM Imidazole). The eluted fraction
was dialysed step-wise against 6, 4, and 2 M urea plus 30 mM
Tris pH 8.0, 300 mM NaCl, 1 mM TCEP, 5% glycerol. After
the final dialysis step, the protein was applied to a size
exclusion chromatography column (Superdex 75 10/300 GL, GE
Healthcare) pre-equilibrated with gel filtration buffer [30 mM
Tris pH 8.0, 300 mM NaCl, 1 mM TCEP, 5% (v/v) glycerol].
The purity of the final fractions was assessed using SDS-PAGE.
Fractions of interest were pooled and incubated overnight with
TEV protease to remove the poly-histidine tag. After depletion
of TEV and uncleaved protein over a 5 ml Ni-NTA column, the
cleaved AG(74−173) was loaded onto a Superdex S75 10/300 GL
column as a final purification step and the fractions of interest
pooled and concentrated to approximately 4 mg/ml for SAXS
studies.
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SAXS Data Collection
An on-line hplc system (Viscotek, Malvern Instruments) was
attached directly to the sample inlet valve of the BM29 sample
changer (European Synchrotron Radiation Facility, bioSAXS
bending magnet beamline 29; Pernot et al., 2013; Round et al.,
2015). The protein sample (50 μl) was injected onto the
column (Superdex 75 3.2/300 PC, GE Healthcare) after column
equilibration. Buffers were degassed prior to the run and a flow
rate of 0.1 ml/min at room temperature was used. Buffers used
were as described above. All data from the run was collected using
a sample to detector (Pilatus 1 M Dectris) distance of 2.86 m
corresponding to an s range of 0.04–4.9 nm−1. Approximately
1800 frames (1 frame/sec) per hplc run were collected. Initial
data processing was performed automatically using the EDNA
pipeline (Incardona et al., 2009), generating radially integrated,
calibrated, and normalized 1-D profiles for each frame. All frames
were compared to the initial frame and matching frames were
merged to create the reference buffer. Any subsequent frames
which differed from the reference buffer were subtracted and
then processed within the EDNA pipeline using tools from the
EMBL-HH ATSAS suite (Petoukhov and Svergun, 2007). The
invariants calculated by the ATSAS autoRg tool were used to
select a subset of frames from the peak scattering intensity. The 49
frames corresponding to the highest protein concentration were
merged manually and used for all further data processing and
model fitting. Molecular weight for the protein was estimated
based on the correlated volume (Rambo and Tainer, 2013). The
approximate molecular weight was 21 kDa, corresponding to a
dimer. The volume of 36 nm3 was calculated using the GNOM
interface of the cross platform version of PRIMUS for the ATSAS
software suite.

AG Model Fitting
Homology models for AG(74−173) were generated based on
the SEP3 structure (PDB 4OX0; Puranik et al., 2014). For the
elongated conformation, the kink between helices 1 and 2 was
removed, the helices superposed and residues corresponding to
the flexible region between the helices built in manually using
COOT with idealized geometry and no secondary structure
restraints. The model for the bent conformation was generated
by threading the sequence of AG(74−173) directly onto the
SEP3 dimer (4OX0). Structures corresponding to two different
dimer conformations (bent and elongated) were used to calculate
theoretical scattering curves. These curves were compared with
the experimental data using CRYSOL (Svergun et al., 1995).

RESULTS AND DISCUSSION

LEAFY and NEEDLY Structure and
Function-Homology Modeling of the
DBDs
The angiosperm LFY gene is most often found as a single
copy (Brunkard et al., 2015), however, gymnosperms possess
two paralogous genes- LFY and NLY, born from an ancient
duplication which occurred before the divergence of the

angiosperm and extant gymnosperm lineages. Examination of
the genomes of gymnosperms available through the 1000 plant
genomes project as well as all partial deposited sequences reveals
that LFY and NLY are present in all gymnosperm genomes
characterized to date, with the exception of the genus Gnetum
whereNLY is absent. The proteins the LFY andNLY genes encode
comprise two distinct domains, a partially conserved N-terminal
domain (Figure 2) important for complex formation and a highly
conserved C-terminal DBD (70% sequence identity between
AtLFY and WmNLY, for example; Figure 3A), with connecting
regions presenting a higher degree of variability. In order to probe
the function of these proteins, we first aligned the DBDs of LFY
and NLY using ClustalW in order to assess conservation of DNA-
binding specificity (Figure 3A). We observed that the DBDs
of LFY and NLY are highly conserved in all seed plants based
on sequence alignment. To investigate any potential changes
in quaternary structure or putative alterations in the DNA-
binding interface, the crystal structure of the DBD of LFY from
A. thaliana (Hames et al., 2008) was used as a homology model
to generate 3D models of the DBDs of gymnosperm LFY and
NLY (Figure 3B) using SWISS-MODEL with default parameters.
Comparison of the primary sequences with secondary, tertiary
and quaternary structure derived from the crystallographic data
revealed that the DBDs are structurally identical and all amino
acids involved in direct contacts with DNA are completely
conserved between angiosperm LFY (aLFY), gymnosperm LFY
(gLFY), and NLY. In addition, the dimerisation interface recently
described as a key component in DNA binding specificity (Sayou
et al., 2014) is also highly conserved between gymnosperms
and angiosperms as shown in Figure 3. However, while AtLFY
His383 is almost completely conserved in both angiosperms and
gymnosperms, based on all available sequence data, the residue
at position AtLFY 386 varies as either an arginine in aLFY and
NLY (Arg399 in PrNLY, Figure 3C) or by substitution as a lysine
in gLFY (Lys405 in PrLFY, Figure 3D). Arginine and lysine
fulfill similar structural roles and can substitute for one another
due to the conserved positive charge and hydrogen bonding
ability of the primary ε-amine and guanidine group for lysine
and arginine, respectively (Sokalingam et al., 2012). However
the higher pKa and longer size of the arginine side chain may
affect the hydrogen bonding interaction with the carbonyl oxygen
of residue 276 (AtLFY; residue 289, PrNLY, Figure 3C) and
cannot be ruled out as affecting dimer stability, and possibly
conformation (relative positioning of the monomers). Overall,
the high degree of sequence identity between the DBD of aLFY,
gLFY, and NLY implies a likely conserved recognition of cognate
DNA sequences. Recent studies by Sayou et al. (2014) have
demonstrated the evolutionary trajectory of LFY from green algae
to moss to angiosperms based on structural and biochemical
studies of several DBDs including those of Klebsormidium subtile
LFY (algae), Physcomitrella patens LFY (moss), and Arabidopsis
LFY (Sayou et al., 2014). The distantly related LFY from algae,
moss and angiosperms were shown to bind different DNAmotifs
due to small changes in the LFY dimerisation interface, as well
as in two other key amino acids (AtLFY His308 and Arg341) that
determine the DNA half-site sequence recognized (Figure 3A), as
previously determined through a combination of structural and
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SELEX experiments (Sayou et al., 2014). However, the SELEX
motif for the DBD of gymnosperm G. biloba LFY (GbLFY) is
almost identical to the SELEXmotif for the DBDof AtLFY (Sayou
et al., 2014). As the dimerisation interface and all residues directly
contacting the DNA are highly conserved in angiosperms and
gymnosperms for aLFY, gLFY and NLY, this suggests the proteins
are able to bind the same or very similar DNA motifs. Thus, it is
probable that the DBDof LFY/NLY in higher plants became fixed,
with conservation of DNA binding and dimerisation motifs.
While bound DNA sequences and DNA binding matrices are
available for LFY from A. thaliana based on multiple ChIP-seq
and SELEX studies, no such data is available for gLFY or NLY
with the exception of the GbLFY motif. Additional data would be
important to confirm that there are no subtle allosteric effects that
may tune the DNA binding specificity of these different paralogs,
a possibility that cannot be excluded based on available data.

Functional Implications of Complex
Formation- the Role of the N-terminal
Domain in LFY and NLY Function
Interestingly, functional studies do not show full
complementation of a lfy mutant in A. thaliana by either
gLFY (from P. radiata) or NLY (from W. mirabilis; Maizel
et al., 2005). If the DBDs are able to recognize the same DNA
sequences, why do gLFY and NLY less efficiently complement
the Arabidopsis lfy mutant? One explanation relies on complex
formation with ternary factors that may tune DNA binding
specificity, for example through multi-site binding of different
adjacent cis-elements. This suggests that differences in target
gene regulation for aLFY, gLFY, and NLY likely rests on the
structure and function of the N-terminal non-conserved regions
of the LFY and NLY proteins. While the DBDs are virtually
identical, the sequence conservation in the N-terminal regions of
aLFY, gLFY, and NLY is much lower (Figures 2 and 3A).

The ability to interact with specific partners and form
different ternary complexes changes the ability of a TF to
regulate downstream genes. By retaining the core DBD and the
essential DNA-binding functionality, the N-terminal region of
the protein could vary, thus leading to relatively smooth changes
in gene regulation over the course of evolution by simply tuning
the interactions with ternary partners and thus modulating
interactions with cognate DNA without requiring altering the
DBD itself. The N-terminal ∼200 residues of LFY have been
shown to be important for dimerisation (Siriwardana and Lamb,
2012) and can possibly play a role in the formation of higher
order complexes with chromatin remodelers and other TFs (Wu
et al., 2012). Indeed, unfolded, flexible loops, and low-complexity
regions exhibit greater variability and tolerance for mutations,
as they do not affect the overall fold of the macromolecule.
In addition, these regions often have important functions and
act as protein–protein interaction surfaces (Dyson and Wright,
2005). While alpha-helices are relatively disfavored as protein–
protein interaction interfaces, exposed beta strands, hydrophobic
patches and long loops are more likely to play a role in complex
formation (Jones and Thornton, 1996; Neuvirth et al., 2004).
These structural motifs are able to create relatively planar surfaces

which are often correlated with protein–protein interactions
(Hoskins et al., 2006). Few mapping studies of LFY have been
performed and only a small number of interaction surfaces with
partner proteins have been determined (Chae et al., 2008; Souer
et al., 2008; Pastore et al., 2011; Siriwardana and Lamb, 2012;
Wu et al., 2012). From the limited data available, however, it
seems that several partners interact with the N-terminal region
of the protein (Souer et al., 2008; Siriwardana and Lamb, 2012).
Structural characterization of the N-terminal domain of LFY
would allow determining whether its properties might have
changed during evolution.

Due to the loss of NLY in the angiosperm lineage, aLFY
likely assumed additional functions, fusing the functionality of
NLY, a key regulator of female organ development, and gLFY,
an important primary regulator of male cone development, into
one fully competent regulator of plant reproduction. As has
been recently shown for several conifers (Picea abies, Podocarpus
reichei, and Taxus globosa), LFY and NLY have overlapping
expression patterns (Vazquez-Lobo et al., 2007; Carlsbecker
et al., 2013). This would mitigate any deleterious effects of
NLY loss during the gymnosperm/angiosperm split by allowing
more facile compensation for NLY function by LFY, as LFY
was already present in the same tissues, possessed the same
DBD, and likely recognized very similar cognate DNA sequences.
Thus, aLFY compensation for NLY/gLFY during reproductive
development would not necessitate extensive reprogramming of
LFY expression patterns nor require any changes to the gene
coding sequence of the DBD, important factors in the successful
compensation due to gene loss of NLY in the angiosperm lineage.

MADS-Domain TFs and Their Role in
Floral Organ Development
The homeotic class A-EMADS-box genes direct the specification
of all the floral organs and as such are central players in
flower evolution and development. In gymnosperms, orthologs
to the B and C class MADS-box genes (AP3/PI and AG in
Arabidopsis) are also present and play important roles in male
and female organ development. While the MADS-box gene
family has expanded in all land plants, this is most striking
in angiosperms due to extensive duplication events giving rise
to the class E SEPALLATA genes, which are not present in
extant gymnosperms (Zahn et al., 2005a). The SEPALLATA (SEP)
proteins have acquired new functionality and act as mediators
of interactions between class A, B, and C MADS-domain TFs as
shown by yeast two and three hybrid studies, EMSA experiments
and in vivo studies (Pelaz et al., 2000; Honma and Goto,
2001; Kaufmann et al., 2005; Malcomber and Kellogg, 2005;
Theissen and Melzer, 2007; Immink et al., 2009; Mendes et al.,
2013). The SEP proteins form heteromeric complexes with other
MADS TFs and all putative floral organ-specifying tetrameric
MADS complexes contain at least one SEP protein leading to
the specification of the different floral organs (Theissen, 2001;
Theissen and Saedler, 2001). Indeed, sep123 mutants are sterile
and unable to produce male or female organs, with the flower
converted to a collection of sepaloid-like structures, illustrating
the requirement of the SEP proteins for proper reproductive
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organ formation (Pelaz et al., 2000). Examination of the B
and C class MADS TFs in gymnosperms such as G. gnemon
suggests that tetramerisation can occur and is necessary for male
and female organ development (Figure 1). This tetramerisation
takes place without the obligatory mediation of the class E-like
AGL6 proteins (Wang et al., 2010). However, angiosperms are
dependent on the class E SEPs for tetramer formation, as the B
and C class TFs have lost their ability to directly interact. Current
hypothesis suggest that the changing interaction patterns of the
MADS TFs, in particular the requirement of the SEPs to mediate
tetramer formation in angiosperms is at the nexus of flower
origins (Melzer et al., 2010; Wang et al., 2010). The evolution of
the bisexual flower thus requires an understanding, at the protein
level, of the MADS TFs, particularly how the SEPs are able to
mediate the formation of tetrameric complexes which are critical
to the development of all the floral organs.

Our recent crystallographic data of the oligomerisation
domain of SEP3 (Puranik et al., 2014), together with mutagenesis
studies, sequence alignments and biophysical characterization of
the C-class MADS TF AGAMOUS (this study) help to explain
the molecular function of the MADS TFs and contribute to
our understanding of flower evolution. All MADS homeotic TFs
are characterized by a four domain arrangement consisting of
a highly conserved DBD “M” domain (∼60 amino acid MADS
domain, Figure 4), an “I” domain (linker Intervening domain)
important for dimerisation, a “K” domain (alpha helical Keratin-
like domain) critical for dimerisation and tetramerisation, and
a “C” domain (highly variable C-terminal domain) important
for different functions including transactivation and higher
order complex formation (Kaufmann et al., 2005). Based on
the crystal structure of a portion of the I and the full K
domain of SEP3 (Puranik et al., 2014) and extensive mutagenesis
studies, the dimerisation and tetramerisation interfaces of the
MADS-domain TFs can be mapped at the amino acid level
(Figures 5A,B). Different amino acids along the dimer and
tetramer interface were targeted for mutagenesis studies in
order to probe the mechanisms of oligomerisation and stability
(Table 2). Mutation of any residue making a direct contact
with its partner along the dimer (Leu115, Leu131, Leu135,
Tyr98, Tyr105; this study) or tetramer (Met150, Leu154, Leu171;
Puranik et al., 2014) interface in SEP3 had a striking effect
on oligomerisation, with even a single point mutation greatly
destabilizing the complex as determined by size exclusion
chromatography and comparison with the wild type protein.
This suggests that subtle differences in the amino acids at
the dimerisation and tetramerisation surface will shift the
oligomerisation equilibrium to favor certain complexes when
multiple MADS TFs are present. Examining structure based
sequence alignments for the homeotic MADS-domain TFs
demonstrates a conservation of hydrophobic residues at the
oligomerisation interface, but the size and shape of these residues
varies, which will help mediate protein–protein interactions
(Figure 5A).

Based on the structure of the SEP3 homotetramer and
mutagenesis studies, we probed the formation of hetero-
oligomers using electrophoretic mobility shift assays (Figure 6).
EMSA experiments and identification of putative complexes were

TABLE 2 | Effect of point mutations on SEP3 oligomerisation.

SEP3(75−178) constructs Oligomerisation state

Tetramerisation interface Wild type Tetramer/dimer

(Puranik et al., 2014) M150A Dimer

L154A Dimer

L171A Dimer

Splice�161−174 Dimer

Dimerisation interface Y98K Dimer/monomer

(this study) Y105N Tetramer/monomer

L115R Unstable complex

L131V Unstable complex

L135M Dimer/monomer

L135A Unstable complex

Point mutations targetting the highly conserved residues involved in the putative
dimerisation and tetramerisation interface of SEP3 were chosen for mutational
analysis. Oligomeric state was determined by size exclusion chromatography.
Where two states exist, the predominant species is marked in bold. “Unstable
complex” is used to denote a complex mixture of species between monomeric,
dimeric, and tetrameric states with no predominance for a particular oligomerisation
state.

performed according to previously published work (Smaczniak
et al., 2012). SEP3 dimerisation and tetramerisation mutants were
tested for DNA binding with AG, all expressed using in vitro
transcription translation due to the difficulties in producing
folded full length MADS TFs using standard recombinant
bacterial expression. Sufficient heterodimers and tetramers were
produced and a gel shift assay was performed using DNA
corresponding to the SOC1 promoter containing two CArG-box
MADS TF binding sites (Figure 6A) and the SOC1 promoter
sequence with either the first or the second CArG-box mutated
(Figure 6B). A SEP3 dimerisation-interface mutant, SEP3L115R,
was dramatically impaired in its ability to oligomerise based
on studies of the K-domain alone (Table 2), however, it was
able to bind DNA as a homodimer and heterotetramer with
AG, albeit with less efficiency than the wild type SEP3. The
SEP3L115R mutant was designed to mimic the sequence of
AtAP3, which is unable to form homodimers but still retains
the ability to interact with partners such as AtPI (Riechmann
et al., 1996; Winter et al., 2002; Yang et al., 2003). Both AtPI
and AtAG have a leucine residue at position 115, which is likely
able to accommodate the arginine side chain during hetero-
oligomer formation. AGAMOUS alone exhibited poor binding
to the SOC1 DNA due either to lower protein production in
the in vitro transcription translation reaction or non-optimal
sequences of the DNA, however, AG heterodimers with SEP3
were able to bind the SOC1 sequences, suggesting differences in
sequence specificity are important for AG homo and heteromer
DNA binding interactions. Tetramerisation interface mutants
SEP3L171A and a truncation mutant (SEP3�C) showed greatly
impaired heterotetramerisation with AG, as expected. Altogether,
these data provide strong evidence that the homotetramerisation
interface observed in the crystal structure of SEP3 is conserved in
the formation of heterotetramers.

Changes in the tetramerisation interface in SEP partner
MADS proteins also has an effect on oligomer formation.
For example, studies of the C-class genes PLENA (PLE) and
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FIGURE 6 | Electrophoretic mobility shift assay (EMSA) for SEP3 and AG. (A) Comparison of the oligomerisation state of SEP3 wild type, dimerisation and
tetramerisation mutants with AG using a 121 bp DNA fragment of the SOC1 promoter comprising two CArG boxes. Lane 1 corresponds to DNA alone, lane 2 SEP3
wild type, lane 3 SEP3L171A, lane 4 SEP3L115R, lane 5 SEP3�C truncation mutant, lane 6 AG, lane 7 SEP3 + AG, lane 8 SEP3L171A + AG, lane 9 SEP3L115R + AG,
lane 10 SEP3�C + AG. Putative tetramer and dimer are indicated by arrows. The truncation mutant in lane 5 likely has one or two dimers bound to DNA as indicated
above the bands by a single (one dimer bound) or double (two dimers bound) asterix. A faint highly retarded band corresponding to bound tetramers or
tetramer-induced DNA-looping was noted in lanes 7 and 9 and indicated. (B) EMSAs run with either CArG box 1 (left) or CArG box 2 (right) mutated (see Materials
and Methods). Proteins are as per (A). A faint band for SEP3 wild type and SEP3L171A was noted running as per the tetramer band in (A), suggesting homotetramer
formation on a single CArG box site. All proteins were produced via in vitro transcription translation using equivalent amounts of template DNA and equivolumes of
the reaction mixture were added to the final binding reaction. DNA was approximately 5–10 nM and labeled with DY-682 (A) or Cy5 (B) for imaging.

FARINELLI (FAR) from A. majus demonstrate that a single
amino acid change was responsible for neofunctionality of
these duplicated genes with FAR able to specify only male
organs and PLE able to specify both male and female organs
in a complementation assay in Arabidopsis. This activity was
due to a single amino acid insertion in the K domain that
altered the oligomerisation capabilities of PLE and FAR with
the SEPALLATA proteins (Airoldi et al., 2010). An amino acid
insertion shifts the hydrophobic pattern of all amino acids in
the leucine zipper tetramerisation interface, thus modulating
the hydrophobic protein–protein interface of the putative
tetrameric complexes formed by PLE and FAR with their SEP
partners.

In addition to the hydrophobic dimer and tetramer interface
acting as a driver for oligomerisation, a key component of
the MADS TFs oligomerisation propensity is the presence of
a kink in between alpha helices 1 and 2 of the K domain
(Figures 5B,C). Based on sequence alignments of the MADS
homeotic TFs, this kink region is highly variable in the family
with a tight turn predicted for SEP1, SEP2 and SEP3 due to
the presence of a GlyPro motif (Figure 5A). Prolines act as
“breakers” in an alpha helix due to their inability to form
the appropriate hydrogen bonding interactions between the
carbonyl backbone and amide proton due to the presence of
the proline side chain. Glycine residues exhibit a high degree
of conformational flexibility and have been shown to lead
to kinks in alpha helices in soluble and membrane proteins
(Wilman et al., 2014). These residues result in the formation
of a tight turn and, in the case of SEP3, an approximately 90◦

bend between alpha helices 1 and 2 (Figure 5B). Examination
of the sequences of other MADS TFs show scattered glycine
and/or proline residues between helices 1 and 2, but not a
conservation of the GlyPro motif observed in SEP1, SEP2 and
SEP3. In order to investigate whether the presence of a GlyPro
motif is required for complete opening of helices 1 and 2,
we recombinantly overexpressed and purified the K-domain
of AG.

The AG(74−173) construct, spanning the complete AG K
domain, was designed based on both secondary structure
predictions using PSIPRED (Jones, 1999) and homology
modeling with the SEP3 structure using SWISS-MODEL. This
protein was used in small angle X-ray scattering (SAXS)
studies to determine oligomerisation state and conformational
flexibility of the AG K domain in solution. The AG(74−173)

construct was expressed in E. coli, purified from inclusion
bodies under denaturing conditions and subsequently refolded.
Protein monodispersity and purity were assayed by size
exclusion column chromatography (SEC) and SDS-PAGE prior
to SAXS experiments. In order to avoid any bias due to
protein aggregation or the presence of multiple oligomeric
species, the AG(74−173) construct was purified on-line and the
complete elution profile measured directly in the X-ray beam
(Figures 7A–C). The stable radius of gyration (Rg) across
the eluted protein peak corresponding to the highest protein
concentration demonstrates that there is one species in solution
as the particle size is constant (Figure 7A). In contrast to the
SEP3 K-domain, which is predominantly tetrameric in solution
(Puranik et al., 2014), the AG K-domain is dimeric. Volume
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FIGURE 7 | Small angle X-ray scattering data for AG(74−173).
(A) Experimental data showing the UV absorbance (yellow), X-ray scattering
intensity (blue), and total intensity after buffer subtraction (red) for all collected
frames. The radius of gyration across frames corresponding to the eluted peak
are shown as dark blue dots (Rg = 2.7). The broad peak and slight variation in
Rg corresponds to conformational flexibility of the protein in solution. The
region of frames integrated for further analysis are highlighted in gray. Axes are
as labeled. (B) Scattering curve in black for the integrated frames. CRYSOL
fits for the bent and elongated dimer conformations, as well as the tetrameric
SEP3 structure. Chi squared values were 5.6 for the elongated model (blue
curve), 2.0 for the bent model (green curve) and 38.4 for the tetrameric model
(red curve). (C) Close-up of the Guinier region. The linear fit demonstrates no
evidence of aggregation of the protein. (D) Normalized Kratky plot calculated
using the integrated frames. The shape of the curve is indicative of a flexible
particle. (E) P(r) function. The calculated Porod volume for the particle is
36 nm3. Based on the Porod volume, the molecular mass of the particle is
approximately 21 kDa. (F) Elongated homology model for AG(74−173). The
homology model was based on the SEP3 K domain (4OX0) and secondary
structure predictions for AG. Each monomer is depicted as a cartoon and
colored blue and green. (G) Bent homology model for AG(74−173). Each
monomer is depicted as a cartoon and colored blue and green. The homology
models (F,G) were used for fitting the data using CRYSOL as shown in (B).

calculations based on the histogram of interatomic distances
for the particle give a volume of 36 nm3, corresponding to a
molecular mass of approximately 21 kDa, the molecular mass
of an AG(74−173) dimer (Figure 7E). AG(74−173) exhibits a
great deal of flexibility based on the Kratky plot (Figure 7D),
which is characteristic of a highly flexible and/or partially
disordered protein in solution. In order to further investigate
the possible conformations of the AG(74−173) dimer, homology
models based on the structure of SEP3 (4OX0) were generated
in an elongated and bent conformation (Figures 7F,G). CRYSOL
fits (Figure 7B) were relatively consistent with either particle
shape giving chi-squared values of 5.6 and 2.0 for the elongated
and bent conformations, respectively. In contrast, the tetrameric
SEP3 structure is inconsistent with the recorded data, giving
a chi-squared of 38.4 (Figure 7B). The Rg for both dimeric
homology models (3.1 nm for the bent and 3.6 nm for the
elongated model) was slightly bigger than the calculated Rg of
2.7 nm for the measured data. This variation is attributable
to disorder, multiple unmodeled conformations and/or partial
unfolding at the termini of the protein. Contamination by a
tetramer or soluble aggregates is considered highly unlikely as
these species would elute prior to the measured peak and there
is no evidence for this in the UV trace or X-ray scattering of the
sample.

While possessing glycine residues in the kink region between
helices 1 and 2, AG lacks the GlyPro motif seen in SEP1,
SEP2 and SEP3. Although it is well-established that AG can
form tetrameric complexes, these complexes usually contain a
SEP partner. Indeed almost characterized floral organ tetrameric
complexes of homeotic MADS TFs from angiosperms to date
rely on at least one SEP protein for tetramer formation
(Honma and Goto, 2001; Theissen and Saedler, 2001). Thus,
the SEPs are able to act as hubs of tetramer formation for
other MADS TFs. Because the GlyPro motif forces open helix
2 exposing hydrophobic surfaces, we postulate that the SEP
proteins are able to preferentially form tetramers with themselves
or other MADS TF proteins and this exposed hydrophobic
surface on helix 2 acts as an entropic driving force for
oligomerisation.

Some gymnosperm B and C-class MADS TFs are
postulated to form tetramers when bound to DNA. In
vitro studies of GGM2 (G. gnemon B-like) and GGM3
(G. gnemon C-like) demonstrate that GGM2 can form
heterotetramers with GGM3 and that GGM3 is additionally
able to homotetramerise when bound to DNA (Wang et al.,
2010). Examination of the kink region between helices 1
and 2 as determined from secondary structure predictions
and sequence alignments for GGM2 and GGM3 reveals
the presence of two glycine residues for GGM2 but no
proline. GGM3 has scattered glycines in both the kink region
and in the N-terminal portion of helix 2 (Figure 5A). We
speculate that these glycines will destabilize helix 2 and
increase the conformational space the protein is able to
sample. Indeed, GGM3 was shown to homotetramerise on
DNA with non-optimally spaced binding sites, suggesting
additional flexibility of the protein and the tetramerisation
interface (Wang et al., 2010). It is likely that the combination
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of helix destabilization in GGM3 and the relatively plastic
kink region in GGM2 is sufficient to allow the formation
of tetrameric complexes when the local concentration of the
proteins is relatively high as would be the case when bound to
adjacent regions of DNA. Further experiments to probe these
interactions and extensive mutagenesis studies would be required
to fully determine the rules governing tetramerisation. Nascent
tetramerisation capabilities are present in at least some species
of gymnosperm MADS TFs, though whether tetramerisation is
required for proper gene regulation is less clear. However, in
angiosperms, interactions mediated by the SEP class of MADS
TFs is required for male and female organ specification and
reproductive development. The gene duplication event giving rise
to the SEPALLATA class of MADS TFs and their central role in
organizing the homeotic MADS TFs into functional tetrameric
complexes we hypothesize to be a key component in flower
origins and evolution.

Taken together, these data suggest that the interaction
surfaces and oligomerisation of the MADS TFs is both variable
and highly sensitive to even small alterations in amino acid
sequence which would allow for the fast evolution of different
interactions within the family. By retaining the core DBD, the
essential function of the MADS TFs- DNA binding to specific
cognate sequences- would be preserved, but mutations in the
auxiliary I, K, and C domains would allow for functional
plasticity by changing the identity or altering the affinity of
protein interaction partners. This model is very similar to
what is observed for aLFY, gLFY, and NLY in which the
C-terminal DBD is conserved and the auxiliary N-terminal
region involved in protein–protein interactions is allowed to
vary, likely changing ternary complex formation and tuning
downstream gene regulation.

CONCLUSION

Small changes in TFs that do not directly affect the DBD
can trigger very striking evolutionary developmental changes
in an organism. LFY and the MADS TFs illustrate how small
changes at the genetic level lead to dramatic alterations and novel
functions at the protein level. While the evolutionary origins of
the bisexual angiosperm flower are still unclear, major genetic
changes - the loss of NLY and the duplication event resulting
in the SEPALLATA genes in angiosperms- likely play key roles.
How these genetic changes were able to result in morphological
changes requires an integrated study incorporating detailed
examination of protein structure and biochemistry. By exploring
the protein structure-function relationship, particularly for
TFs whose activity impacts entire downstream networks, we
can begin to understand the molecular basis for evolution.
Structural biology offers an important perspective in probing this
relationship for the master regulators, LFY and the MADS TFs,
and provides a foundation for understanding how alterations in
protein structure lead to the evolution of new functions and new
morphologies at the organismal level.
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