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Water is essential for plant growth and development. Water deficiency leads to loss of

yield and decreased crop quality. To understand water transport mechanisms in plants,

we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean

with the highest similarity to TIP2-type from other plants, and thus designatedGmTIP2;3.

The protein sequence contains two conserved NPA motifs and six transmembrane

domains. The expression analysis indicated that this gene was constitutively expressed in

all detected tissues, with higher levels in the root, stem and pod, and the accumulation

of GmTIP2;3 transcript showed a significant response to osmotic stresses, including

20% PEG6000 (polyethylene glycol) and 100µM ABA (abscisic acid) treatments. The

promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also

expressed in the root, stem, and leaf, and preferentially expressed in the stele of root

and stem, and the core promoter region was 1000 bp in length, located upstream of the

ATG start codon. The GUS tissue and induced expression observations were consistent

with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3

was a plasma membrane-localized protein. Yeast heterologous expression revealed that

GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these

results, GmTIP2;3 might play an important role in response to osmotic stress in plants.

Keywords: soybean, GmTIP2;3, heterologous expression, promoter, osmotic stress

INTRODUCTION

Lack of water resources is an important factor restricting the development of agriculture. Plant
growth and development depend on water uptake and transport regulation across cellular
membranes and tissues. In the past, it was thought that water moved across cell membranes by
free diffusion through the lipid bilayer. However, its transport is now thought to be highly and
selectively regulated by aquaporins. Aquaporins (AQPs) belong to the ancient major intrinsic
protein (MIP) family found in animals, microbes, and plants. Since the discovery of AQP1

Abbreviations: GFP, Green Fluorescent Protein; GUS, Glucuronidase; TIP, Tonoplast Intrinsic Protein; QRT-PCR,

Quantitative reverse transcriptase Chain Reaction; CDS, Coding sequence; PEG, Polyethylene glycol; ABA, Abscisic acid.
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(Denker et al., 1988), many aquaporin genes have been found
in plants including 35 AQPs in Arabidopsis (Quigley et al.,
2002; Boursiac et al., 2005), 31 in Zea mays (Chaumont et al.,
2001), and 33 in Oryza sativa (Sakurai et al., 2005). Guo et al.
(2006) further analyzed the expression and function of the rice
plasma membrane intrinsic protein (PIP) gene family. Other
scholars found 23 AQPs in Physcomitrella patens (Danielson
and Johanson, 2008), 37 in Solanum lycopersicum (Sade et al.,
2009), 66 in soybean (Zhang et al., 2013), 47 in tomato
(Reuscher et al., 2013), 71 in Gossypium hirsutum (Park et al.,
2010), and 53 in Chinese cabbage (Tao et al., 2014). Plant
AQPs can be categorized into major four subfamilies based on
localization and expression patterns: plasma membrane intrinsic
proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin26-
like intrinsic proteins (NIPs), small and basic intrinsic proteins
(SIPs) (Chaumont et al., 2001; Kaldenhoff and Fischer, 2006),
and uncategorized X intrinsic proteins (XIPs) (Danielson and
Johanson, 2008).

AQPS play important roles in various physiological processes
in plants, such as growth, development, and response to biotic
and abiotic stresses. Srivastava et al. (2015) also reviewed the
versatile functions of aquaporins as molecular conduits in the
plant response to abiotic stresses. For example, Guenther and
Roberts (2000) isolated two major intrinsic membrane proteins
from Lotus japonicus, named LIMP1 and LIMP2. Functional
analysis using the Xenopus oocytes system indicated that LIMP1
appeared to be a member of the TIP subfamily and LIMP2
was a nodulin 26 ortholog protein. Rodrigues et al. (2013)
investigated a gene encoding a root-specific tonoplast intrinsic
aquaporin (TIP) from Eucalyptus grandis named EgTIP2, whose
expression was induced by PEG and mannitol treatments but
was downregulated by abscisic acid, suggesting that EgTIP2
might be involved in the eucalyptus response to drought.
Wang et al. (2014) cloned and characterized a tonoplast AQP
gene (TsTIP1;2) from the halophyte Thellungiella salsuginea
and reported that it mediated the transduction of both H2O
and H2O2 across the membranes and might contribute to the
survival of T. salsuginea under multiple stresses. Ligaba et al.
(2011) studied the expression patterns of 7 MIP genes from
barley under different abiotic stresses using quantitative real-
time PCR (RT-PCR), indicating that abiotic stress modulates the
expression of major intrinsic proteins in barley. Zelazny et al.
(2007) by using FRET imaging analysis showed that plasma
membrane aquaporins could interact to regulate their subcellular
localization in living maize cells. Tomato SiTIP2;2 expressing
in transgenic Arabidopsis could enhance the plant’s tolerance to
salt stress and interact with its homologous proteins SiTIP1;1
and SiTIP2;1 (Xin et al., 2014). Gao et al. (2010) overexpressed
TaNIP, a putative aquaporin gene from wheat, and found that
it could enhance salt tolerance in transgenic Arabidopsis. Wang
et al. (2011) cloned the novel Glycine soja tonoplast intrinsic
protein gene GsTIP2;1, and the overexpression of GsTIP2;1 in
Arabidopsis repressed/reduced tolerance to salt and dehydration
stress, suggesting that GsTIP2;1 might mediate stress sensitivity
by enhancing water loss in plants.

In this study, a novel tonoplast intrinsic aquaporin from
soybean, GmTIP2;3, was cloned and characterized. Protein

structure analysis showed that GmTIP2;3 possesses typical
aquaporin characteristics, such as six transmembrane domains
and NPA motifs. The expression analysis indicated that it was
constitutively expressed in all tissues tested, especially in the
root, stem, and pod, and exhibited responses to ABA and
PEG treatments at certain time points. Subcellular localization
showed it to be localized in the cell plasma membrane. The
promoter activity assay demonstrated that the core sequence for
this gene was 1000 bp upstream from the ATG start codon.
Yeast heterologous expression revealed that GmTIP2;3 could
improve osmotic tolerance in yeast cells. Integrating these results,
GmTIP2;3 plays an important role in response to osmotic stress
in plants.

MATERIALS AND METHODS

Plant Materials
Glycine max var. Willimas 82 was selected for the experiments,
which included growth of seedlings, flowering, podding,
extracting total RNA for GmTIP2;3 cloning, and tissue
expression and induced expression analysis. Lotus japonicus was
used to transfer the promoter sequence for activity testing and
Arabidopsis ecotype Col-0 was used for transformation.
Protoplasts were grown in a 7:2:1 (v/v/v) mixture of
vermiculite:soirite:perlite under a 16-h light/8-h dark regime, and
the day and night temperatures were 23◦C / 20◦C, respectively.
The plants were watered every week.

Gene Cloning and Sequence Analysis
The gene primers were designed based on the full-length coding
sequences, and RT-PCR (reverse transcriptase-polymerase chain
reaction) was performed to isolate the genes from soybean
tissues. The neighbor-joining (NJ) tree was constructed from
soybeanGmTIP2;3 and from other plant TIPs based on alignment
using the Clustalx and MEGA 5.0 software, and used to explore
the evolutionary relationships of soybean and other plant TIPs.

qRT-PCR Analysis
Soybean samples from the seedling, flowering, and podding
stages (root, stem, leaf at young seedling stage; root, stem, leaf,
and flower at flowering stage; and root, stem, leaf, and pod at
podding stage) were harvested and frozen in liquid nitrogen
for RNA extraction. Soybean roots were collected from plants
treated with PEG6000 (polyethylene glycol) for 0, 2, 4, 12, and
48 h and with 100µ M ABA (abscisic acid) for 10, 20, 30, 45,
60, 90, and 120min. The total RNA for all samples used in this
study was isolated using TRIzol R© reagent (Invitrogen) following
the manufacturer’s instructions and used for qRT-PCR analysis.
The qRT-PCR analysis was conducted according to the method
described by Zhang et al. (2013) and was repeated three times.
The primers used are given in Table 1.

Subcellular Localization
PCR-generated Hind III-BamH1 fragments containing the open
reading frame of GmTIP2;3 were subcloned upstream of the GFP
gene in plasmid pJIT166GFP. All constructs were validated by
sequencing. The primers used are listed in Table 1.
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Arabidopsis protoplasts were isolated according to Yoo et al.
(2007). The CDS of GmTIP2;3 without stop codons was used
to create an in-frame fusion with GFP gene inserted into
the pJIT166-GFP vector. The resulting fusion construct and
an empty vector as a control (p35S::GFP) were introduced
into Arabidopsis protoplasts by the PEG4000-mediated method
(Abel and Theologis, 1994). After incubation of transformed
Arabidopsis protoplasts for 18–24 h at room temperature, GFP
signal was detected by confocal fluorescence microscopy (Zeiss,
LSM510 Meta, Carl Zeiss AG).

Promoter Analysis
A 2081 bp-long region (named P1) located upstream of the
ATG start codon was cloned from soybean genome DNA
using primers described in Table 1, and sequence analysis
was performed using the PlantCARE online software (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/). To find
the core promoter region of GmTIP2;3, seven truncated
fragments (P2-P8) were cloned from P1 and transformed into
A. rhizogenes strain K599 for GUS activity detection. Soybean
hairy root transformation was performed according to the
method given by Subramanian et al. (2005). The primer pairs are
listed in Table 1.

Histochemical and Fluorometric GUS
Assay
For histochemical staining of GUS, fresh tissue samples including
whole transgenic lotus plants, soybean hairy roots, and dissected
leaves from positive plants that had undergone osmotic stress
(20% PEG6000 and 100µMABA), salinity (200mM NaCl
solution), and wounding for 2 h were immediately dipped into
X-Gluc solution, as previously described (Jefferson et al., 1987).
After overnight incubation at 37◦C in the growth chamber,
stained samples were bleached with 70% (v/v) ethanol, washed
several times with ddH2O, and observed under a Zeiss Stemi
2000-C microscope, Germany.

A quantitative fluorometric GUS assay was conducted as
described by Jefferson et al. (1987). The protein concentrations
from a series of truncated constructs pGUSP1-P4 in transgenic

soybean hairy roots were assessed by Bradford method, using
bovine serum albumin (BSA) as a standard. GUS activity was
normalized to the protein concentration of each sample and
calculated as nmol of 4-MU per milligram of soluble protein per
minute.

Generation of Transgenic Lotus japonicus

Plants
The resulting pGUS-GmTIP2;3 promoter(p3):GUS plasmid was
introduced into Agrobacterium rhizogenes strain K599 and used

FIGURE 1 | Phylogenetic tree of GmTIP2;3 and reported TIP proteins

from Arabidopsis thaliana TIPs (AtTIPs), Oryza saliva TIPs (OsTIPs),

Zea mays TIPs (ZmTIPs), and Medicago sativa TIPs (MtTIPs). The

Glycine max TIP cloned in this paper showed the highest similarity to

TIP2-Type proteins from other plants. Therefore, TIP was designated as

GmTIP2;3.

TABLE 1 | Primers for this study.

Gene Forward primer 5′-3′ Reverse primer 5′-3′

GmTIP2;3 qRT-PCR CCTTATCTATCTTCACCTCCATCT GCCACCAGAGATGTTGGCACCA

GmTIP2;3 GFP CGCAAGCTTATGGGTGGCATTGCAT CGCGGATCCAAATTCACTGGAAAGA

GmTIP2;3 Yeast ATGCGGCCGCATGGGTGGCATTGCAT CGCGGATCCAAATTCACTGGAAAGA

P1 ATGTGCAGGATGATGACCAG CATCTTCAGAAGTTTCGAG

P2 GACTCCTCCTGCGGCTGGCATTA CATCTTCAGAAGTTTCGAG

P3 GAAATATCATAATCTTGCTTCTTGT CATCTTCAGAAGTTTCGAG

P4 AGGAATCATTCATTAGCTTCCGGA CATCTTCAGAAGTTTCGAG

P5 CATAGACGTAAACAACCAATGAGT CATCTTCAGAAGTTTCGAG

P6 GTTTACTTCTTAAAATAAACAG CATCTTCAGAAGTTTCGAG

P7 AATATTTTTTTTAACAAAACCG CATCTTCAGAAGTTTCGAG

P8 ATTTTGAAATTCCACAACCTCTT CATCTTCAGAAGTTTCGAG

GmActin CGGTGGTTCTATCTTGGCATC GTCTTTCGCTTCAATAACCCTA
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to transform small Lotus japonicus seedling to produce hairy
roots, as in the soybean hairy root system. The hairy roots were
transferred to MS medium with 0.5 mg/L 6-BA for 20 days to
generate adventive buds, and 1–2 cm high regeneration seedlings
without roots were transferred to 1/2 MS medium to produce
roots. Finally, the whole seedlings were transferred to pots.

Yeast Transformation
The novel pYES2-GFP was reconstructed via the recombination
of pYES2 and pJIT166-GFP using the same double-digestion by
Hind III and EcoR I. The CDSwithHind III and BamH I digestion
for the forward primer and reverse primer, respectively (Table 1),
was inserted into the pYES2-GFP vector digested with the same
enzymes.

The resulting pYES2-GmTIP2;3:GFP plasmid was introduced
into S. cerevisiae INVSc1 strain cells using the lithium acetate
method, with the empty vector pYES2-GFP as a control.
S. cerevisiae INVSc1 strain cells transformed with the empty
vector PYES2-GFP alone and with pYES2-GmTIP2;3:GFP were
induced with galactose and spotted on the SC-Ura medium in
0, 10, 100, 1000, and 10,000-fold-dilutions, and the drought
tolerance of yeast cells expressing GmTIP2;3 was tested by
30% PEG6000 treatment for 40 h. The GFP in yeast was
observed using a fluorescence microscope (Olympus BX61). All
experiments were repeated three times.

Accession Number
The accession numbers of proteins used for Multiple
Sequence Alignment (MSA) and phylogenetic tree analysis
are as follows: SsTIP1;1 (AJ242805.1) from Sporobolus
stapfianus, PsTIP1;1 (AJ243309.1) from Pisum sativum,
SoTIP2;1 (AJ245953.1) from Spinacia oleracea, PtTIP3;2
(XM_006372585.1) from Populus trichocarpa, and GmTIP2;3
(XM_006582773.1) from Glycine max were used for MSA.
MtTIP2.1 (XP_003626979.1) from Medicago truncatula;
AtTIP4.1 (NP_180152.1), AtTIP1.3 (NP_192056.1),
AtTIP5.1 (NP_190328.1), AtTIP2.3 (NP_199556.1),
AtTIP2.2 (NP_193465.1), AtTIP2.1 (NP_188245.1),
AtTIP1.1 (NP_181221.1), AtTIP1.2 (NP_189283.1),
AtTIP3.1 (NP_177462.1), and AtTIP3.2 (NP_173223.1)
from Arabidopsis thaliana; OsTIP1.1 (P50156.1), OsTIP1.2
(NP_001045562.1) OsTIP2.1 (NP_001047632.1), OsTIP2.2
(Q5Z6F0.1), OsTIP3.1 (NP_001064933.1), OsTIP3.2
(NP_001053371.1), OsTIP4.1 (NP_001054979.1), OsTIP4.2
(BAA92993.1), OsTIP4.3 (NP_001042500.1), OsTIP5.1
(NP_001053493.1) from Oryza sativa; and ZmTIP1.1
(NP_001104896.1), ZmTIP1.2 (NP_001105029.1), ZmTIP2.1
(NP_001105030.1), ZmTIP2.2 (NP_001105031.1), ZmTIP2.3
(NP_001104907.1), ZmTIP3.1 (NP_001105032.1), ZmTIP4.1
(NP_001105033.1), ZmTIP4.2 (NP_001105034.1), ZmTIP4.3
(NP_001105035.1), ZmTIP4.4 (NP_001105641.1), and ZmTIP5.1

FIGURE 2 | Multiple sequence alignment of GmTIP2;3 protein amino acid sequence with other species. TM1-6 represents the six membrane-spanning

helices of GmTIP2;3. The two red boxes represent two conserved “NPA” motifs of the MIP superfamily proteins. *Indicates the consensus sequence at this site.
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(NP_001105036.1) from Zea mays were used for phylogenetic
tree analysis.

Statistical Analysis
The data were analyzed by ANOVA testing using the EXCEL
software. Significant differences among means were determined
by the LSD at P < 0.05, and a–f represent the different significant
levels.

RESULTS

The isolation and characterization of
GmTIP2;3
The gene locus Glyma07 g02060 from the QTL region between
the markers Satt590 and Satt567 on chromosome 7 in soybean
(Specht et al., 2001) was selected as a candidate gene and
further isolated by RT-PCR method. BLAST X showed that
this locus encoded a protein with 89% identity to TIP2-1-like
from Cicer arietinum. The phylogenetic trees were created using
GmTIP and Arabidopsis thaliana TIPs (AtTIPs), Oryza saliva
TIPs (OsTIPs), Zea mays TIPs (ZmTIPs), and Medicago sativa
TIPs (MtTIPs). The phylogenetic tree showed that GmTIP had
the highest similarity to TIP2-type proteins from other plants
(Figure 1). Therefore, GmTIP was designated as GmTIP2;3.
SMART software analysis showed that its protein sequence
possessed two conserved NPA motifs and six transmembrane
domains, indicating that it was a typical aquaporin protein
(Figure 2).

Expression Analysis of GmTIP2;3
The temporal and spatial expression patterns of GmTIP2;3 in
various tissues/organs of soybean cv. Willimas 82 plants were
examined using quantitative RT-PCR. GmTIP2;3 appears to be
expressed in most parts of the plant, with the highest expression
in the root, stem, and pod, Moreover, the expression patterns
of GmTIP2;3 in different developmental stages of the same
tissue, namely in different organs in the three-leaf, blooming,
and podding stages, showed that the transcript abundance
of GmTIP2;3 in the stem exhibited a slight increase at the
blooming stage, then significantly decreased in both the root
and stem at the podding stage except in the pod tissue
(Figure 3A).

To test whetherGmTIP2;3 responds to drought stress, soybean
seedling roots were treated with PEG and ABA. Then, the
expression of GmTIP2;3 was analyzed by quantitative real-time
RT-PCR. The results indicated that the expression of GmTIP2;3
decreased within 2 h after PEG-6000 (20%) treatment, and
then the mRNA level continuously increased from 4 to 12 h
and reached a maximum at 12 h (Figure 3B-1) However, ABA
treatment (100µM) initially significantly suppressed GmTIP2;3
expression after 10min treatment, reached its minimum at
30min (p < 0.05), then increased from 30 to 45min and
continuously decreased from 45 to 120min, followed by a stable
expression level (Figure 3B-2).

FIGURE 3 | Expression analysis of GmTIP2;3. (A) The temporal and spatial

expression patterns of GmTIP2;3 in different organs and at different stages.

Root, stem, and leaf from three-leaf stage of young seedling; root, stem, leaf,

and flower from blooming stage; and root, stem, leaf, and pod from podding

stage. (B) The expression patterns of GmTIP2;3 gene in soybean roots under

PEG6000 and 100µM ABA treatments; a–f indicate the significant difference

level at p < 0.05. (1) Expression patterns of GmTIP2;3 after PEG treatment for

different time points. (2) Expression patterns of GmTIP2;3 after ABA treatment

for different time points.

The Promoter Activity Analysis of
GmTIP2;3
To analyze the elements contained in the promoter region and
the promoter activities of GmTIP2;3, a more than 2 kb (2081
bp)-long promoter region located upstream of the ATG start
codon was amplified and inserted into the pGUSP vector by the
T/A cloning method. The resulting construct was transformed
into Lotus japonicus, and the transgenic plant was successfully
obtained (Figures 4A,B). The non-transgenic plant was used
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FIGURE 4 | Promoter activity analysis of GmTIP2;3. (A) The positive transgenic lotus plant transformed with pGUSGmTIP2;3 promoter vector. (B) GUS staining

of transgenic positive plants. (C) High expression in root of positive plants. (D) Special expression in stele of root, magnified from root (C). (E) GUS staining of negative

plant. (F) High expression in leaf and stem stele of positive plant. (G) Special expression in stele of soybean hairy root. Red arrows indicate the stele of root and stem,

and the red box indicates that this section was magnified into Panel (D).

TABLE 2 | The cis-acting elements in GmTIP2;3 promoter.

Site name Organism Position Strand Matrix score Sequence Function

Box 4 Petroselinum crispum 117 + 6 ATTAAT Part of a conserved DNA module involved in light responsiveness

Box 4 Petroselinum crispum 275 + 6 ATTAAT Part of a conserved DNA module involved in light responsiveness

Box I Pisum sativum 322 − 7 TTTCAAA Light-responsive element

Box I Pisum sativum 757 − 7 TTTCAAA Light-responsive element

G−box Solanum tuberosum 475 + 7 CACATGG Cis-acting regulatory element involved in light responsiveness

GA−motif Arabidopsis thaliana 1008 − 8 ATAGATAA Part of a light-responsive element

I−box Zea mays 60 − 9 gGATAAGGTG Part of a light-responsive element

I−box Triticum aestivum 1006 − 8 AGATAAGG Part of a light-responsive element

I−box Flaveria trinervia 558 − 10 cCATATCCAAT Part of a light-responsive element

Sp1 Oryza sativa 353 + 6 GGGCGG Light-responsive element

TCT−motif Arabidopsis thaliana 455 + 6 TCTTAC Part of a light-responsive element

as a negative control (Figure 4C). GUS staining revealed that
GmTIP2;3 was mainly expressed in the root (stele), stem (stele),
and leaf (Figures 4D–F). Moreover, transgenic soybean hair
roots using this construct also showed higher expression at
the stele of the root (Figure 4G), which was consistent with
its function as a water transporter. The GmTIP2;3 expression
patterns in transgenic plants or hairy roots were identical to the
patterns in different organs in the soybean plant. In addition,
promoter sequence analysis using the PlantCARE online software
indicated that it contained many light responsive elements, such
as Box4, G-Box and I-Box, GATA-motif, MBS, and GARE-motif
(Table 2). To further dissect the core region of the GmTIP2;3
promoter and explore the impact of external factors on its
expression, a series of 8 truncated vectors were constructed, 2081,

1524, 1035, 935, 835, 735, 663, and 581 bp in length, named
P1–P8, and transformed into Agrobacterium rhizogenes strain
K599 to generate soybean hairy roots. The GUS staining and
quantity assays demonstrated that only P1 and P3 exhibited
GUS activities, and the activity of P3 was stronger than for P1
(Figure 5A). P5–P8 had no GUS signal, indicating that the core
promoter region of GmTIP2;3 was 935 bp long from the ATG
site. Interestingly, no GUS signal or GUS activity was detected
for P2, implying that the inhibitor sequence occurred between
P1 and P3, which also explained why the activity of P3 was
stronger than for P1. Meanwhile, the expression of GmTIP2;3
was down-regulated under dark, drought (PEG and ABA), and
salinity treatments for 2 h but showed no response to wounding
treatment in transgenic lotus plants (Figure 5B). These results

Frontiers in Plant Science | www.frontiersin.org 6 January 2016 | Volume 6 | Article 1237

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Zhang et al. GmTIP2;3 Responds to Osmotic Stress

FIGURE 5 | The relative content of GUS protein harboring differently

truncated promoter regions of GmTIP2;3 and GUS expression patterns

under different treatments using promoter 3.

were consistent with the results of the expression patterns after
treatments with ABA and PEG in soybean roots.

Plasma Membrane Localization of
GmTIP2;3
To examine the localization of the GmTIP2;3 protein, the coding
sequences were fused in frame with the coding region of the
N-terminal side of green fluorescent protein (GFP). The fusion
genes were expressed under the control of the CaMV 35S
promoter. GFP fluorescence was evident in the cell plasma
membrane transformed with the GmTIP2;3::GFP fusion plasmid
(Figure 6A), whereas GFP fluorescence (control) was detected
throughout the cells transformed with GFP control plasmid
(Figure 6B).

Heterologous Expression GmTIP2;3

Improved Osmotic Stress Resistance in
Yeast
Yeast cells carrying pYES2-GmTIP2;3:GFP or PYES2-GFP
(control) were treated with PEG6000 for 40 h, and the survival
state was detected. The results revealed that GmTIP2;3 was
specifically expressed at the yeast cell membrane, and the
heterologous expression ofGmTIP2;3 in yeast cells could improve
the survival efficiency under osmotic stress (Figure 7), indicating
that GmTIP2;3 played an important role in osmotic tolerance in
eukaryotes.

DISCUSSION

In this study, we isolated and characterized GmTIP2;3,
an MIP family protein showing the highest similarity to
Arabidopsis, rice, and corn TIP5. SMART software showed that

GmTIP2;3 contains six transmembrane domains, single “AEFH”
and “NWIYWVGP” motifs, and two conserved NPA motifs.
Fujiyoshi et al. (2002) reviewed the structure and function
of water channels in mammalian aquaporins, reporting that
the sequence alignment of aquaporins shows several highly
conserved motifs including two “NPA” sequences and single
“AEFL” and “HW[V/I][F/Y]WXGP” sequences. Here, we found
that plant TIPs contain AEFI or AEFV/H, and TIPs from other
plants do possess HW[V/I][F/Y]WXGP, but the soybean TIP5
had the motif NWIYWVGP, thereby implying the differences
in function and localization between GmTIP2;3 and other plant
TIPs.

Spatial and temporal expression analysis showed that
GmTIP2;3 was constitutively expressed in all tested organs,
with higher expression in the root and stem, indicating that
it can absorb water from the soil through the root and then
transport water through the stem to other organs, such as
the leaf, flower, and pod. Tungngoen et al. (2009) cloned and
characterized two aquaporins, HbPIP2;1 and HbTIP1;1, and
induced expression analysis found that HbTIP1;1 was down-
regulated in liber tissues but up-regulated in laticifers in response
to bark Ethrel treatment. Regon et al. (2014) also analyzed the
expression patterns of 100 TIP aquaporin genes from dicots
and monocots and indicated that the expression of TIP genes
varies during different developmental stages and under stressed
conditions. da Silva et al. (2013) identified and analyzed the
expression patterns of sugarcane aquaporin genes under water
deficit, thereby finding the aquaporin transcription in sugarcane
to be potentially genotype specific. These findings demonstrated
that TIP expression was organ specific or genotype specific and
performed different regulator roles in different tissues. Recently,
Lee et al. (2015) showed that the expressions of barley HvTIP1;2
and HvTIP3;1 were regulated by gibberellic acid (GA) and ABA
and that these two hormones were involved in the fusion of
protein storage vacuoles in aleurone cells, indicating that TIP
plays another role in vacuole formation and transportation.
When subjected to drought stress (ABA and PEG), the expression
of GmTIP2;3 showed a dynamic trend at different time points,
with an increase after PEG and ABA treatments for 48 h and
45min, respectively, indicating that the expression of GmTIP2;3
exhibited a response to osmotic stress.

In fact, GmTIP2;3 should be a plasma membrane intrinsic
protein (PIP). It was predicted to be localized at the plasma
membrane by the online software http://www.predictprotein.
org/, and this subcellular localization was proven using
Arabidopsis protoplasts, yeast cells, and onion epidermal cells
(data not shown) harboring GFP. However, BLAST result at
NCBI showed GmTIP2;3 to be a tonoplast intrinsic protein
(TIP). Analysis of the promoter activity of GmTIP2;3 indicated
that the activity of P3 (∼1000 bp in length) was stronger
than the activity of P1 (∼2000 bp), implying that the inhibitor
region occurred between these two regions, and P4 (∼550 bp)
exhibited no GUS activity. To further determine the core or
minimum region for the GmTIP2;3 promoter, five truncated
constructs at 100 bp intervals between P3–P4 were prepared,
but no GUS signal was detected. Therefore, we concluded that
the core promoter region for GmTIP2;3 was located +1000 bp
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FIGURE 6 | Subcellular localization of GmTIP2;3 protein in Arabidopsis protoplasts. The fusion construct of the GmTIP2;3-green fluorescent protein

(p35S::GmTIP2;3-GFP) in the pJIT166-GFP vector without a termination codon to create an in-frame fusion between the CDS and GFP, and the GFP control plasmid

(p35S::GFP), was transformed into Arabidopsis protoplasts by PEG4000-mediated method. The transformed Arabidopsis protoplasts were incubated for 18–24 h at

room temperature and observed under a confocal fluorescence microscope. GmTIP2;3 was mainly located at the cell membrane (A). However, the GFP control was

distributed throughout the whole cell (B). Scale bars = 10µm.

FIGURE 7 | Osmotic response of yeast cells in heterogeneously expressing GmTIP2;3 S. cerevisiae INVSc1 strain cells transformed with the empty

vector pYES2-GFP alone (Con) and pYES2-GmTIP2;3:GFP. GFP signal indicated that GmTIP2;3 was mainly located at the cell membrane, and the empty vector

was distributed throughout the cells. S. cerevisiae INVSc1 strain cells transformed with the empty vector pYES2-GFP alone and pYES2-GmTIP2;3:GFP were spotted

on SC-Ura medium in 0, 10, 100, 1000, and 10,000-fold dilutions, repeated twice for two different positive clones of pYES2-GmTIP2;3:GFP. The results showed the

osmotic tolerance of yeast cells expressing GmTIP2;3. All experiments were repeated three times.

upstream of the ATG start codon containing the 5′UTR region
of the GmTIP2;3 gene. The promoter–GUS system was used to
detect the GUS activity changes of transgenic Lotus leaf under
different treatments, including ABA, Nacl, dark, wounding,
and PEG for 2 h. The results showed that the expression of
GmTIP2;3 decreased under all treatments except wounding.
The plant CARE software revealed that the promoter region
contains many light-responsive elements, so the down-regulated
expression under dark conditions was reasonable. Moreover,
GUS activity under drought treatment for 2 h was consistent
with the expression patterns after ABA and PEG treatments for
2 h. Lee et al. (2015) detected the promoter activity of HvTIP3;1
in response to ABA and revealed that the ABA responsiveness
of the HvTIP3;1 promoter is likely to occur via a unique
regulatory system distinct from the one involving the ABA-
response promoter complexes. Therefore, the mechanism of the
ABA responsiveness of GmTIP2;3 should be further examined.
Here, we can hypothesize that the plants first reduce the water
hole number or close water channels to reduce the loss under
stress by decreasing the transcription level of GmTIP2;3, and

then when the plants have adapted to the stress environment,
the expression of GmTIP2;3 recovers to its original level and
continues to increase its transcript abundance to respond to
stressed conditions.

The plant response to drought is dependent on the SPAC (Soil-
Plant-Air-Continuum). Root absorption and soil play important
roles in plant adaption to drought stress (Shao et al., 2009).
Higher expression of aquaporin proteins in plants can allow
them to effectively absorb water from the soil using the
roots and then transport water by the stem to other organs,
such as the leaf, flower, and seed, especially under osmotic
stress (Devi et al., 2015; Ding et al., 2015; Miniussi et al.,
2015; Olaetxea et al., 2015). Here, the higher expression of
GmTIP2;3 in the steles of the root and stem might promote and
speed up water transportation from the roots to other organs
under osmotic stress, improving plant tolerance to osmotic
stress.

Azad et al. (2009) analyzed water channels by yeast
heterologous expression of tulip petal plasma membrane
aquaporins from Pichia pastoris and monitored their water
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channel activity (WCA) by in vivo spheroplast-bursting and
hypo-osmotic shock assays, suggesting that P. pastoris can be
employed as a heterologous expression system to assay the WCA
and to monitor the AQP-mediating channel gating mechanism
of aquaporins. The yeast heterologous expression assay in this
study showed that GmTIP2;3 could effectively improve the
tolerance of yeast to drought stress. Previously, we performed
this assay using salinity and drought treatments simultaneously,
but the results indicated that yeast cells expressing GmTIP2;3
did not show improved survival rates under salinity stress,
implying thatGmTIP2;3 had the ability to transport water but not
ions.
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