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Although a role of ethylene in the regulation of senescence and plant stress responses in
general has a long history, a possible involvement in the regulation of adaptive responses
to nutrient deficiencies has been mainly investigated since the last two decades. In
the case of plant responses to phosphate (Pi) starvation, ethylene was identified as a
modulator of adaptive responses in root growth and morphology. The molecular base
of these adaptations has been elucidated in supplementation studies with ethylene
precursors and antagonists, as well as analysis of mutants and transgenic plants
with modified ethylene biosynthesis and responsiveness, using mainly Arabidopsis
thaliana as a model plant. However, increasing evidence suggests that apart from root
growth responses, ethylene may be involved in various additional plant adaptations
to Pi limitation including Pi mobilization in the rhizosphere, Pi uptake and internal
Pi recycling. The ethylene-mediated responses are frequently characterized by high
genotypic variability and may partially share common pathways in different nutrient
limitations.
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INTRODUCTION

Among the wide range of phosphorus (P) forms in soils, inorganic phosphate anions (Pi) are
taken up exclusively by plant roots. However, due to limited solubility, P is the macronutrient
with the lowest plant availability in soils. Even in well-fertilized soils, on average only 20% of
the fertilizer input are utilized by plants since the majority of fertilizer Pi is prone to Pi fixation
and incorporation into organic Pi forms comprising 20–80% of total soil P. (Richardson, 1994;
Holford, 1997). Therefore, higher plants are strongly dependent on specific adaptations to acquire
Pi in sufficient amounts. Adaptive responses toward improved spatial Pi acquisition comprise
stimulation of root growth, increased formation of fine root structures (lateral roots, root hairs)
(Figure 1), preferential root development in the top soil with the highest P content (Lynch and
Brown, 2001) or stimulation of lateral root growth in nutrient patches rich in P and also N (Forde
and Lorenzo, 2001). Modifications of the rhizosphere chemistry, such as rhizosphere acidification,
secretion of organic metal-chelators (carboxylates, phenolics) and phosphohydrolases (acid
phosphatase, phytase) increase the solubility and plant availability of Pi in the rhizosphere
(Neumann and Römheld, 2002, 2007). The formation of so-called cluster roots (CR; Figure 2)
within the Proteaceae, Casuarinaceae, Myrtaceae, and Fabaceae (Dinkelaker et al., 1995; Neumann
and Martinoia, 2002), or dauciform roots in Cyperaceae (Playsted et al., 2006) are among the
most specialized root-morphological adaptations to promote the secretion of Pi-mobilizing root
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FIGURE 1 | Adaptive responses to Pi limitation in plant roots modulated by ethylene. Green: stimulation; red: inhibition.
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FIGURE 2 | Expression pattern of hormone-related genes during cluster root (CR) development in Lupinus albus grown for 20 days without Pi supply
and evaluated by quantitative real time PCR (RT-qPCR). Genes are involved in auxin biosynthesis (YUCCA), auxin transport (AUX1, PIN1), cytokinin degradation
(CKX), cytokinin receptors (CRE), ethylene biosynthesis (ACC_oxidase), brassinosteroid biosynthesis (BR), and RNA degradation associated with nitric oxide
formation (XDH). The gene expression level is indicated relative to reference genes. Data represent means ± SE (n = 2–3). Different lowercase letters denote
significant differences (P < 0.05). PE, pre-emergent stage; JU, juvenile root clusters; MA, mature root clusters (modified after Wang et al., 2014b). The photo shows
the different developmental stages of CRs used for RNA isolation: PE, pre-emergent stage; JU, juvenile cluster; MA, mature cluster.

exudates. The expression of high affinity Pi uptake systems
provides the ability for efficient exploitation of the rhizosphere
solution even at low Pi levels, hardly exceeding concentrations
of 10 µM (Bieleski, 1973) even in well-fertilized soils. Also
symbiotic associations with mycorrhizal fungi are frequently
established as adaptive responses for improved spatial
(arbuscular and ectomycorrhizal fungi) and chemical acquisition
(mainly ectomycorrhizal fungi) of soil P forms (Neumann and
Römheld, 2002).

Among the wide range of regulatory factors involved in
the induction of adaptive responses to Pi limitation, there is
increasing evidence that these processes are modulated also
by ethylene as important regulator. In many studies, the role
of ethylene has been investigated by exogenous application of
precursors and antagonists of ethylene synthesis and signal
transduction and by expression analysis of genes involved in
ethylene biosynthesis, signaling and ethylene responses. Other
strategies comprise the analysis of mutants and transgenic plants
with modified synthesis, signaling and reception of ethylene,
most frequently using Arabidopsis thaliana as model plant
(Nagarajan and Smith, 2011).

ETHYLENE AND ROOT GROWTH
RESPONSES

The involvement of ethylene in regulation of root growth
has been postulated already in early studies by Chadwick and
Burg (1967) on root geotropism and Smith and Russell (1969)
on root growth responses under oxygen limitation, including
also interactions with auxin (Chadwick and Burg, 1967, 1970).

Meanwhile it is generally accepted that ethylene influences root
growth in a biphasic manner with stimulatory effects, e.g., on
lateral root formation induced by low ethylene concentrations,
triggering both, synthesis and signaling of auxins, as indicated
by analysis of Arabidopsis mutants affected in auxin signaling
and ethylene-induced auxin synthesis (Stepanova et al., 2005;
Ivanchenko et al., 2008). The ethylene-induced modifications
of auxin synthesis and transport contribute to the formation
of auxin gradients necessary for the induction of lateral root
primordia in the pericycle opposite the prototoxylem poles
(Fukaki and Tasaka, 2009).

By contrast, high ethylene concentrations exert inhibitory
effects on lateral root formation, as demonstrated by Negi
et al. (2008), showing that both, overproduction of ethylene
by high external application of the ethylene precursor 1-
aminocyclopropane-1-carboxylic acid (ACC) or by the eto1
mutation, inhibited lateral root formation in Arabidopsis. On
the other hand, lateral root formation was stimulated in the
etr1 (ethylene triple response1) or ein2 (ethylene insensitive2)
mutations, blocking ethylene responses (Negi et al., 2008).
Similar to lateral root formation promoted by low levels
of ethylene, ethylene/auxin interactions seem to be involved
also in the inhibitory effects on root growth induced by
high ethylene concentrations, stimulating both, acropetal and
basipetal auxin transport with involvement of the AUX1 influx
carrier as indicated by an ethylene-insensitive aux1-7 mutant
of Arabidopsis (Negi et al., 2008), as well as PIN3 and PIN7
efflux transporters (Lewis et al., 2011). The ethylene-mediated
stimulation of auxin transport may inhibit lateral root formation
by a reduction of auxin accumulation in the protoxylem pericycle,
required for initiation of lateral root primordia (Fukaki and
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Tasaka, 2009). Interestingly, high ethylene concentrations exerted
inhibitory effects on formation of new lateral root primordia but
stimulated outgrowth of already existing primordia (Ivanchenko
et al., 2008). In primary roots of Arabidopsis, also a massive
ethylene-induced stimulation of auxin synthesis in the root tip
has been observed (Ruzicka et al., 2007; Swarup et al., 2007) with
inhibitory effects on root growth, which may at least partially
be attributed to a reduced extensibility of the cell wall due
to inhibition of the auxin-dependent plasmalemma H+-ATPase
and formation of reactive oxygen species (ROS), promoting
cross-linking of cell walls by hydroxyproline-rich glycoproteins
in response to high auxin concentrations. Increased ethylene
levels are also able to affect the activity of the primary root
meristem, probably by interaction with jasmonic acid (Chacon-
Lopez et al., 2011), inducing a determinate developmental
program with arrested cell division and promotion of cell
differentiation.

ADAPTIVE RESPONSES TO Pi
LIMITATION – SPATIAL Pi ACQUISITION

Measurements of ethylene production, inhibitor studies (Borch
et al., 1999; Lynch and Brown, 2001; Li et al., 2009), analyses
of mutants in gene expression of the ethylene bio-synthetic
pathway (Tsuchisaka and Theologis, 2004; O’Rourke et al., 2013;
Wang et al., 2014a) revealed promotion of ethylene synthesis
and/or enhanced ethylene sensitivity (Figure 1), induced by Pi
limitation in higher plants (He et al., 1992; Kim et al., 2008).
These responses seem to be expressed in a highly tissue-specific
and developmental stage-dependent manner. Accordingly, Kim
et al. (2008) reported up-regulation of ethylene production in
shoots but not in roots of Pi-deficient tomato and no effects
in Petunia with the conclusion that modifications in ethylene
sensitivity aremore important in latter cases. As another example,
Wang et al. (2014a) recorded up-regulation of the ethylene
biosynthesis gene encoding ACC oxidase in 1–2 cm sub-apical
lateral root zones just prior emergence of secondary laterals
during CR development in Pi-deficient white lupin (Lupinus
albus L.). Gene expression of ACC oxidase declined after
outgrowth of the secondary laterals, followed by a massive
increase again during further development of the root clusters
(Figure 3).

The Pi deficiency-induced changes in ethylene accumulation
and ethylene responsiveness are involved in adaptive
modifications of root growth toward improved P acquisition.
Typical patterns comprise a reduction of primary root growth,
associated with an increase in lateral root development
(Figure 1) promoting the development of a shallower root
system for exploitation of top soil layers with the highest P
availability (Linkohr et al., 2002; Lopez-Bucio et al., 2002;
Sanchez-Calderon et al., 2006; Svistoonoff et al., 2007). Similarly,
the angle of basal lateral roots in common bean can be modulated
by increased sensitivity to ethylene in response to low Pi supply,
to direct lateral root development into the upper soil layers
(Basu et al., 2007). However, the described ethylene-mediated
root growth responses to P limitation cannot be generalized

and exhibit high genotypic variability. Testing 73 ecotypes of
Arabidopsis thaliana revealed P deficiency-induced inhibition
of primary root elongation only for 50% of the accessions
(Chevalier et al., 2003). A survey of 14 dicots and monocots in
hydroponics showed that all tested species had the same degree
of primary root elongation independent of the Pi-nutritional
status (Narayanan and Reddy, 1982), and many plant species
even exhibit root elongation under low-Pi conditions (Niu et al.,
2012). Also the formation of shallower root systems in common
bean is a heritable trait with genotypic variability, which has
already been exploited for breeding programs to promote top
soil foraging for improved Pi acquisition (Lynch and Brown,
2012).

One of the earliest detectable modifications of root
morphology in response to Pi starvation is an increased
number and length of root hairs (Bates and Lynch, 2001; Ma
et al., 2001; Jain et al., 2007) as an important adaptation for
improved spatial acquisition of available Pi in the rhizosphere
(Figures 1 and 2) with particular importance for plant species
unable to form mycorrhizal associations. Accordingly, length of
root hairs was inversely correlated with the degree mycotrophy
in different plant species (Schweiger et al., 1995). However,
due to secretory properties (protons, organic metal chelators,
mucilage) and surface extension, the length and the density
of root hairs also determines root soil contact and chemical
modifications of the rhizosphere toward improved solubilization
of nutrients (Playsted et al., 2006; Haling et al., 2013; Abrahão
et al., 2014).

Based on the observation that in contrast to Fe deficiency,
the number of root hairs in Arabidopsis under Pi limitation
was not affected by application of ethylene anatagonists and
also not in the ethylene-insensitive ein2 and the ethylene-
resitant etr1 mutants, Schmidt and Schikora (2001) concluded
that the development of extra root hairs in response to
Pi limitation does not appear to require ethylene signaling.
However, treatments with the ethylene precursor ACC promoted
root hair elongation, which was inhibited by ethylene antagonists
(Zhang et al., 2003). Moreover, root hair length was reduced
in various ethylene-response mutants as compared with the
wild type under P limitation but not with sufficient Pi supply
(Cho and Cosgrove, 2002; Zhang et al., 2003), suggesting
that ethylene is involved in the regulation of Pi deficiency-
induced root hair elongation (Figure 1). Moreover, ethylene
increased also the density of root hairs by shortening trichoblast
cells to increase the number of H cells per unit root length
(Zhang et al., 2003). Apart from the hormone-dependent
metabolic regulation, root hair development in response to
Pi limitation also shows marked genotypic variations and
improved P acquisition in cultivars with long root hairs has
been documented for barley (Gahoonia et al., 1997; Haling
et al., 2013) and Phaseolus vulgaris where a combination of
ethylene-modulated root traits, such as long root hairs and a
shallow root system was particularly efficient (Miguel et al.,
2015).

Interestingly, the ethylene mediated responses of root growth
to Pi limitation as described so far, seem to be largely independent
from a low P-nutritional status of the plant as a systemic signal,
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FIGURE 3 | Stages of CR development in Pi-deficient white lupin (Lupinus albus L.). Characteristic processes in the different root zones potentially
modulated by ethylene are marked in green. (A) Single second order lateral rootlet of a MA root cluster, densely covered with root hairs. (B) Single lateral rootlet of an
outgrowing juvenileJU root cluster with growing root hairs. (C) Outgrowth of a lateral rootlet primordium. (D) Root clusters in different developmental stages along a
first-order lateral root; (E) Root system of Pi-deficient white lupin with CRs development. PE, pre-emergent stage; JU, juvenile cluster; MA, mature cluster. (Figure
modified after Wang et al., 2014b).

and a low Pi level in the external rooting medium seems to be
sufficient for the induction (Thibaud et al., 2010; Nagarajan and
Smith, 2011). The local sensor is currently unknown but it seems
to be plausible that high affinity P transporters, located in the
plasma membrane of epidermal cells in roots and root hairs,
could express a double function as transporters and receptors
(transceptors) as already shown for the yeast Pho84p high-affinity
Pi transporter (Popova et al., 2010) or the Arabidopsis nitrate
transporter CHL1/NRT1.1 with functions as transporter and
sensor for nitrate in the external medium (Ho et al., 2009). The
low Pi status of the rooting medium is most probably sensed in
the apoplast of the primary root tip (Svistoonoff et al., 2007) and
a P5-type ATPase (PDR2) interacting with the SCARECROW
transcription factor and multi-copper oxidases (LPR1/LPR2) in
the ER of the root tip meristem have been characterized as
components of the sensing system. After sensing the local Pi
status at the primary root tip, the information of Pi depletion
at the roots is translocated via xylem transport to the shoot and
may involve Pi, strigolactones, and cytokinins as signal molecules
(recently reviewed by Chiou and Lin (2011) and Zhang et al.
(2014).

ADAPTIVE RESPONSES TO Pi
LIMITATION – Pi MOBILIZATION

Apart from functions in adaptivemodulation of root morphology
and root architecture for improved spatial acquisition of
available soil Pi, there is also increasing evidence for a
role of ethylene in root-induced adaptations to increase
the chemical availability of Pi in the rhizosphere. A large
proportion of soil Pi (up to 80 %) is usually sequestered in
organic binding forms, requiring mineralization by enzymatic
hydrolysis prior to plant uptake (Richardson, 1994; Holford,
1997). Accordingly, both, soil microorganisms and plant roots
are able release phosphohydrolases (e.g., acid phosphatases,
alkaline phosphatases, phytases, nucleases) to acquire or recycle
Pi from organic binding forms. Particularly root secretion
of acid phosphatases is stimulated as a response to Pi
limitation in many plant species (Neumann and Römheld,
2007) and ethylene signalling seems to be involved in the
up-regulation of intracellular and secretory acid phosphatases
(Figure 1), both, at the level of transcription and enzyme
activity as indicated by precursor/inhibitor experiments and
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analysis of the ethylene insensitive ein2-5 and the ethylene-
overproducing hps2 mutant (Lei et al., 2011; Li et al.,
2011).

In contrast to the adaptive responses in root growth, the
up-regulation of acid phosphatases is induced systemically
by a low internal Pi nutritional status of the plant.
Other systemic, potentially ethylene-mediated responses
comprise the up-regulation of ribonuclease genes (RNS1),
intracellular acid phosphatases (ACP5) and Pi transporters
(Pht1,4) involved in remobilization and re-translocation
of Pi from RNA and other organic P compounds in
senescing organs (Figures 1 and 2), during programmed
cell death and also in response to Pi limitation (Thibaud
et al., 2010; Nagarajan and Smith, 2011). Accordingly,
increased ethylene responsiveness has been implicated also
in the formation of lysigenic aerenchyma in Pi-deficient
maize roots (He et al., 1992, 1994) as a strategy for Pi
recycling.

CLUSTER ROOTS

The formation of cluster roots (CR) belongs to the most
specialized adaptations for mobilization of sparingly soluble Pi
sources in soils (Figure 2). Although CRs have been detected
in various plant families such as Proteaceae, Casuarinaceae,
Mytaceae, Fabaceae, and others, white lupin so far represents
the best-characterized model plant with respect to regulatory
aspects of CR development and CR function. CRs are
bottlebrush like structures formed by short second-order
laterals with determinate growth and densely covered with
root hairs (Dinkelaker et al., 1995; Neumann and Martinoia,
2002). Thereby, the largely increased surface area enables
a concentrated release of organic metal chelators (citrate,
malate, phenolics), ectoenzymes (acid phosphatases), protons
and reductive changes in the rhizosphere, mediating the
mobilization of sparingly soluble soil phosphates but also
other nutrients, such as Fe, Mn, Zn, and Mo (Gardner
et al., 1983; Dinkelaker et al., 1997, Neumann and Römheld,
2007). In the past, only a few studies addressed a possible
involvement of ethylene in CR development, mainly with
inhibitor studies and measuring ethylene evolution from the
whole root system (Gilbert et al., 2000; Zaid et al., 2003). More
recently, transcriptomics and gene expression studies revealed
considerable variation in the expression of genes encoding
ethylene bio-synthetic enzymes (ACC oxidase, ACC synthase)
during CR development (O’Rourke et al., 2013; Wang et al.,
2014a,b).

In the 1.2 cm subapical root zones of first-order laterals,
prior to the emergence of the second-order lateral cluster
rootlets, ethylene biosynthesis genes are moderately up-regulated
together with genes involved in auxin biosynthesis (YUCCA)
and transport (AUX1, PIN1), synthesis of brassinosteroids,
and cytokinin receptors (Figure 3; Wang et al., 2014a,b),
in accordance with the postulated role of these hormonal
factors in formation of auxin gradients required for priming
of pericycle cells for induction of the lateral rootlet primordia

(Fukaki and Tasaka, 2009). However, in contrast to ethylene-
mediated modifications of root growth under Pi limitation
discussed so far (including growth inhibition of the primary
root and lateral root proliferation), CR formation is largely
induced systemically determined mainly by the Pi-nutritional
status of the shoot (Marschner et al., 1987; Shane et al., 2003).
Accordingly, induction of CRs in Pi-deficient white lupin can be
suppressed almost completely by foliar Pi application (Marschner
et al., 1987). More recently, sucrose has been identified as
important shoot-borne signal, triggering the formation of CRs
(Zhou et al., 2008; Wang et al., 2015) mediated by the well-
documented increased shoot-to root translocation of sucrose
under Pi limitation (Hammond and White, 2008, 2011; Wang
et al., 2015). Even in Pi-sufficient lupin plants cultivated
with Pi concentrations suppressive for CR formation, external
application of sucrose to the rooting medium induced the
formation of CRs in a concentration dependent manner to
a similar or even higher extent than in P-deficient plants
(Wang et al., 2015). Both, Pi deficiency-induced CR formation
and sucrose-induced formation of CRs under sufficient Pi
supply are completely suppressed by the ethylene biosynthesis
inhibitor CoCl2 (Wang et al., 2014b). Moreover, in many other
plant species it has been shown that external sucrose supply
increases ethylene production in a concentration-dependent
manner with effects on various processes, such as anthocyanin
production, flowering, and fruit ripening (Philosoph-Hadas
et al., 1985; Kobayashi and Saka, 2000; Jeong et al., 2010)
and sucrose concentrations increased in the sub-apical root
zones of first-order laterals in P-deficient white lupin (Wang
et al., 2015). These findings raise the question whether sucrose
as a shoot-borne signal exerts its stimulatory effects on CR
formation via stimulation of ethylene biosynthesis. However,
during outgrowth of the CR primordia in the juvenile (JU)
stage of CR development, expression of transcripts involved in
ethylene biosynthesis (ACC oxidase) and auxin synthesis and
transport transiently declined, followed by a massive increase
of ACC oxidase gene expression during cluster-root maturation
(Figure 3; Wang et al., 2014a,b). This is associated with a
range of metabolic and developmental modifications (Wang
et al., 2014a) known to be mediated by ethylene signaling also
in other plant species comprising: (i) initiation of determinate
growth of the lateral rootlets by inactivation of the root tip
meristem including interactions with jasmonic acid (Chacon-
Lopez et al., 2011; Wang et al., 2014a); (ii) formation of
long, densely spaced root hairs (Cho and Cosgrove, 2002;
Neumann andMartinoia, 2002; Zhang et al., 2003); (iii) increased
expression of root secretory acid phosphatase (Massonneau
et al., 2001; Lei et al., 2011); (iv) a massive decline (80%)
of total RNA contents (Massonneau et al., 2001) associated
with up-regulation of ribonuclease genes and Pi transporters
(Figure 2) involved in remobilization and re-translocation of
Pi from RNA degradation to the young, actively growing
root zones (Thibaud et al., 2010; Nagarajan and Smith, 2011;
Wang et al., 2014a,b); (v) the massive RNA degradation during
CR maturation results in the formation of NO as a side
product.(Wang et al., 2010). Together with ethylene, NO may
be involved in the induction of the FIT transcription factor as
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a central regulator of the coordinated Fe deficiency responses in
strategy I plants (Hindt and Guerinot, 2012), which surprisingly
was similarly expressed in mature CRs of white lupin even
under Fe-sufficient conditions (Wang et al., 2014a) including
also the up-regulation of the plasma membrane ferric reductase
system (FRO2) and the FeII transporter (IRT1). Interestingly
many adaptations of CRs toward improved Pi acquisition,
such as root hair proliferation, proton extrusion, exudation
of phenolic compounds with metal-chelating properties and
increased ferric reductase activity at the root surface are
also part of the strategy I mechanism for Fe acquisition
(Neumann and Römheld, 2007). Since lupins are naturally
adapted to moderately acidic soils frequently characterized
by Pi fixation on iron amd aluminum oxides/hydroxides,
the expression of mechanisms for Fe acquisition may be
beneficial also for mobilization of sparingly soöuble Fe-P
forms even at low soil pH, where Fe availability is usually
not a problem. Consequently, in white lupin responses to
Fe deficiency and to P limitation may at least partially
share the same ethylene-dependent signaling pathways.
Also in Arabidopsis, an interplay of strategies for P and
Fe acquisition is suggested by increased Fe accumulation
in response to P limitation (Mission et al., 2005; Hirsch
et al., 2006; Ward et al., 2008) However, in contrast to
white lupin, this was associated with a down-regulation
of the IRT1 tansporter and increased expression of FER1
encoding a Fe storage protein (Mission et al., 2005). This
was interpreted as a protective mechanism to counteract Fe
toxicity. In white lupin, despite up-regulation of the strategy
I mechanism for Fe acquisition, no excessive Fe accumulation
was observed in response to Pi limitation (Wang et al.,

2014a) and the mechanism to counteract Fe toxicity is yet
unknown.

CONCLUDING REMARKS

The recent knowledge on the role of ethylene in Pi acquisition
of higher plants demonstrates that ethylene is much more
than just a modulator of root growth for adaptations to
facilitate spatial Pi acquisition. Increasing evidence points to
numerous additional functions also in mechanisms for chemical
Pi solubilization in the rhizosphere and internal Pi recycling.
For future research activities in this context it will be important
to demonstrate more in detail how ethylene is integrated into
the signaling network mediating the respective Pi starvation
responses, to identify receptors and how it interacts with other
hormonal and non-hormonal regulators (e.g., auxin, jasmonic
acid, brassinosteroids, cytokinins, GA3, abscisic acid, polyamines,
NO, miRNAs, sucrose). Particularly interesting in this context
are also interactions with mechanisms for acquisition of other
nutrients as indicated, e.g., for a potential link between Pi
acquisition and Fe acquisition in Arabidopsis and white lupin,
which at least in case of white lupin share many similarities and
even similar signaling pathways with ethyleäne as a modulator
of both root growth responses and physiological adapatations
for mobilization of Fe and Pi. Meanwhile it seems to be clear
that ethylene-mediated P deficiency responses are not based on
one general mechanism and considerable genotypic variation
exists between plant species and cultivars, which needs to be
characterizedmore in detail for potential exploitation in breeding
programs.
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