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The gas molecule nitric oxide (NO) can cooperate with ethylene to tightly modulate plant
growth and stress responses. One of the mechanism of their crosstalk is that NO is
able to activate ethylene biosynthesis, possibly through post-translational modification
of key enzymes such as ACC synthase and oxidase by S-nitrosylation. In this paper, we
focus on the crosstalk of NO with ethylene signaling transduction transcription factor
EIN3 (Ethylene Insensitive 3) and downstream gene expression in alleviating germination
inhibition and growth damage induced by high salt. The Arabidopsis lines affected in
ethylene signaling (ein3eil1) and NO biosynthesis (nia1nia2) were employed to compare
with the wild-type Col-0 and overexpressing line EIN3ox. Firstly, the obviously inhibited
germination, greater ratio of bleached leaves and enhanced electrolyte leakage were
found in ein3eil1 and nia1nia2 lines than in Col-0 plants upon high salinity. However,
the line EIN3ox obtained a notably elevated ability to germinate and improved seedling
resistance. The experiment with SNP alone or plus high salt mostly enhanced the
expression of EIN3 transcripts, compared with ACO4 and ACS2. The western blot and
transcript analysis found that high-salt-induced EIN3 stabilization and EIN3 transcripts
were largely attenuated in the NO biogenesis mutant nia1nia2 plants than in Col-0 ones.
This observation was confirmed by simulation experiments with NO scavenger cPTIO to
block NO emission. Taken together, our study provides insights that NO promotes seed
germination and seedlings growth under salinity may depend on EIN3 protein.

Keywords: Arabidopsis, seed germination, salt stress, nitric oxide, ethylene

INTRODUCTION

Nitric oxide (NO) is a small ubiquitous molecule, which is not only involved in the promotion
of seed germination and cell death, shaping of root architecture, senescence, flowering, but also
involved in responses to abiotic and biotic stresses, such as drought, salt, heat stress, disease
resistance and apoptosis (Zhao et al., 2004; Bethke et al., 2006, 2007; Zhang et al., 2006; Hebelstrup
et al., 2012; Arc et al., 2013a,b; Sanz et al., 2015). Two main enzyme-based pathways have been
proposed to be functional for NO biosynthesis in plants (Lozano-Juste and Leon, 2010). One is
based on the activity of nitrate reductase, which primarily catalyses the reduction of nitrate to
nitrite and is encoded by two genes in Arabidopsis, designated NIA1 and NIA2 (Meyer et al., 2005;
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Modolo et al., 2005). Another is based on AtNOS1, although
AtNOS1 was originally identified as a NOS-like enzyme that
produces NO from L-arginine (Guo and Crawford, 2005), further
studies confirmed that AtNOS1 lacked its originally reported
NOS activity (Zemojtel et al., 2006).

The gaseous phytohormone ethylene serves as a
diffusible hormone in plants (Bleecker and Kende,
2000). Ethylene responses are mediated through a signal
transduction cascade in Arabidopsis thaliana, including five
receptors to the single negative regulator CTR1 and two
downstream positive components, EIN2 and EIN3 (Ethylene
Insensitive 3) (Chao et al., 1997; Johnson and Ecker, 1998;
Alonso et al., 1999; Chang and Stadler, 2001; Guo and Ecker,
2003). EIN3 is a plant-specific nuclear transcription factor
that initiates downstream transcriptional cascades for ethylene
responses (Yoo et al., 2008). EIN3 was reported to be both
necessary and sufficient for the activation of the ethylene
pathway. ERF1 (Ethylene Response Factors) is the target of
EIN3, which is sufficient and indispensable for ERF1 expression
(Solano et al., 1998). Ethylene has long been regarded as a stress
hormone. It not only regulates developmental processes such
as inhibition of cell expansion, induction of fruit ripening,
petal and leaf abscission, organ senescence, but also adapt to
stress conditions including salt stress and pathogen responses
(Bleecker and Kende, 2000; Chang and Stadler, 2001; Achard
et al., 2006).

Salinity is one of the major abiotic stresses that adversely
affect crop productivity and quality (Munns, 2002). It was
reported that salt stress not only delayed the germination process,
reduced the germination rate, but also inhibited the formation
of plant seedling after germination (Kim and Park, 2008; Lee
et al., 2010). Plants have a complex and sophisticated network
to antagonize the seed germination inhibition caused by salt
stress and many plant hormones and signaling molecules are
involved in the process (Achard et al., 2006; Tanou et al.,
2009; Mur et al., 2013). The previous researchers proved that
the small signaling molecules ABA, GA, SA, NO, and ETH
were all directly involved in the regulation of seed germination
inhibition or promotion under salt stress (Gniazdowska et al.,
2007; Kim and Park, 2008; Lee et al., 2010; Arc et al., 2013a,b;
Jiang et al., 2013; Lin et al., 2013a). Ethylene was proposed
to release the impaired seed germination and seedling growth
through crosstalk with ABA, ROS, and NO during plant
response to stress conditions (Linkies et al., 2009; Asensi-
Fabado et al., 2012; Lin et al., 2012; Arc et al., 2013b). NO
could decrease ABA and GA ratio in seeds necessary to release
inhibition of seed germination induced by salinity or break
the dormancy (Bethke et al., 2007). Recent report showed that
NO regulates hydrogen peroxide homeostasis in plants through
interplaying with ascorbate peroxidase activity during plant
stress responses (Lindermayr and Durner, 2015; Yang et al.,
2015).

The interaction between ethylene biogenesis and NO has been
increasingly attractive (Lin et al., 2013a; Lockhart, 2013; Sanz
et al., 2015; Tanou et al., 2015). It has been reported that NO
signaling in seeds could principally rely on PTM of specific
proteins such as ACS and ACO by S-nitrosylation (Hebelstrup

et al., 2012). On the other hand, ethylene biosynthesis can
be reversibly inhibited by NO through S-nitrosylation of
methionine adenosyltransferase, leading to the reduction of the
S-AdoMet pool (Lindermayr et al., 2006; Mur et al., 2013).
These observations indicated that there was janus face of NO
action on ethylene, inductive or suppresive (Mur et al., 2013).
We previously reported that application of exogenous ACC
(a precursor of ethylene biosynthesis) or sodium nitroprusside
(SNP, an NO donor) largely overcame the inhibition of
germination induced by salinity (Lin et al., 2013a). Exogenous
nitric oxide was reported to improve seed germination in wheat
against mitochondrial oxidative damage induced by high salinity
(Zheng et al., 2009). Salt stress causes in-planta accumulation of
reactive oxygen species (ROS), which can result in oxidative stress
and cellular damage (Lockhart, 2013). These reports highlighted
a common property that either NO or ethylene could release the
inhibited germination induced by salt-produced ROS stress. In
addition, EIN3 had been reported to be sufficient to enhance
Arabidopsis salt tolerance by decreasing ROS accumulation (Peng
et al., 2014). The enhanced oxidative stress in the ethylene-
insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to
salt stress supported the predominant role of EIN3 (Asensi-
Fabado et al., 2012) in the control of ethylene-mediated plant salt
responses. In this study, we hypothesize and provide evidence
from both genetic and molecular views that NO modulates
seed germination and seedling growth under high salinity
through regulating EIN3 protein as well as downstream gene
responses.

RESULTS

Comparative Analysis of Seed
Germination Rate Under Salt Stress
Among Four Lines of Arabidopsis
Salinity delayed seed germination of all four lines (Col-0,
nia1nia2, ein3eil1, and EIN3ox) 3 days after treatment. High
salinity (150 and 200 mM NaCl) significantly inhibited seed
germination rate of ein3eil1 and nia1nia2, however, EIN3ox
seeds showed obviously higher germination rate after 3 days
of salt stress. Under MS and mild salinity, all four lines
normally germinated, as the concentration of salt increased,
seed germination rate obviously declined. Compared with Col-
0 and EIN3ox, nearly 35% of nia1nia2 and ein3eil1 seeds
germinated on the medium containing 100 mMNaCl, suggesting
a significant delay in germination for the nia1nia2 and ein3eil1
mutant.

When grown on MS and mild salinity (50 and 100 mM
NaCl) 7 days after light, no differences in germination rate
were observed in the wild-type, nia1nia2, ein3eil1, and EIN3ox.
Under high salt stressed conditions (150 and 200 mM NaCl),
large differences in germination rate occurred between Col-0 and
mutants (ein3eil1 and nia1nia2). High salt stress significantly
inhibited ein3eil1 and nia1nia2 seed germination, however,
nearly all seeds of EIN3ox germinated on 200 mM NaCl after
7 days (Figures 1A,C).
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FIGURE 1 | Comparative analysis of seed germination rate under salt stress among four lines of Arabidopsis. (A) Germinating status of Columbia (Col-0),
ein3-1eil1-1, nia1-1nia2-5, and EIN3ox seeds from 0 to 200 mM NaCl concentration plate 7 days after transfer to light. (B) Germination rate of Col-0, ein3-1eil1-1,
nia1-1nia2-5, and EIN3ox seeds on 0, 50, 100 150 200 mM NaCl conditions 3 days after transfer to light. (C) Germination rate of Col-0, ein3-1eil1-1, nia1-1nia2-5,
and EIN3ox seeds on 0, 50, 100 150 200 mM NaCl conditions 7 days after transfer to light. Data are mean values (SE) of three independent experiments.

Phenotypic and Physiological Analysis of
Seedling Tolerance Upon High Salt Alone
or Plus NO Scavenger cPTIO
For phenotypic and physiological analysis under salt stress,
the 5-day-old seedlings of Col-0, ein3-1eil1-1, nia1-1nia2-5,
and EIN3ox were transferred onto MS agar plates containing
200 mM NaCl and their subsequent appearance was recorded
photographically 3 days after transfer (Peng et al., 2014). The salt
stress damages of seedlings were indicated by visibly bleached
leaves and relative electrolyte leakage (REL). The phenotypic
observation of Col-0 seedlings after transferred to salinity alone
or plus NO scavenger cPTIO showed that the ratio of bleached

seedlings obviously increased when cPTIO was supplemented
(Figure 2A). We then compared the bleached response of
four lines of seedlings 3 days after transferred and found that
nia1nia2 and ein3eil1 mutant showed largely higher ratio of
bleached leaves than Col-0 or EIN3ox seedlings (Figure 2B).
The quantitative analysis according to the ratio of bleached
to green leaves confirmed the above observations (Figure 2C).
The REL of leaves under control or salt conditions was further
measured to support phenotypic observation. The results showed
that salt stress resulted in a higher enhancement of REL in
the two mutant seedlings than in the wild-type and EIN3ox
plants.
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FIGURE 2 | Phenotypic and physiological analysis of seedling tolerance upon high salt alone or plus NO scavenger cPTIO. (A) High salt generate visible
bleached damage in wild type. 5-day-old Col-0 seedlings were continuously treated with 0 mM, 200 mM NaCl and 200 mM NaCl plus 200 µM cPTIO for 3 days.
(B) High salt alone generates visible bleached damage in Col-0, ein3-1eil1-1, nia1-1nia2-5, and EIN3ox lines. 5-day-old seedlings were continuously treated with
0 mM NaCl or 200 mM NaCl 3 days. (C) The survival rate evaluated by visible bleaching rate. 5-day-old seedlings were treated with 200 mM NaCl for 3 days.
(D) The comparison of relative electrolyte leakage (REL). 5-day-old seedlings were treated with 200 mM NaCl for 3 days. Data are mean values (SE) of three
independent experiments. Within each set of experiments, bars with different letters were significantly different at the 0.05 level (Duncan’s test).

The Salt Induced EIN3 Protein and
Transcript Levels Were Modulated by NO
Release
The ethylene signaling pathway transcription factor EIN3 is a
critical regulator of plant salt responses. We found that the
nia1nia2 and ein3eil1 seeds showed the similar germination rate
and survival rate when transferred to MS medium supplemented
with salinity (Figures 1 and 2). Consequently, EIN3 protein
was detected in wild type and both nia1nia2 and ein3eil1
mutant. Western blotting results showed that EIN3 protein
was dramatically increased after 3 h and 6 h of high salt
treatment in wild-type Col-0, and EIN3 protein could not be
detected in ein3eil1 mutant. At the same time, EIN3 protein
level in nia1nia2 plants was slightly increased after 3 h of high
salinity, but the abundance accumulated were still far less than
Col-0 (Figure 3A). EIN3 mRNA level was also checked and
qRT-PCR results showed that there was no obvious change

after 3 h of salt treatment and only mild increase after 6 h
of salt treatment in Col-0 (Figure 3B). The EIN3 mRNA in
nia1nia2 even decreased after 3 and 6 h of salt treatment
(Figure 3C).

On this basis, EIN3 protein was also detected to check whether
NO scavenger cPTIO affected EIN3 protein accumulation or
not under salt stress. Western blotting results showed that EIN3
protein in Col-0 dramatically increased after 6 h of high salt
treatment, however, the EIN3 protein level was much lower when
treated with high salt plus 200 µM cPTIO (Figure 3D).

The Salt Induced ERF1 Transcripts were
Modulated by NO Release
To check whether the accumulation EIN3 protein is due to
transcriptional function or not, the expression levels of the
representative ethylene responsive genes ERF1 were measured.
ERF1 transcript was up-regulated by high salt both in wild
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FIGURE 3 | The salt induced EIN3 protein and transcript levels were modulated by NO release. (A) High salt promotes EIN3 protein accumulation.
5-day-old seedlings of Col-0, ein3-1eil1-1, and nia1-1nia2-5 were treated with 200 mM NaCl for 3 and 6 h. Protein was extracted and subjected to immunoblots
using anti-EIN3 antibody. The non-specific band was used as a loading control. (B) EIN3 transcript analysis in wild type. 5-day-old seedlings were treated with
200 mM NaCl for 3 and 6 h. (C) EIN3 transcript analysis in nia1-1nia2-5. 5-day-old seedlings were treated with 200 mM NaCl for 3 and 6 h. (D) cPTIO impairs high
salt induced EIN3 accumulation in wild type Col-0. 5-day-old seedlings were treated with 200 mM NaCl alone or plus 200 µM cPTIO for 6 h. The non-specific band
was used as a loading control. Data are mean values (SE) of three independent experiments. Within each set of experiments, bars with different letters were
significantly different at the 0.05 level (Duncan’s test).

type Col-0 and nia1nia2mutant, however, the increased amount
of ERF1 expression in nia1nia2 is much lower than that
in Col-0. The expression level of ERF1 increased eightfold
after 6 h of high salt treatment, which coincided with the
EIN3 protein level, however, in nia1nia2 mutants, 6 h high
salt treatment only increased ERF1 expression about twofold
(Figure 4A).

Nitric oxide scavenger cPTIO were also used to treat
wild type Col-0 and then check the ERF1 expression in
seedlings affected by NO release under salt stress. The
results showed that ERF1 gene expression was up-regulated
by 200 mM NaCl treatment in wild type plants, which was
consistent with the above-mentioned results (Figure 4A). The
expression level of ERF1 increased approximately ninefold after
6 h of high salt treatment, however, the expression level
of ERF1 decreased when seedlings were treated with high
salt plus 200 µM cPTIO compared with high salt alone.
In this case, the expression level of ERF1 only increased

fourfold, which coincided with the EIN3 protein level observed
(Figure 4B).

Transcriptional Comparisons of ACO4,
ACS2, and EIN3 Affected by High Salt
and NO Donor
Compared to the control, no significant changes were observed
in transcript levels of ethylene-synthesis related genes (ACO4
and ACS2) in Col-0 seedlings treated with SNP (50 µM)
alone. However, the expression of ACO4 and ACS2 genes
were increased markedly following salt stress. Furthermore,
when SNP (50 µM) was applied to NaCl stressed seedlings
at the same time, the expression of ACO4 and ACS2 genes
were greatly induced compared to that under salinity alone
(Figures 5A,B). On the contrary, treatment with SNP alone
specifically enhanced the expression of EIN3 gene compared to
ACO4 and ACS2. Treatment with salt and SNP together further
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FIGURE 4 | The salt induced ERF1 transcripts were modulated by NO
release. (A) ERF1 transcript in Col-0 and nia1-1nia2-5. 5-day-old seedlings
were treated with 200 mM NaCl for 6 h. (B) ERF1 transcript in Col-0 affected
by salt and cPTIO. 5-day-old seedlings were treated with 200 mM NaCl alone
or plus cPTIO for 6 h. Data are mean values (SE) of three independent
experiments. Within each set of experiments, bars with different letters were
significantly different at the 0.05 level (Duncan’s test).

increased EIN3 gene expression compared with the control
(Figure 5C).

DISCUSSION

A critical role of NO in dormancy break or germination
promotion has been demonstrated in many plants under optimal
or stressed conditions (Bewley, 1997; Bethke et al., 2006, 2007;
Libourel et al., 2006; Liu et al., 2009; Lin et al., 2013a; Lindermayr
and Durner, 2015). NO is considered as a likely player of a
signaling pathway that promotes loss of dormancy and has been
suggested to behave as an endogenous regulator of this process
(Arc et al., 2013a). The involved mechanisms had been widely
investigated. A great deal of work proposed that NO-induced
rapid decrease of abscisic acid concentration was required in
breaking seed dormancy in Arabidopsis (Liu et al., 2009; Arc
et al., 2013b; Wang et al., 2015). NO was demonstrated to
act with ABA 8′-hydroxylase, resulting in ABA catabolism and

FIGURE 5 | Transcriptional comparison of ACO4, ACS2, and EIN3 in
Col-0 seedlings affected by high salt and NO donor. 5-day-old seedlings
were exposed to four treatments 0 mM NaCl, 50 µM SNP, 200 mM NaCl, and
200 mM NaCl plus 50 µM SNP for 6 h. Then the seedlings were subjected to
qRT-PCR analysis to compare the transcriptional abundance of ACO4 (A),
ACS2 (B), and EIN3 (C). Data are mean values (SE) of three independent
experiments. Within each set of experiments, bars with different letters were
significantly different at the 0.05 level (Duncan’s test).
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breaking seed dormancy in Arabidopsis (Liu et al., 2009; Arc
et al., 2013b). Increasing work indicated that NO could also
interact with ethylene biosynthesis or signaling to break seed
dormancy or improve salt tolerance. Dormancy removal in apple
embryos by nitric oxide or cyanide involves modifications in
ethylene biosynthetic pathway (Gniazdowska et al., 2007, 2010).
In addition, the up-accumulation of NO under hypoxia can
stimulate ethylene biosynthesis, possibly through PTM of key
enzymes such as ACS and ACO by S-nitrosylation (Hebelstrup
et al., 2012). Our previous study showed that NO and ethylene
cooperated in enhancing seed germination of Arabidopsis under
salinity (Lin et al., 2013a). All these evidence suggested a close
crosstalk between NO and ethylene during plant growth and
stress response. However, the directly functioning targets of NO
in ethylene signaling pathway remain unclear.

Ethylene is a major phytohormone that regulates plant
development in response to adverse environments (Wang et al.,
2002; Guo and Ecker, 2003; Potuschak et al., 2003; Zhu et al.,
2011). In ethylene signaling transduction pathway, EIN3 protein
is the key transcription factor and EIN3/EIL1 (EIN3-LIKE 1) are
both necessary and sufficient in the activation of transcription
of ERF1 and other downstream genes (Guo and Ecker, 2003).
The ein3-1eil1-1 double mutant exhibited remarkably reduced
tolerance to high concentration of salt (Peng et al., 2014) and so
this mutant was employed in this report. The experiment with
EIN3-overexpressing (EIN3ox) line plants revealed that EIN3was
sufficient to enhance transcript levels of salt-related genes and
salt tolerance (Zhang et al., 2011). Another important component
in this pathway is EIN2 protein, which is in the upstream
of EIN3 and positively regulates the functions of EIN3/EIL1.
We previously reported that loss-of-function mutation of EIN2
protein in Arabidopsis exaggerated oxidative stress induced by
salinity (Lin et al., 2013b). However, EIN2 was recently reported
to be not necessary during high salinity, since that high salinity
enhances EIN3 protein accumulation and transcriptional activity
in both EIN2-dependent and EIN2-independent manners (Peng
et al., 2014). NO was proposed to participate in diverse biological
process through S-nitrosylation of nuclear proteins (Kovacs and
Lindermayr, 2013; Mengel et al., 2013). It is coincident to find
that EIN3/EIL1 are also stabilized and accumulated in the nucleus
(Chao et al., 1997). These findings raise the assumption in this
report that EIN3 is another NO targeted nuclear transcriptional
factor by S-nitrosylation during their interplaying to release salt-
induced seed germination inhibition.

Based on the above-mentioned four lines of Arabidopsis, we
firstly compared the germination rate and seedling tolerance of
ein3-1eil1-1, nia1-1nia2-5, and EIN3ox plants with the wild-type
under salt conditions. Comparatively, the obviously decreased
germination rate, greater ratio of bleached leaves and enhanced
electrolyte leakage were found in ein3eil1 and nia1nia2 lines than
in Col-0 plants upon high salinity. However, the line EIN3ox
obtained a notably elevated ability to totally germinate and
improved seedling resistance under high salt conditions. We then
treated wild type Col-0 with NO scavenger cPTIO to mimic
nia1nia2mutant and the consistent results were achieved. It was
reported that NO donor SNP greatly induced the expression
of the ACS2 gene (Garcia et al., 2010; Lin et al., 2013a). Our

experiment with SNP alone or plus high salt mostly enhanced
the expression of EIN3 transcripts, compared with ACO4 and
ACS2. These observations and reports then displayed a close
crosstalk of NOwith EIN3 protein to improve high salt resistance
in Arabidopsis.

EIN3 protein level and downstream gene expression were
then checked in the salt-stressed seedlings. We found that
the high salt stabilized EIN3 protein accumulation and EIN3
transcripts were largely attenuated in the NO biogenesis mutant
nia1nia2 plants than in Col-0 ones. For ein3eil1 line, EIN3
protein could not be detected under control or salt condition.
Our data showed NO biogenesis mutant nia1nia2 impair EIN3
protein accumulation and transcript, especially induced by high
salt. Our simulation experiments with NO scavenger cPTIO to
block NO emission confirmed the above results with mutant
plants. This evidence verifies that loss of NO will inhibit EIN3
level and gene transcripts under salt stress. The function of
ethylene is finally accomplished by the signaling transduction
especially the key transcription factor EIN3 protein level and
downstream gene expression (Rieu et al., 2003; Asensi-Fabado
et al., 2012). The classic EIN3 downstream ethylene responsive
gene ERF1 transcript was simultaneously detected and the
changes coincided with EIN3 protein and its transcript in
salt-stressed Col-0 and nia1nia2 plants. All above data clearly
indicates that NO modulates the ethylene signaling pathway
transcription factor EIN3 accumulation to counteract salt stress.

Nitric oxide had been increasingly reported to modulate
numerous cellular functions in plants through protein post-
translational modifications (PTMs) of nuclear enzyme activities
(Lindermayr et al., 2006; Tanou et al., 2009; Kovacs and
Lindermayr, 2013; Mengel et al., 2013; Wang et al., 2015).
The ethylene biosynthesis enzyme ACS (Lindermayr et al.,
2006), ascorbate peroxidase (Yang et al., 2015) and OST1 (open
stomata 1) (Wang et al., 2015) had all been successfully
identified to be the S-nitrosylated substrates. In this way,
NO establishes a comprehensive crosstalk network with other
signaling molecules, such as ABA, JA, ethylene, ROS to
regulate plant growth and defense (Abat and Deswal, 2009;
Tanou et al., 2009; Manjunatha et al., 2012; Kovacs and
Lindermayr, 2013; Wang et al., 2015). Here, we propose
that NO promotes seed germination and seedling growth
under high salt condition may depend on EIN3 protein
accumulation and the downstream targeted responsive gene in
Arabidopsis. Further study need to investigate whether NO also
modify EIN3 activity through S-nitrosylation, which had been
found in the way of NO acting on ACS, ACO activities in
plants.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The wild type was Columbia ecotype (Col-0), an ein3 and
eil1 double mutant (ein3-1eil1-1) (Alonso et al., 1999), and a
transgenic line overexpressing EIN3 (EIN3ox) (Chao et al., 1997)
and SALK line nia1nia2 (nia1-1nia2-5) were used in the study.
Surface-sterilized seeds were sown on Murashige and Skoog
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(MS) medium (4.3 g/L MS salts, 10 g/L Suc, pH 5.7 to 5.8, and
8 g/L agar) imbibed at 4◦C for 3 days in the dark and then
germinated at 23◦C under a 16/8 light/dark regime.

Assay of Seed Germination Rate
For germination assays, at least 120 seeds per plate from Col-0,
ein3-1eil1-1, nia1nia2, and EIN3ox plants and three replicates of
each were sowed onto MS medium supplemented with various
concentrations of NaCl (50, 100, 150, and 200 mM). Germination
was assessed from 3rd days to 7th days after transfer to light.
A seed was considered as germinated when the radical protruded
through the envelopes.

Seedling Survival Rate and Relative
Electrolyte Leakage Assays
For bleaching analysis of salt-stressed leaves, 5 days seedlings
were transferred onto MS agar plates containing 200 mM NaCl
alone or plus 200 µM cPTIO and their subsequent appearance
was recorded photographically 3 days after transferred. The
seedling survival rate was simultaneously scored as bleaching
ratio of leaves (Peng et al., 2014). Leaf REL were measured as
described previously (Peever and Higgins, 1989).

Protein Extracting and Western Blotting
Assays
Five days seedlings of Col-0, ein3-1eil1-1 and nia1-1nia2-5 were
treated with 200 mM NaCl for 3 and 6 h. Protein was extracted
and subjected to immunoblots using anti-EIN3 antibody. Plant
samples were ground in liquid N2 and soluble protein extracts
were made by homogenization in 50 mM Tris–HCl (pH 8.0),
10 mM NaCl, 0.1 M PMSF, and 0.1 M DTT, with subsequent
centrifugation at 13000 g for 30 min at 4◦C The protein in the
supernatants was quantified by Bradford’s assay (Bradford, 1976).
Western blot analysis was performed as described previously
(Alonso et al., 1999) with anti-EIN3 antibodies (Guo and Ecker,
2003).

qRT-PCR Analysis of Gene Expression
For expression profiling of ethylene-related genes in seedlings
under salt stress in the presence of SNP or cPTIO was used as the
NO donor and inhibitor. The seedlings were transferred onto MS
agar plates containing 200mMNaCl or 200mMNaCl plus 50µM

SNP for 3–6 h. There were three replicates of each type of seed
treatment plate. The qRT-PCR assay has been designed according
to the Minimum Information for Publication of Quantitative
Real-Time PCR Experiments (MIQE) guidelines (Remans et al.,
2014).

Total RNA was prepared using the TRIzol reagent
(Invitrogen). Two micrograms of total RNA treated with DNase
I (Promega) was added in a 20 µL reverse transcription reaction
using the M-MLV reverse transcription system (Promega). Real-
time PCR was performed using SYBR Green Mix (Takara) and
the specific primers:

UBQ10-F: TCTCGTCTCTGTTATGCTTAAGAAG,
UBQ10-R: AGAAAGAAAGAGATAACAGGAACGG,
ERF1-F: ACCGCTCCGTGAAGTTAGATAATG,
ERF1-R: ATCCTAATCTTTCACCAAGTCCCAC,
EIN3-F: TGGAGAGACAAAATGCGGCT,
EIN3-R: ATAGCCGCAGGACCATTACG,
ACS2-F: AGGCAATTGCACATTTCATGG,
ACS2-R: CTGTCCGCCACCTCAAGTCT,
ACO4-F: CCGATGTCCCTGATCTCGAC,
ACO4- R: AGTCGGTCTTTTCGACCCGTA,

The expression level was normalized to that of the UBIQUITIN10
(UBQ10) control. The primer efficiency was calculated from qRT-
PCR of the serial dilution of total cDNA, and the specificity of the
primers was confirmed by the dissociation curve for each primer
set in accordance with the MIQE guidelines.

Statistical Analysis
Statistical treatment was carried out by analysis of variance
(ANOVA) using SPSS-19 statistical software package. Results
were represented as the means ± SE. Differences between
treatments were separated by Duncanmultiple range test at a 0.05
probability level.
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