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Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions.
We aimed at exploring water use patterns of four tropical bamboo species (Bambusa
vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux
measurement techniques. Our approach included three experimental steps: (1) a pot
experiment with a comparison of thermal dissipation probes (TDPs), the stem heat
balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an
in situ calibration of TDPs with the SHB method for the four bamboo species, and
(3) field monitoring of sap flux of the four bamboo species along with three tropical
tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry
and a wet period. In the pot experiment, it was confirmed that the SHB method is
well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific
parameters for such calibration formulas were derived. During field monitoring we found
that some bamboo species reached high maximum sap flux densities. Across bamboo
species, maximal sap flux density increased with decreasing culm diameter. In the
diurnal course, sap flux densities in bamboos peaked much earlier than radiation and
vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There
was a pronounced hysteresis between sap flux density and VPD in bamboos, which
was less pronounced in trees. Three of the four bamboo species showed reduced sap
flux densities at high VPD values during the dry period, which was associated with a
decrease in soil moisture content. Possible roles of internal water storage, root pressure
and stomatal sensitivity are discussed.

Keywords: calibration, environmental drivers, hysteresis, stem heat balance, thermal dissipation probes, trees,
bamboos

INTRODUCTION

Bamboos (Poaceae, Bambuseae) are abundant in the natural vegetation of tropical and subtropical
regions. They have been used by people for millennia and are still used as food and construction
materials. In addition, a large variety of bamboo usages have been developed in recent decades,
for example for pulp, paper, or clothing production (International Network for Bamboo
and Rattan [INBAR], 2014). The increasing economic exploitation of bamboos goes along
with a considerable expansion of bamboo plantations in some regions (Chen et al., 2009;
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Food Agriculture Organization [FAO], 2010), which may lead
to changes in ecological processes such as water use patterns
(Uchimura, 1994; Komatsu et al., 2010). Some bamboo stands
were reported to evaporate more water than tree-dominated
forests (Komatsu et al., 2010; Ichihashi et al., 2015), but studies
focusing on water use patterns of bamboos are still rare thus far
(Pereira and Hosegood, 1962; Dierick et al., 2010; Komatsu et al.,
2010; Kume et al., 2010; Ichihashi et al., 2015).

Water use patterns of bamboos and trees differ in several
aspects. In contrast to trees, bamboos are monocotyledonous
species and lack secondary growth (Zimmermann and
Tomlinson, 1972). Therefore, vascular conduits of bamboo
xylem have to remain functional throughout the ontogeny of a
bamboo culm. Bamboos consequently have great ability to avoid
cavitation (Cochard et al., 1994; Cao et al., 2012; Petit et al.,
2014); root pressure mechanisms may contribute to repairing
embolized conduits at night (Cao et al., 2012). Such features and
structural traits of bamboos may also lead to particular water use
patterns.

In general, plant water use is driven by micrometeorological
factors and can be limited by soil water availability (O’Brien et al.,
2004; Bovard et al., 2005; Kume et al., 2007); it is regulated by
stomata opening and closing (Jarvis, 1989) and can be influenced
by internal water storage mechanisms (Waring and Running,
1978; Goldstein et al., 1998; Carrasco et al., 2014). Xylem sap flux
reflects these multiple factors. For some tree species, for example,
hysteresis in the diurnal sap flux response to radiation and vapor
pressure deficit (VPD) of the air have been reported (Goldstein
et al., 1998; O’Brien et al., 2004). Sap flux measurements thus
appear suitable to study the water use patterns of bamboos as well
as their controlling environmental factors.

Thermal dissipation probes (TDP) are widely used to measure
sap flux density (Js) in trees (Granier, 1985). Several studies
suggest calibrating the method before studying new species (Lu
et al., 2004; Wullschleger et al., 2011; Vandegehuchte and Steppe,
2013). To our knowledge, only two studies have applied the TDP
method on bamboos so far. Both reported an underestimation
of bamboo sap flux compared to stem heat balance (SHB)
and reference gravimetric measurements (GM) when the TDP
method was not calibrated (Dierick et al., 2010; Kume et al.,
2010). In contrast, the SHB method (Sakuratani, 1981) was
suggested to be well suited for sap flux measurements on
bamboos (Dierick et al., 2010). Bamboo culms are hollow; hence
heat loss in the form of heat storage inside culms is marginal,
so that steady thermal conditions as a main assumption of the
method are met (Baker and Van Bavel, 1987).

The aim of this study was to analyze water use patterns of
tropical bamboo species and particularly the response of Js to
the principal environmental drivers. First, we calibrated the SHB
and the TDP method with reference GM in an experiment on
potted culms of Bambusa vulgaris. We then measured Js in the
field in four bamboo species including B. vulgaris with both the
TDP and SHB method, and calibrated the TDP method with
the SHB method. Herein, three factors which may influence
the quality of the calibration were tested: time step of the data,
formula specificity and calibration formula type. After calibration
of the TDP method, we applied it to monitor Js in four bamboo

and three tree species in a common garden in Bogor, Indonesia.
Differences in the response of Js to fluctuations in environmental
conditions were assessed. The study intends to contribute to
expanding the yet limited knowledge on the eco-hydrological
functioning of bamboos.

MATERIALS AND METHODS

Study Sites and Species Selection
The pot calibration experiment was conducted in Guangzhou,
China (23◦26′13′′ N, 113◦12′33′′E, 13m asl). The field calibration
experiment and monitoring campaign were carried out in a
common garden in Bogor, Indonesia (6◦33′40′′ S, 106◦43′27′′ E,
182 m asl). Average annual temperature in Bogor is 25.6◦C and
annual precipitation is 3978 mm. Relatively dry conditions with
consecutive rainless days can occur between June and September.
During this dry period, monthly precipitation is on average 40%
lower than during the wet period (230 vs. 383 mm), and the
number of consecutive dry days (rainfall < 1 mm) is twice that
of the wet period (8 vs. 4 days, 1989–2008, Van Den Besselaar
et al., 2014). During our study period (July 2012–January 2013),
differences between dry and wet period were more pronounced,
i.e., 155 vs. 489 mm monthly precipitation, 14 vs. 2 consecutive
dry days, and 0.29 vs. 0.39 m−3 m−3 daily soil water content. In
Bogor, four bamboo species (B. vulgaris, Dendrocalamus asper,
Gigantochloa atroviolacea, G. apus) with five culms per species
and three tree species (Gmelina arborea, Shorea leprosula and
Hevea brasiliensis, Table 1) with five stems per species were
selected and their Js were monitored with the TDP method for
7 months.

TDP Construction and Installation
To measure Js in trees and bamboos, we used self-made TDP (1
and 2 cm length, respectively). In sensor design and construction,
we followed Wang et al. (2012). Each TDP sensor was comprised
of a heating (downstream) and a reference (upstream) probe
made of steel hypodermic needles. The probes were placed
10 cm apart (vertically). For bamboos and trees, TDP installation
depths in culms and stems were 1 and 2 cm, respectively. After
installation, each TDP was supplied with a constant current of

TABLE 1 | Structural characteristics of the studied bamboo and tree
species (n = 5 per species; mean ± SD).

Species DBH (cm) Bamboo culm wall
thickness (cm)

Height (m)

Bamboo B. vulgaris 7.0 ± 0.3 1.3 ± 0.1 17.9 ± 0.8

G. apus 8.6 ± 0.4 1.2 ± 0.2 16.2 ± 2.7

D. asper 11.9 ± 1.9 2.4 ± 0.2 21.1 ± 0.9

G. atroviolacea 8.9 ± 0.6 1.6 ± 0.1 17.0 ± 1.0

Tree H. brasiliensis 27.4 ± 2.3 − 25.2 ± 3.0

G. arborea 26.3 ± 7.7 − 26.5 ± 2.3

S. leprosula 20.7 ± 4.8 − 19.2 ± 2.5

Culm wall thickness (derived from five culms per species) and culm height (derived
from three cut culms per species) of the studied bamboos.
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120 mA; the respective power outputs of 1 and 2 cm length TDP
were∼0.1 and ∼0.2W. TDP signals were sampled every 30 s and
stored as 10-min averages for the pot calibration experiment and
as 1-min averages for all other experiments by data loggers and
multiplexers (CR1000, AM16/32, Campbell Scientific Inc., USA).

Calibration of the TDP Method
Pot Calibration Experiment: TDP, SHB, and GM
Five culms of B. vulgaris (diameter 5.3–7.3 cm, height 2.2–
3.2 m) with trimmed canopies were transplanted into plastic bags
(diameter 30 cm, height 25 cm) 6 months before the calibration
experiment. One day before the experiment, the five bamboos
were transplanted into bigger plastic pots (diameter 50 cm, height
65 cm). The pots were filled with cobblestones and water and
were then fully sealed with plastic cover and aluminum foil to
prevent evaporation of water from the pots (Figure 1A). A scaled
syringe tube was attached to each pot and connected into the pot
through a U-type tube. At the beginning of the experiment, the
water was added into the pot through the syringe tube to a fixed
level (5 cm below the pot cover). Subsequently, water was added
manually every 30 min to reach the pre-defined level. The weight
of the added water was determined gravimetrically (GM). To
measure Js, each bamboo culm was equipped with three pairs of
1 cm length TDP which were evenly installed circumferentially,
about 15 cm above the plastic cover. To minimize potential
measurement errors induced by circumferential variations of Js,
the thermocouple wires of the three TDP were connected in

parallel to get an average voltage signal for each bamboo culm
(Lu et al., 2004). For a second Js estimate, a SHB gage (SGB50
or SGA70, Dynagage Inc., USA) was installed about 1.5 m above
the TDP. Both sensor types were protected by foil and the sensor
signals were subsequently recorded as described in Section “TDP
Construction and Installation.” For the comparison to reference
GM, 10-min TDP and SHB derived values were aggregated to
half-hourly values.

To assess the performance of TDP and SHB in the pot
experiments, Js derived from TDP and SHB (Js_TDP and Js_SHB,
respectively) on daily and 30-min scales were compared to GM
derived Js (Js_GM) with paired t-tests. Additionally, the slopes
of the respective linear fits between Js_TDP, Js_SHB, and Js_GM
were tested for significant differences from one with the test of
homogeneity of slopes. The same statistical analyses were applied
again later when testing for significant differences between Js_TDP
and Js_SHB in the field calibration experiments.

Field Calibration Experiment: TDP and SHB
Five culms per bamboo species (B. vulgaris, D. asper,
G. atroviolacea, G. apus) were selected for TDP measurements
(Table 1), three to four of which were additionally measured
with SHB for a field calibration of the TDP method. TDP sensors
were installed at 1.3 m height, and SHB gages (SGB50, SGA70,
Dynagage Inc., USA) were installed about 2.5 m above the TDP.
Simultaneous TDP-SHB measurements were conducted for a
minimum of 5 days per culm (Figure 1B). Heat storage inside
bamboo culms is assumed to be negligible, which was confirmed

FIGURE 1 | Installation of thermal dissipation probe (TDP) and stem heat balance (SHB) sensors on bamboo culms for the calibration experiments on
potted plants (A) and for field calibration (B).
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by installing thermocouple wires inside the measured segments
of the respective bamboo culms to detect fluctuations in culm
temperature (Dierick et al., 2010). The observed fluctuations
were marginal, which meant stable thermal conditions as a
requirement of the SHBmethod were met.

Parametrization for TDP Calibration
We derived cross-sectional water conductive areas (ATDP) from
the culm wall thickness at the location of TDP sensor installation.
In the pot calibration experiment, reference Js were calculated
by dividing water flow rates (g h−1, GM-derived) by ATDP. In
the field calibration experiment, reference Js were taken from the
SHB measurements. The reference Js could subsequently be used
to calibrate Js_TDP. Nighttime sap flux values were excluded in
both calibration experiments.

In the field calibration, three factors were considered for
obtaining a TDP calibration formula from reference (SHB)
measurements: time step of the data, formula specificity and
calibration formula type. To examine effects of varying time steps,
the formulas were built and tested on data at varying intervals
(1-, 10-, 30-, and 60-min averages, respectively). The effects
of formula specificity were examined by using common (i.e.,
all bamboo species pooled), species-specific and culm-specific
formulas, respectively. Regarding the calibration formula type,
two formulas were compared: one was non-linear (Js = aKb)
and generated by deriving new a and b parameters for the
original Granier (1985) formula. The second was a linear formula
(Js_SHB = c × Js_TDP) which was calculated from the linear
relationship between Js_TDP and Js_SHB.

To obtain stable calibration formulas, pooled data sets were
randomly split in half for calibration and independent validation,
respectively (Niu et al., 2015). First, for each time step (1-, 10-,
30-, and 60-min, respectively), a data pool was built. Three
culms of each bamboo species were randomly chosen, and for
each, 3 days of data were randomly chosen from an initial
common dataset. With these data pools, formula specificity
was examined. For the common calibration, culms of all four
species were selected for calibration. For species-specific and
culm-specific calibration, only the data of the respective species
or culms was selected. Next, the selected data was randomly
split in half, for building the calibration formula and testing it,
respectively. When testing the formula, the differences between
Js_SHB and calibrated Js_TDP (Js_TDP_cali, abnormal distribution,
P > 0.05) were examined with the Wilcoxon Signed-Rank Test
(no significant differences at P > 0.05). The process of randomly
building and testing the formula was iterated 10,000 times.
Final calibration formula parameters were derived by averaging
the parameters of those iterations which passed the Wilcoxon
Signed-Rank Test (P > 0.05).

For an evaluation of the performance of the different
formulas and the influence of the three factors (time scale,
formula specificity and calibration formula type), differences in
normalized Root-Mean-Square Errors (nRMSE) were assessed
for each culm, species and formula factor, respectively. First, the
RMSE for each day was derived with the Js_SHB and Js_TDP_cali
values, and the nRMSE was calculated by normalizing the RMSE
with the observed daily range of Js−SHB (difference between

maximum and minimum Js_SHB). Then, the nRMSE were
analyzed regarding the three formula factors (data time scale,
formula specificity and calibration formula type) by ANOVA
(Analysis of variance). Additionally, for each day, Js_TDP_cali with
each formula type was tested for significant differences from
Js_SHB with the Wilcoxon Signed-Rank Test. The rates of passing
the Wilcoxon Signed-Rank Test (P > 0.05 when no significant
difference between TDP and SHB derived values) were assessed
for each formula.

Field Study
Monitoring Bamboo and Tree Sap Flux
Four calibrated bamboo species as well as three tree species
(G. arborea, S. leprosula, andH. brasiliensis) were monitored with
the TDP method for 7 months (July, 2012–January, 2013). Five
bamboo culms and five tree trunks per species were selected for
the measurements. On bamboos, three pairs of TDP (10 mm
in length) were installed evenly around each culm at 1.3 m
height and connected in parallel (see TDP Construction and
Installation). On trees, two pairs of 20 mm TDP were installed
in the trunk 1.3 m above the ground, in the North and South,
respectively. Js for the two sensors were separately derived with
the original calibration formula (Granier, 1985) and subsequently
averaged to obtain values for each tree. For bamboos, Js derived
with the original formula were calibrated with species-specific
calibration parameters (from reference SHB field measurements)
to obtain final Js values.

Environmental Measurements and Analyses
A micrometeorological station was set up in an open area. It
was about 100 and 600 m away from the closer measurement
sites (D. asper, G. arborea, G. atroviolacea, G. apus, S. leprosula)
and farthest sites (B. vulgaris, H. brasiliensis), respectively. Air
temperature (Ta, ◦C) and air relative humidity (RH, %) were
measured with a temperature and relative humidity probe
(CS215, Campbell) installed in a radiation shield. VPD (kPa) was
calculated from Ta and RH. Radiation (J m−2 s−1) was measured
with a pyranometer (CS300, Campbell). Data were recorded with
the previously described data loggers every minute.

In addition to the mentioned micrometeorological variables,
soil moisture (SM, m−3 m−3) was measured with time domain
reflectometry sensors (TDR, CS616, Campbell) at 0–20 cm depth.
As the clump of D. asper and the stand of G. arborea were next to
each other, one TDR was positioned between them to measure
soil moisture. Likewise, one sensor was used for measurements
of G. atroviolacea and G. apus. One TDR each were used for the
remaining species (S. leprosula, B. vulgaris, H. brasiliensis). TDR
measurements ran in parallel to the sap flux field campaign and
data were recorded with the described data loggers every minute.

For the day-to-day analysis of influences of fluctuations in
environmental conditions (VPD, radiation, SM) on Js in the
studied bamboo and tree species, daily accumulated Js (kg cm−2

d−1) were normalized by setting the highest daily observation of
each species to one and the lowest to zero. For a more isolated
analysis of potentially limiting influences of soil moisture on Js ,
we focused on ‘dry period conditions’ with consecutive rainless
days, which occurred between June and September in the study
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area. During this period, monthly precipitation was only 32%
of monthly wet period precipitation (155 vs. 489 mm), and the
number of consecutive dry days (rainfall < 1 mm) was seven
times higher than during the wet period (14 vs. 2 days). Dry
period conditions are also characterized by higher VPD (average
daily VPD> 0.74 kPa on 92% of the days). 0.74 kPa was chosen as
the threshold to distinguish between dry and wet period because
it constituted the meanmaximum (‘turning point’) in the fitted Js
response functions to VPD in three of the four studied bamboo
species (except D. asper, see Figure 4B).

For the diurnal analysis of influences of fluctuations
in environmental conditions on Js, time lags between Js
and micrometeorological drivers (radiation and VPD) were
calculated as the time difference between the respective
occurrences of maximal Js (Js_max) and maximal radiation and
VPD. T-tests were used to test time lags for significant differences
from 0 min. 30-min Js values (average values of three selected
sunny days) of each species were plotted against radiation and
VPD to examine occurrences of hysteresis. The respective areas
of hysteresis were compared between bamboos and trees with
t-tests.

All data analyses were performed with SAS 9.3 (SAS Institute
Inc., Cary, NC, USA, 2013).

RESULTS

Calibration of the TDP Method for
Bamboos
Pot Calibration Experiment: TDP, SHB, and GM
In the pot calibration experiment with B. vulgaris, SHB
yielded similar absolute values of Js as GM on daily and 30-
min scales (P > 0.05). The slope of the linear fit between
SHB and GM on the 30-min scale was 0.98 (R2 = 0.93,
P < 0.01). It did not significantly differ from 1 (P > 0.05,
Figure 2A). In contrast to this, TDP estimates, with the
original parameters of the calibration formula (Granier, 1985),

differed substantially from GM values at both the daily (60%
underestimation of accumulated Js, P < 0.01) and 30-min scale
(56% underestimation, P < 0.01). The slope of the linear fit
between TDP and GM on the 30-min scale was 0.44 (R2 = 0.84,
P < 0.01). It was significantly different from 1 (P < 0.01,
Figure 2A).

After applying the TDP calibration parameter for B. vulgaris
derived from the pot experiment (c = 2.28), the 30-min Js_TDP
were in line with those from GM. The slope was not significantly
different from 1 (P > 0.05, Figure 2B). When applying the
calibration parameters derived for B. vulgaris from the SHB field
calibration experiment (c = 2.79), Js_TDP was 19% higher than
Js−GM (P < 0.01, Figure 2B).

Field Calibration Experiment: TDP and SHB
Formula type and data time step had no significant influence
on the performance of the calibration formula, but it mattered
whether culm- or species-specific or a common calibration
formula was used (Appendix Tables A1 and A2 Supplementary
Material). Based on the nRMSE and the passing rate of
the Wilcoxon test (P > 0.05) between calibrated Js_TDP and
Js_SHB, culm-specific formulas performed better than species-
specific and common formulas. In our study, there was no
statistically significant difference between the species-specific
and the common calibration parameters (Table 2, P > 0.05).
For two of the four studied bamboo species (G. apus and
B. vulgaris), however, using species-specific formulas slightly
improved the quality of predictions as compared to applying
the common formula (P = 0.06 and 0.07, respectively, Table 2).
These two bamboo species had lower nRMSE and higher passing
rates than D. asper and G. atroviolacea (Appendix Table A2 in
Supplementary Material). The linear calibration parameters of
the four bamboo species were significantly different from each
other (P < 0.01). The linear calibration parameters, the slopes
of Js_TDP vs. Js_SHB, were examined with the test of homogeneity
of slopes and were found to differ significantly from each other
(t > 0.01).

FIGURE 2 | Half-hourly sap flux density (Js) measured with thermal dissipation probes (TDP) and stem heat balance (SHB) sensors on five potted
Bambusa vulgaris culms plotted against GM-derived reference sap flux densities (Js_GM) before (A; Js_TDP_cali_original : Y = 0.44X, R2 = 0.84, P < 0.01;
Js_SHB: Y = 0.98X, R2 = 0.93, P < 0.01) and after (B; Js_TDP_cali_field : Y = 1.24X, R2 = 0.84, P < 0.01; Js_TDP_cali_pot: Y = 1.01X, R2 = 0.84, P < 0.01)
species-specific calibration and field calibrations of the TDP method. Pooled data from 2 to 5 days of simultaneous TDP, SHB, and gravimetric
measurements (GM).
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TABLE 2 | Values of the parameter c of different bamboo calibrations (species-specific/common) for TDP sap flux estimates.

Formula specificity Species c nRMSE

Species-specific formula Common formula P-value

Species B. vulgaris 2.79 ± 0.13a 0.10 0.11 0.07

G. apus 3.32 ± 0.08b 0.10 0.12 0.06

D. asper 2.42 ± 0.06c 0.18 0.18 0.97

G. atroviolacea 2.53 ± 0.11d 0.12 0.13 0.81

Common 2.74 ± 0.07e

Significant differences between species-specific and common c estimates (Tukey’s test, P < 0.01) are indicated by superscripted letters. P-values < 0.05 indicate
significant differences between Normalized Root-Mean-Square Errors (nRMSE) of species-specific and common formula.

Before calibration, Js_TDP was on average 66 and 63% lower
than SHB-derived reference values on the daily and 30-min
scales, respectively (P < 0.01). This deviation was reduced to 10
and 8% underestimations (P < 0.01) when using species-specific
calibration parameters (Table 2). On average, for 77 ± 6% of the
days that were included in the analysis, the species-specific post-
calibration 30-min Js_TDP values were not significantly different
from the respective reference Js_SHB (Wilcoxon Signed-Rank test,
P > 0.05).

Field Study
Monitoring Bamboo and Tree Sap Flux
Js_max in the studied bamboo species (averages from five
individuals per species) were 70.5, 21.6, 49.7, and 56.2 g
cm−2 h−1 for B. vulgaris, D. asper, G. apus, and G. atroviolacea,
respectively. In trees, corresponding values were 17.7, 10.5, and
23.3 g cm−2 h−1 for H. brasiliensis, G. arborea, and S. leprosula,
respectively. Across bamboo species, Js_max decreased with
increasing culm diameter (R2 = 0.97, P = 0.02, Figure 3).

Environmental Measurements and Analyses
The normalized daily accumulated Js of all studied species
increased with increasing daily integrated radiation. This
relationship did not fully hold up for accumulated Js and average
daily VPD. In several species, daily Js increased with increasing
VPD only to a certain VPD threshold (approximately 0.74 kPa,
Figure 4); after this threshold, accumulated Js decreased with
further increasing VPD. Such conditions of high VPD were
characteristic of the dry period. For days with VPD > 0.74 kPa,
daily accumulated Js of most studied species (except in D. asper
and G. arborea) declined with decreasing soil moisture content
(R2 = 0.39, 0.44, 0.4,0.52, and 0.55 for B. vulgaris, G. apus,
G. atroviolacea, S. leprosula, and H. brasiliensis, respectively;
P < 0.05, Figures 5A,B).

Diurnal peaks in Js in the studied bamboo species occurred
relatively early (on average at about 11 am), which was
significantly earlier than the peaks of radiation and VPD (20–
82 and 131–206 min, respectively). In the studied tree species,
maximal hourly Js values were observed after the peak of
radiation (3–97 min), but still before (51–108 min) VPD peaked.
All time lags were significantly different from 0 min (P < 0.01;
Table 3), except for the time lag to radiation for the tree species
S. leprosula (P > 0.05).

FIGURE 3 | Relationship between diameter at breast height (DBH) of
bamboo culms and maximum observed sap flux density (Js_max) in
four bamboo species. Horizontal error bars indicate DBH standard errors,
vertical bars standard errors of Js_max. Data of five culms pooled per species,
average of the highest 10% of daily Js_max values of each culm used for the
analysis.

Diurnally, some of the studied species showed pronounced
hysteresis of hourly Js to radiation andVPD.Direction of rotation
(i.e., order of observations) was counter-clockwise for radiation
(Figure 6A) and clockwise for VPD (Figure 6B). The area of the
hysteresis to VPD was on average 32% larger in bamboos than in
trees, while the area of hysteresis to radiation was on average 50%
smaller in bamboos (P < 0.01).

DISCUSSION

Calibration Experiments
In the pot calibration experiment, SHB yielded similar results as
reference GM measurements. Bamboos seem well suited for the
SHB method (Dierick et al., 2010) due to their round shape and
smooth and barkless surface, which allows for tight contact with
the gages. Additionally, the hollow center and thin culm walls
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FIGURE 4 | Normalized daily accumulated sap flux density (Js) plotted against absolute values of (A) integrated daily radiation and (B) average daily
vapor pressure deficit (VPD). Daily values of four bamboo (upper row) and three tree species (lower row); data from 7 months of measurements (July
2012–January 2013) encompassing both wet (filled circles) and dry (open circles) periods (except for Dendrocalamus asper and Gmelina arborea, mainly dry period).
Daily averages derived from measurements of five culms per species.

result in relatively low energy losses to heat storage so that the
heat balance conditions required for the SHB method are met.
‘Zero sap flux’ conditions to obtain the heat conductivity of the
sheath (Ksh, Sakuratani, 1981) as a further requirement of the
SHB method are difficult to determine in situ due to potential
root pressure induced night time sap flux in bamboos (Cao et al.,

2012); however, using Ksh derived from field conditions of very
low night-time sap flux likely introduced only negligible errors
into the calculation of daytime sap flux (Grime and Sinclair,
1999). As we observed very low sap flux over several hours
during our experiments (e.g., about 1 g cm−2 h−1 during the pot
experiment), our obtained Ksh were likely reliable.
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FIGURE 5 | Normalized daily accumulated sap flux density (Js) of four bamboo species (A) and three tree species (B) in the ‘dry period’
(characterized with mean daily VPD > 0.74 kPa) plotted against normalized mean daily soil moisture content (SM). There was a significant linear
relationship between Js and SM (P < 0.05) for all species except D. asper and G. arborea. Normalized values do not reach 1.0 for all species in the figure as the
normalization was performed by setting the maximum value of the full measurement period of each species (including wet period) to one, while the figure displays
only values in dry period. Daily averages derived from measurements on five culms per species, data of at least 10 dry period days per species.

In contrast to SHB, the TDP method was found to
substantially underestimate Js of bamboos in the pot and
field calibration experiments. Underestimations by TDP were
also reported in two other bamboo species: respective average
underestimations of 13% for B. blumeana (Dierick et al., 2010)
and 31% for Phyllostachys pubescens (Moso bamboo, Kume et al.,
2010) were reported. Reasons for the observed underestimations
could lie in the distinct hydraulic and physiological features of
bamboos. Diurnal variations of stem water storage, for example,
could affect the accuracy of TDP measurements (Vergeynst et al.,
2014). Bamboos have approximately 50% parenchyma in culm
walls (Dransfield and Widjaja, 1995), which potentially provides
large water reservoirs. The depletion and refilling of the stem
during the day and night, respectively, could cause diurnal
fluctuations in culm thermal diffusivity. Higher water content
during the night could lead to a lower maximum temperature
difference (�Tmax) between heated and reference probe under

TABLE 3 | Time lags between diurnal peaks of radiation and VPD and
peaks of Js in studied bamboos and trees.

Species N Time lag with radiation
(min)

Time lag with VPD (min)

B. vulgaris 5 82 ± 62 171 ± 63

D. asper 5 41 ± 57 206 ± 57

G. apus 4 20 ± 61 131 ± 53

G. atroviolacea 5 64 ± 30 170 ± 35

Bamboo_mean 19 51A 169A

H. brasiliensis 5 −37 ± 12a 51 ± 9

G. aborea 5 −97 ± 87b 67 ± 87

S. leprosula 5 −3 ± 25a 108 ± 20

Tree_mean 15 −46B 75B

Positive values indicate a peak of radiation/VPD after the peak of Js, negative values
indicate a peak before Js; N, culms/trunks per species averaged (mean ± SD).
Significant differences in bamboo/tree mean time lags are indicated by different
superscripted letters (Tukey’s test, P < 0.01). Significant differences between
species are indicated by capital letters (P < 0.01).

“zero sap flux” conditions. Likewise, lower water content during
the day could lead to higher observed �T values. As �Tmax/�T
constitutes the basis for calculations of daytime Js, substantial
underestimations of Js could be introduced when using the
original calibration parameters (Granier, 1985; Vergeynst et al.,
2014). This hypothesis was assessed further by comparing the
linear calibration parameters of B. vulgaris from the pot and the
field calibration experiment (c = 2.28 and 2.79, respectively).
In the pot experiment, the bamboos were always supplied with
plenty of water, so that the variability of the culm water content
was likely smaller than under field conditions. Effects of varying
stem water content on �Tmax/�T are thus likely much smaller
in the pot experiment, which may explain why pot and field
calibration experiment yield different parameters for the linear
calibration of the same species (B. vulgaris). Another potential
factor for the divergence could be that the maximum observed
Js in the field (about 70 g cm−2 h−1) was much larger than in
the pot experiment (about 20 g cm−2 h−1). Higher daytime sap
flux (and thus transpiration) may cause a quicker depletion of
the potential culm water storage, which consequently leads to a
higher variability of culm water content between night and day.

We expected the calibration formula type (linear vs. non-
linear) and data time step to have an impact on the performance
of TDP predictions. However, both were not as important
as the factor formula specificity. Even though species-specific
calibration formulas generally did not perform significantly
better than the common formula, species-specific formulas
tended to show slightly better performance (Table 1) for two
of the studied species (G. apus and B. vulgaris). Also, the
calibration parameters were significantly different among the
four studied bamboo species (Table 2). Confronting this insight
with results from sap flux studies on other bamboo species
(Dierick et al., 2010; Kume et al., 2010), differences among species
become even more apparent. We thus used the derived species-
specific formulas for further analysis. The observed differences
among species may be indicative of highly heterogeneous wood
anatomical properties among bamboo species. For example,
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FIGURE 6 | Normalized hourly sap flux density (Js) plotted against (A) normalized hourly radiation and (B) VPD. Data of four bamboo (upper row) and
three tree species (lower row). Hourly averages derived from simultaneous measurements on five culms per species and by averaging the values of three sunny days
to minimize influences of weather. The numbers in the sub-figures indicate the respective time of the day.

size and shape of vascular bundles and parenchyma of 15
bamboo species were reported to be highly variable (Rúgolo
de Agrasar and Rodríguez, 2003). For two further bamboo
species (Chusquea ramosissima and Merostachys claussenii), it
was suggested that differences in number of vascular bundles per
unit area (1000 vs. 225 per cm2) and vessel length (∼1 m vs.

20 cm) could lead to differences in xylem hydraulic conductivity
(Saha et al., 2009). Differences in wood anatomical properties
may also lead to heterogeneous heat conductive properties,
which potentially affects applicability and accuracy of sap flux
measurements and particularly of the TDPmethod (Wullschleger
et al., 2011).
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In our study, culm-specific formulas performed better at
predicting Js than species-specific and common calibration
formulas (Appendix Tables A1 and A2 in Supplementary
Material). This result indicates heterogeneity in conductive
properties among culms of the same species. Potential reasons
could lie in the age and the ontogeny of individual culms. Even
though we carefully selected culms of similar age (approximately
2 years old), the exact age of individual bamboo culms within a
given clump is difficult to assess. As all monocot species, bamboos
lack secondary growth (Zimmermann and Tomlinson, 1972),
so culm diameters are not related to culm age. Additionally,
over the ontogeny of a certain culm, events and processes such
as conductive circuit failure (drought- or metabolism-related;
Cochard et al., 1994; Liese and Weiner, 1996), lignification (Lin
et al., 2002) or increasing hydraulic limitations with height
(Renninger and Phillips, 2010; Cao et al., 2012) could result in
overall reduced hydraulic conductivity and thus lower sap flux
densities with increasing culm age. However, these processes
remain difficult to assess from the outside of the culm; further
studies linking the age and ontogeny of bamboos to (TDP-
derived) sap flux and water use patterns are suggested.

Water Use Patterns of Bamboos and
Trees
Half-hourly Js_max in the four studied bamboo species ranged
from 21.6 to 70.5 g cm−2 h−1 and were (on average) almost
two times greater than in the studied tree species. The observed
range for both bamboos and trees falls into the range of Js_max
values reported for tropical tree species in a variety of sap
flux studies (Meinzer et al., 2001; O’Brien et al., 2004). For
D. asper, the Js_max (21.6 g cm−2 h−1) was similar to values
reported for B. blumeana culms (25.7 g cm−2 h−1, Dierick
et al., 2010) and Moso bamboos (approximately 20 g cm−2 h−1,
Kume et al., 2010) of similar size. Our four studied bamboo
species showed significant differences in Js_max , which were
negatively correlated with species-specific differences in DBH
(Figure 3). Consistent with this, in a study on 27 tropical
tree species, the negative correlation between Js_max and DBH
was also observed (Meinzer et al., 2001). It was assumed to
be related to a decline of the leaf area to sapwood area ratio
with increasing DBH. This was also observed in a study on
Eucalyptus grandis trees (Dye and Olbrich, 1993). In our study,
we harvested leaves of three bamboo species (B. vulgaris,D. asper,
and G. apus) and found that the leaf weight to sapwood
area ratio was positively correlated with Js_max (R2 = 0.45,
P < 0.05). However, studies connecting such anatomical and eco-
hydrological properties of bamboos are yet scarce (Saha et al.,
2009).

On the day-to-day level, accumulated Js of both the
studied bamboo and tree species were significantly correlated
with radiation and VPD (Figure 4). During the long wet
period, accumulated Js linearly increased with higher integrated
radiation and average daily VPD. Likewise, linear relationships
in the day-to-day behavior of Js to micrometeorological drivers
have been reported for some tropical bamboo and several dicot
tree species (Dierick and Hölscher, 2009; Köhler et al., 2009).

During the dry period characterized by higher radiation and
VPD (13 and 100% higher, respectively) than during the wet
period, however, the observed linear relationship to VPD did
not hold. Higher average daily VPD (‘dry period conditions’)
led to decreases in accumulated Js of several studied species
(Figure 4B). Similar decreases after a certain peak value have
been reported for some previously studied tree species (Kubota
et al., 2005; Jung et al., 2011), but in most species studied so far,
higher average daily VPD leads to increases in accumulated Js or
water use (Wullschleger andNorby, 2001; Tang et al., 2006; Kume
et al., 2007; Hernández-Santana et al., 2008; Peters et al., 2010;
Horna et al., 2011). This was also reported for Moso bamboo
(Komatsu et al., 2010). The observed decreasing accumulated
Js in bamboos under high VPD in our study were related to a
reduction of soil moisture in the dry period (for three of the four
bamboo and two of the three studied tree species). During the
dry period, VPD was generally much higher than during the wet
period. Soil moisture may become a limiting factor after several
days without rainfall in the dry period. Accumulated Js decreased
strongly and linearly with decreasing soil moisture under ‘dry
period conditions’ (i.e., VPD > 0.74 kPa) for all studied bamboo
(except D. asper) and tree species (except G. arborea, Figure 5).
Similarly, in a throughfall reduction experiment in Indonesia,
declines of monthly Js of Cacao and Gliricidia sepiumwere found
to linearly correlate with reduced soil moisture (Köhler et al.,
2010). Such sensitivity of daily Js to fluctuating soil moisture
may be related to a relatively shallow rooting depth (Kume et al.,
2007).

Regarding the diurnal course of Js, the studied bamboo species
showed earlier peaks than radiation and VPD, and also earlier
than the respective peaks of the studied tree species. In contrast
to this, previous studies on tropical trees reported rather small
time-lags between peaks of Js and radiation andVPD, respectively
(Dierick and Hölscher, 2009; Köhler et al., 2009; Horna et al.,
2011). Pre-noon peaks of Js have only been described for few
species thus far, for example, Acer rubrum (Johnson et al., 2011)
and oil palms (Niu et al., 2015). The early diurnal peaks of Js
result in substantial hysteresis of Js particularly to VPD. For
another monocot species, oil palm, it has been suggested that such
pre-noon peaks of Js and the resulting large hysteresis to VPD
could be indicative of internal trunk water storage and/or root
pressure mechanisms (Niu et al., 2015; Röll et al., 2015). Early
peaks of Js could be due to a pre-noon contribution of internal
water storage to bamboo transpiration. Likewise, the decoupling
of hourly Js particularly from VPD in the afternoon, i.e., the
drop in bamboo Js (after an early peak) despite further rising
VPD, could be connected to the reduced water availability for
leaves after the depletion of internal water storage at a certain
time of the day. The depletion of stored stem water may be
compensated for during the night by root pressure mechanisms
(Cao et al., 2012; Yang et al., 2012). Other potential reasons for the
diurnally relatively early decline of bamboo Js and the consequent
decoupling of the sap flux response from micrometeorological
drivers could be a decline in leaf hydraulic conductance in the
afternoon hours, which could contribute to prevent stem water
potential loss and subsequent xylem cavitation (Saha et al., 2009;
Yang et al., 2012).
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CONCLUSION

Adjusting and applying the TDP method for sap flux
measurements on four bamboo species pointed to substantial
differences in water use patterns between the studied bamboos
and three tree species studied. Bamboos had higher Js, and
respective hourly maxima were reached earlier in the day
than in tree species. This resulted in strong diurnal hysteresis,
particularly to VPD, and in significant time lags between the
peaks of Js in bamboos and the respective peaks of radiation
and VPD. Both may point to a strong contribution of internal
water storage mechanisms to bamboo transpiration. We found
substantial differences in the day-to-day Js response of most
studied bamboo and tree species to fluctuations in environmental
conditions between the dry and the wet period. Reduced Js
under conditions of high VPD in the dry period could largely
be explained by limiting soil moisture content. The regulation of
bamboo water use thus seems to involve mechanisms at the leaf-,
culm-, and root- level. However, these mechanisms yet remain to
be inter-connected convincingly.
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