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Multi-colored fluorescent proteins targeted to plastids have provided new insights on

the dynamic behavior of these organelles and their interactions with other cytoplasmic

components and compartments. Sub-plastidic components such as thylakoids, stroma,

the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and

starch grains have been efficiently highlighted in living plant cells. In addition, stroma

filled membrane extensions called stromules have drawn attention to the dynamic nature

of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent

protein combinations has begun to reveal plastid interactions with mitochondria,

the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of

plastids in retrograde signaling, cell to cell communication as well as plant-pathogen

interactions. While the rapid advances and insights achieved through fluorescent protein

based research on plastids are commendable it is necessary to endorse meaningful

observations but subject others to closer scrutiny. Here, in order to develop a better

and more comprehensive understanding of plastids and their extensions we provide a

critical appraisal of recent information that has been acquired using targeted fluorescent

protein probes.

Keywords: plastids, fluorescent proteins, photoconvertible fluorescent protein, stromules, stroma, retrograde

signaling

INTRODUCTION

Plastids are organelles of purported endosymbiogenic origin characterized by the presence of multi-
layered bounding membranes (Margulis, 1970; Hoober, 2007; Sato, 2007). Plastids with an inner
and an outer bounding membrane are accepted as a defining feature of plants and green algae
(Wise, 2007; Pyke, 2009). Publications on plastids and the fundamentals of our present knowledge
on these organelles are traceable to the late seventeenth century (Leeuwenhoek, 1674; reviewed
by Gunning et al., 2007). A paradigm shift in plastid biology came with the realization that
irrespective of their wide diversity of form and function, all plastid types are inter-convertible and
are derived from colorless pro-plastids (Schmidt, 1870; Schimper, 1882). A classification based
upon internal pigmentation was suggested (Schimper, 1882, 1883; Senn, 1908) and is followed
even today; Accordingly plastids containing green pigment (chlorophyll) are called chloroplasts,
plastids with other colored pigments are considered chromoplasts and colorless plastids are called
leucoplasts.
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Light microscopy observations and transmission electron
microscopy (TEM) further established the presence of internal
membranes in all plastids. The flattened membrane sacs
were named thylakoids (Menke, 1962) and their stacking
into prominent grana accounts for the characteristic lens
shaped plastid body of chloroplasts. Relatively less organized
pro-lamellar bodies and scattered thylakoids account for the
lack of a well-defined plastid body and the elongated and
pleomorphic leucoplasts and etioplasts (Gunning, 2001; Wise,
2007). Thylakoids in all plastid types are surrounded by a fluid
stroma. Plastids also possess their own DNA condensed within
nucleoids as well as protein translationmachinery. Since different
plastids synthesize and accumulate starches, lipids, oils and
proteins they are further sub-classified on the basis of their major
content and function (Wise, 2007). Despite the diversity of form
and function the plastid unit is circumscribed by the double
membrane-envelope.

Although transmission electron micrographs form the basis
for our understanding of plastid ultrastructure, an appreciation
of the dynamic nature of these fundamental organelles
developed has with the advent of time-lapse imaging and
cinephotomicrographic techniques (Wildman et al., 1962; Green,
1964; Menzel, 1994; Gunning, 2005). Whereas chloroplasts
display strong auto-fluorescence (Figure 1A) and can therefore
be easily identified under ultra-violet and blue light excitation,
many more insights on plastids have come through the discovery
of GFP and its potential as a fluorescent probe for living cells
(Chalfie et al., 1994). Now, after more than 20 years of fluorescent
protein (FP) aided research a large number of protein fusions
have highlighted plastids and sub-plastidic structures as well
as transient metabolites such as starches and lipids (Table 1;
Figure 1). The use of double and triple transgenic plants has
also facilitated observations on plastid interactions with other
cellular components (Kwok and Hanson, 2003, 2004a,b; Schattat
et al., 2011a). However, in comparison to conventional botanical
micro-techniques and TEM where chemical fixation ensure that
the cells and tissue do not change during observations living plant
cells continue responding even as they are being observed. While
every new publication underscores the tremendous potential of
the FP-based approach for increasing insights on plastids it is
also equally apparent that many artifacts are being reported
and perpetuated. The situation becomes quite problematic
when multiple reviews and follow-up publications strengthen a
particular viewpoint and require considerably more effort for
reevaluation of the original observations. This critical appraisal
applauds the considerable insights on plastids obtained to date
through the use of plastid-targeted FPs. It also points to the
pitfalls and in some cases suggests alternative explanations that
might be useful in furthering our knowledge on these essential
organelles of the plant cell.

STROMA-TARGETED FPs HAVE LED TO
MAJOR INSIGHTS CONCERNING THE
DYNAMIC NATURE OF PLASTIDS

The targeting of a GFP to the stroma (Köhler et al.,
1997) was one of the earliest successful demonstrations of

the use of FP-technology for understanding plastids. Earlier
light microscopy based investigations had already established
the dynamic behavior of plastids in response to light and
other environmental factors, now considered as text-book
information (Pyke, 2009; Buchanan et al., 2015; Taiz et al., 2015).
Differential interference contrast (DIC) cinephotomicrography
of chloroplasts suggested an undulating envelope that was likened
to a mobile jacket surrounding the plastid body (Wildman et al.,
1962). Stroma-targeted GFP confirmed the earlier observations
and highlighted thin stroma filled tubules, subsequently named
stromules, that extended and retracted in relation to the main
chloroplast body (Köhler et al., 1997; Köhler and Hanson, 2000;
Figure 1B). The excitement generated by this seminal discovery
led several groups to start generating fusing proteins (Tirlapur
et al., 1999; Arimura et al., 2001; reviewed by Natesan et al., 2005)
that could highlight stromules and allow investigations on the
conditions that promote or repress stromule formation and can
provide insights into their function. In general in plants stably
expressing stroma-targeted FPs the epidermal plastids appear
more fluorescent as compared to mesophyll chloroplasts. This
has led to an erroneous impression in the mind of the non-
specialist that mesophyll chloroplasts do not exhibit stromules
while the most extensive and numerous stromules are observed
in non-green plastids (Köhler and Hanson, 2000). Stromule
formation has been observed in response to alteration in plastid
redox status (Itoh et al., 2010; Brunkard et al., 2015), elevated
temperatures (Holzinger et al., 2007a), symbiotic interactions
(Fester et al., 2001; Hans et al., 2004; Lohse et al., 2005), virus
and bacterial infection (Caplan et al., 2008; Krenz et al., 2012,
2014; Erickson et al., 2014) and growth regulator and mineral
nutrient stress (Gray et al., 2012; Glińska et al., 2015). Stromule
formation is also attributed to changes in plastid size and density
within a cell (Pyke and Howells, 2002; Waters et al., 2004). As
observations on stromules and changes in plastid morphology
increase the fresh insights and opinions resulting from them are
discussed in more detail.

DIURNAL CHANGES IN PLASTID
MORPHOLOGY

Stroma-targeted FPs made it easier to follow plastid behavior in
real time under different physiological states of the plant cell. It
was found that the morphology of plastids changed considerably
during the day–night cycle. The frequency of stromule formation
from plastids increased during daytime and reverted to a low,
basal frequency at night (Schattat et al., 2011a; Brunkard et al.,
2015). A clear link to photosynthesis and sucrose production was
suggested by this diurnal phenomenon (Schattat and Klösgen,
2011). This was confirmed through exogenous sucrose feeding
which also increased the frequency of stromule formation
(Schattat andKlösgen, 2011; Schattat et al., 2012a). Notably, other
conditions such as pathogen infection (Fester et al., 2001; Lohse
et al., 2005; Krenz et al., 2010, 2012; Erickson et al., 2014; Caplan
et al., 2015) and senescence (Ishida et al., 2008), that affect the
sugar status of a plant cell also increase stromule frequency.
Whereas sugar appears to be a universal signal for changes
in plastid morphology a recent report (Brunkard et al., 2015)
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FIGURE 1 | Representative images of fluorescently highlighted plastids and some sub-plastidic features. (A) A top-down view of epidermal and mesophyll

chloroplasts in the upper epidermis of a green house grown Arabidopsis plant expressing the stroma-targeted tpFNR:GFP. Panel “a” shows the green fluorescent

stroma (488 nm excitation; emission collected—509–520 nm). Panel “b” shows chlorophyll fluorescence in red (emission band 650–750 nm) in guard cells (gc),

pavement cells (pc; arrowheads in b,d), and mesophyll cell (m) chloroplasts. Note the difference in size and the GFP signal intensity between the epidermal and

mesophyll chloroplasts. (B) A view of thin stroma-filled tubules (stromules; st) and the bulky, grana-containing plastid body (pb) in epidermal chloroplasts of tobacco.

(C) Starch grains (sg) in mesophyll chloroplasts highlighted in an Arabidopsis plant expressing a granule bound starch synthase (GBSS) fused to GFP. (D) Clusters of

plastoglobuli (pg) observed in senescent leaves of Arabidopsis expressing a Fibrillin4:mEosFP fusion. (E) The highlighting of nucleoids in chloroplasts is indicated in a

transgenic Arabidopsis plant expressing a plastid envelope DNA-binding (PEND) GFP fusion. (F) View of gerontoplasts in senescent leaves in an Arabidopsis plant

expressing stroma-targeted tpFNR:GFP shows their swollen appearance suggesting compromised envelope membranes, degrading chlorophyll, the presence of

starch grains (sg)visible as dark non-fluorescent regions and clusters of senescence associated vesicles (sav) containing fluorescently GFP-labeled storm content.

Chlorophyll auto-fluorescence in (B–F) is false colored blue. Size bars = 5µm in (B,C); 10µm in (A,D,E,F).

suggests that changes in the internal redox status of chloroplasts,
which precede the production of photosynthates, are responsible
for stromule formation.

The conclusion that light-sensitive redox signals triggered
within chloroplasts play a major role in stromule formation
are based on the use of DCMU and DBMIB, two chemical
inhibitors of the photosynthetic electron transport chain (pETC)
(Brunkard et al., 2015). It was observed that treatment of 14-day
old excised cotyledons ofNicotiana benthamiana andArabidopsis
thaliana for 2 h with these inhibitors resulted in a significant
increase in stromule frequency of chloroplasts. The presence of
chloroplasts was demonstrated in pavement and guard cells in the

tobacco epidermis (Dupree et al., 1991) and the researchers found
increased stromule frequency in both cell types (Brunkard et al.,
2015). However, the increase in stromules was limited to only
guard cells and not observed in the pavement cells of Arabidopsis.
In order to explain the absence of stromules in Arabidopsis
cotyledon pavement cells an unreferenced statement—“unlike
N. benthamiana, the epidermis of A. thaliana has two distinct
types of plastids: chloroplasts in the guard cells and leucoplasts
in the pavement cells,” was presented (Brunkard et al., 2015). A
diagrammatic depiction of this statement was used to present a
model where reactive oxygen species (ROS) generated from the
pETC triggers stromule formation in chloroplasts but sucrose
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TABLE 1 | A non-comprehensive list of fluorescent proteins targeted to plastids.

Localization Gene FP Organism of expression T/P References

Stroma TP-RecA G Petunia and N. tabacum P Köhler et al., 1997

TP-ent-kaurene synthase (TP-AtKS1) G N. tabacum T Helliwell et al., 2001

TP-ent-kaurene oxidase (TP-AtKO1) G N. tabacum T Helliwell et al., 2001

TP-copalyl diphosphate synthase (TP-AtCPS1) G N. tabacum T Helliwell et al., 2001

TP-small subunit of ribulose 1,5 bisphospate

carboxylase (TP-RbcS)

G N. tabacum T Helliwell et al., 2001

Acyl-carrier protein (ACP) R A. cepa T Schnurr et al., 2002

TP-ferredoxin NADP(H) oxidoreductase (TP-FNR) G A. thaliana P Marques et al., 2004

TP-Plastocyanin (TP-PC) G A. thaliana P Marques et al., 2004

TP-33kDa subunit of the oxygen evolving system of

photosystem II (TP-PSII-O)

G A. thaliana P Marques et al., 2004

TP-ferredoxin NADP(H) oxidoreductase (TP-FNR) E N. benthamiana, A. thaliana T/P Schattat et al., 2012a

Small subunit of ribulose 1,5 bisphospate

carboxylase (SSU)

G A. thaliana P Kim and Apel, 2004

NADPH-dependent protochlorophyllide

oxidoreductase A (PORA)

G A. thaliana P Kim and Apel, 2004

Thylakoid formation 1 (THF1) G A. thaliana P Wang et al., 2004

Aspartate aminotransferase 5 (ASP5) G N. tabacum P Kwok and Hanson, 2004a

Small subunit 3A of ribulose 1,5 bisphospate

carboxylase (RbcS-3A)

C N. tabacum P Kwok and Hanson, 2004a

TP- Small subunit 3A of ribulose 1,5 bisphospate

carboxylase (TP-RbcS-3A)

C N. tabacum P Kwok and Hanson, 2004a

α–carbonic anhydrase (CAH1) G A. thaliana T Villarejo et al., 2005

Snowy cotyledon 1 (SCO1) G A. thaliana P Albrecht et al., 2006

Allene oxide cyclase (AOC) G A. thaliana, S. tuberosum cv.

Desiree

T/P Farmaki et al., 2007

Mesophyll-cell RNAi library line 7 –like (MRL7-L) G N tabacum T Qiao et al., 2011

Accumulation and Replication of Chloroplasts 3

(ARC3)

Y N. tabacum T Maple et al., 2007

Chloroplast sensor kinase (CSK) G N. tabacum T Puthiyaveetil et al., 2008

ADP-sugar pyrophosphatase (StASPP) G A. thaliana, S. tuberosum P Muñoz et al., 2008

TP-Spo0B GTP-binding protein like (TP-AtOBGL) G N. tabacum T Chigri et al., 2009

TP-Granule bound starch synthase I

(TP-GBSSI)

Y T. aestivum L P Shaw and Gray, 2011

Starch synthase 1 (SS1) G N. benthamiana T Gámez-Arjona et al., 2014a

3-ketoacyl-ACP reductase (KAR) G P. patens T Mueller et al., 2014

PeroxiredoxinQ A (PrxQA) G P. patens T Mueller et al., 2014

Outer envelope Outer envelope membrane protein 7 (AtOEP7) G A. thaliana T/P Lee et al., 2001

GTP-Binding domain of AtToc159 (AtToc159G) G A. thaliana T Bauer et al., 2002

Long-chain acyl-CoA synthetase 9 (LACS9) G A. cepa T Schnurr et al., 2002

Crumpled leaf (CRL) G A. thaliana P Asano et al., 2004

Chloroplast unusual positioning 1 (CHUP1) G A. thaliana P Oikawa et al., 2008

Sensitive to freezing 2 (SFR2) C A thaliana P Ferro et al., 2010

Translocon at the outer membrane of chloroplasts

64 (AtTOC64)

G N. benthamiana T Breuers et al., 2012

Inner envelope Monogalactosyldiacylglycerol synthase 1 (MGD1) G A. thaliana T Awai et al., 2001

Inner envelope protein 60 (IEP60) G A. thaliana T Ferro et al., 2002

Chloroplast envelope quinone oxidoreductase

homolog (ceQORH)

G A. thaliana, N. Tabacum T Miras et al., 2002

Triose phosphate translocator (AtTPT) G N. benthamiana T Breuers et al., 2012

Albino or pale green mutant 1 (AtAPG1) G N. benthamiana T Breuers et al., 2012

Giant Chloroplast 1 (GC1) Y A. thaliana P Maple et al., 2004

(Continued)
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TABLE 1 | Continued

Localization Gene FP Organism of expression T/P References

Chloroplast import apparatus 5 TP and first 2

transmembrane domains (prCIA5TP-TM2)

R A. thaliana T Teng et al., 2006

Translocon at the inner envelope membrane of

chloroplasts 40 (Tic 40)

Y A. thaliana T Bédard et al., 2007

Translocon at the inner envelope membrane of

chloroplasts 110 (Tic110)

Y A. thaliana T Bédard et al., 2007

Translocon at the inner envelope membrane of

chloroplasts 20 I (TIC20-I)

Y A. thaliana T Kasmati et al., 2011

Translocon at the inner envelope membrane of

chloroplasts 20 II (TIC20-II)

Y A. thaliana T Kasmati et al., 2011

Translocon at the inner envelope membrane of

chloroplasts Tic20 IV (TIC20-IV)

Y A. thaliana T Kasmati et al., 2011

Translocon at the inner envelope membrane of

chloroplasts Tic20V (TIC20-V)

Y A. thaliana T Kasmati et al., 2011

Translocon at the inner membrane of chloroplasts

21 (TIC21)

Y A. thaliana T Yang et al., 2012

AtLrgB G A. thaliana P Yang et al., 2012

Thylakoid Sulfurtransferase 15 (AtSTR15) G A. thaliana T Bauer et al., 2004

NADPH-dependent protochlorophyllide

oxidoreductase B (PORB)

G A. thaliana P Kim and Apel, 2004

N-terminal region of P-type ATPase of Arabidopsis 2

(PAA2)

G A. thaliana T Abdel-Ghany et al., 2005

Allene oxide synthase 1 (AOS1) G A. thaliana T Farmaki et al., 2007

Allene oxide synthase 2 (AOS2) G A. thaliana T Farmaki et al., 2007

Hydroperoxide lyase (HPL) G A. thaliana T Farmaki et al., 2007

Chlorophyll A/B binding protein 180 (CAB180) G A. thaliana T Farmaki et al., 2007

FE superoxide dismutase 2 (FSD2) G N. tabacum T Myouga et al., 2008

High chlorophyll fluorescence 106 (Hcf106) G N. tabacum T Vladimirou et al., 2009

Thylakoid soluble phosphoprotein (AtTSP9) C A. thaliana P Ferro et al., 2010

Curvature thylakoid 1A (CURT1A) R A. thaliana T Armbruster et al., 2013

Curvature thylakoid 1B (CURT1B) R A. thaliana T Armbruster et al., 2013

Curvature thylakoid 1D (CURT1D) R A. thaliana T Armbruster et al., 2013

Starch synthase 4 (SS4) G N. benthamiana T Gámez-Arjona et al., 2014a

TP-16kDa subunit of the oxygen evolving system of

photosystem II (TP-PSII-Q)

G A. thaliana P Marques et al., 2004

TP-23kDa subunit of the oxygen evolving system of

photosystem II (TP-PSII-P)

G A. thaliana P Marques et al., 2004

Starch granule Granule bound starch synthase (GBSS) G A. thaliana P Szydlowski et al., 2009;

Bahaji et al., 2011

Dual-specificity protein phosphatase 4 (DSP4) G A. thaliana P Sokolov et al., 2006

Isoamylase 3 (ISA3) G A. thaliana T Delatte et al., 2006

Starch binding domain of Glucan, water dikinase 3

(GWD3-SBD)

Y N. benthamiana T Christiansen et al., 2009

Like SEX4 1 (LSF1) G N. benthamiana T Comparot-Moss et al., 2010

Plastoglobules Plastoglobulin 30.4 (AtPGL30.4) G A. thaliana T Vidi et al., 2006

Plastoglobulin 34 (AtPGL34) G A. thaliana T Vidi et al., 2006

Plastoglobulin (AtPGL35) G A. thaliana T Vidi et al., 2006

Fructose-1,6,-bisphosphate aldolase 1 (AtFBA1) G A. thaliana T Vidi et al., 2006

Fructose-1,6-bisphosphate aldolase 2 (AtFBA2) G A. thaliana T Vidi et al., 2006

Tocopherol cyclase 1 (AtVTE1) Y A. thaliana T Vidi et al., 2006

NAD(P)H dehydrogenase C1 (NDC1) Y N. benthamiana T Piller et al., 2011

Phytoene synthase (AtPSY) R V. unguiculata subsp. unguiculata T Shumskaya et al., 2012

(Continued)
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TABLE 1 | Continued

Localization Gene FP Organism of expression T/P References

Phytoene synthase 1 (OsPSY1) G Z. Mays T Shumskaya et al., 2012

Phytoene synthase 2 (OsPSY2) G Z. Mays T Shumskaya et al., 2012

Phytoene synthase 3 (OsPSY3) G Z. Mays T Shumskaya et al., 2012

Phytoene synthase 2 (ZmPSY2) G Z. Mays T Shumskaya et al., 2012

Phytoene synthase 3 (ZmPSY3) G Z. Mays T Shumskaya et al., 2012

Plastoglobulin 2 (ZmPG2) R Z. Mays T Shumskaya et al., 2012

Fibrillin 1b (FBN1b) G N. benthamiana T Gámez-Arjona et al., 2014b

Nucleoids N-terminus of Plastid envelope DNA binding (PEND) G A. thaliana P Terasawa and Sato, 2005

Apurinic endonuclease-redox protein (ARP) G A. thaliana T Gutman and Niyogi, 2009

Endonuclease three homolog 1 (AtNTH1) G A. thaliana T Gutman and Niyogi, 2009

Endonuclease three homolog 2 (AtNTH2) G A. thaliana T Gutman and Niyogi, 2009

Fructokinase-like (FLN1) Y N. tabacum T Arsova et al., 2010

Fructokinase-like (FLN2) Y N. tabacum T Arsova et al., 2010

Mesophyll-cell RNAi library line 7 (MRL7) G N. tabacum T Qiao et al., 2011

Plastid transcriptionally active chromosome 3

(pTAC3)

G A. thaliana T Yagi et al., 2012

Lac repressor (Lacl) G N. tabacum P Newell et al., 2012

SWIB domain containing protein 2 (SWIB-2) G N. tabacum T Melonek et al., 2012

SWIB domain containing protein 3 (SWIB-3) G N. tabacum T Melonek et al., 2012

SWIB domain containing protein 4 (SWIB-4) G/R N. tabacum T Melonek et al., 2012

SWIB domain containing protein 6 (SWIB-6) G/R N. tabacum T Melonek et al., 2012

Plant species: Triticum aestivum L.; Arabidopsis thaliana; Nicotiana benthamiana/tabacum; Solanum tuberosum; Zea mays; Allium cepa; Physcomitrella patens. FP, Fluorescent Protein;

E, mEosFP; G, GFP; R, RFP; Y, YFP; P, Transgenic Plant; T, Transient expression; TP, Transit Peptide/presequence.

With the exception of the TP-GBSS driven under the Rice Act1 promoter and the LacI plastid nucleoid probe driven by a tobacco psbA gene all other probes reported here used the

Cauliflower Mosaic Virus 35S promoter.

produced by chloroplasts in the mesophyll layer is responsible for
stromules in the so-called pavement cell leucoplasts (Brunkard
et al., 2015). Interestingly a number of publications actually
document the presence of chloroplasts in epidermal pavement
cells in Arabidopsis (Robertson et al., 1996; Vitha et al., 2001;
Joo et al., 2005). An authoritative book on plastid biology (Pyke,
2009) provides the unambiguous statement—“in many texts, it
is stated that epidermal cells lack chloroplasts, which is untrue.”
It is also noteworthy that the major conclusions of Brunkard
et al. (2015) are based on observations of excised cotyledons
and not true, photosynthesizing leaves. Plastids in wounded as
well as senescent tissue are known to show increased stromule
frequency (Krupinska, 2007; Ishida et al., 2008). We conclude
that the model presented by Brunkard et al. (2015) suggesting
change in internal chloroplast redox as a trigger for stromule
formation, even though based on an assumption of leucoplasts
in Arabidopsis pavement cells, is very interesting and requires
further critical evaluation.

CHLOROPLAST PROTRUSIONS AND
STROMULES: AN ARTIFICIAL
DISTINCTION?

During recent years FP-highlighted plastids and stromules have
garnered a fair bit of attention but another contemporary

undercurrent of contextual publications based on TEM studies
has also existed and requires discussion. Several publications that
predate the discovery and naming of stromules, presented double
membrane bound stroma-filled protrusions that were simply
called chloroplast protrusions (CP) (Bonzi and Fabbri, 1975;
Lütz and Moser, 1977; Lütz, 1987; Bourett et al., 1999). Serial
TEM sections of leaves in Ranunculus glacialis and O. digyna
(Lütz and Moser, 1977; Lütz, 1987; Larcher et al., 1997; Lütz and
Engel, 2007) showed that CP appear as broad or long, grana-
free extensions and occasionally form pocket-like structures
with mitochondria and microbody aggregates (Lütz and Engel,
2007). While the underlying basis for the statement is unclear
researchers on CP appear to have distanced themselves from
observations of stromules by declaring that CP and stromules
are different (Buchner et al., 2007a,b, 2013, 2014; Holzinger et al.,
2007b; Lütz and Engel, 2007; Lütz et al., 2012; Moser et al., 2015).
An appraisal of the publications suggests that the only difference
is that as compared to CP observed in electron micrographs
the stromules are very thin, with diameters less than 800 nm
and up to 50µm long (Köhler and Hanson, 2000). However,
emphasis on the thinness of the stromule was made in order to
differentiate them from the generally flexible non-photosynthetic
plastids that appear irregularly shaped, amoeboid, round to
oblong to elongated and form lobes, knobs and loops (Köhler
et al., 1997; Köhler andHanson, 2000; Kwok andHanson, 2004d).
While discussing the early studies in relation to the paucity
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FIGURE 2 | Analysis of time-lapse image series of chloroplasts

suggests that the terms chloroplast protrusions (CP) and stromules

merely represent varying degrees of plastid extension. (A) A snapshot

pointing to three chloroplasts (chlorophyll depicted in blue; stroma-targeted

GFP-green) in a single cell where plastid 1-does not exhibit any extension;

based on a shape index (Holzinger et al., 2007b) plastid 2-exhibits small

protrusions that are labeled CP; plastid 3-exhibits a clear tubular stromule (s).

(B) Ten sequential images and their skeletonized version to show the plastid

boundary have been taken from a time-lapse series of a single chloroplast

from a plant expressing tpFNR:GFP (Movie 1). Depending upon which frame

is being looked at the different stroma-filled (false colored orange) extensions

and the plastid profile might be interpreted either as showing a CP (e.g.,

panels 1, 2, 3, 7, 8 marked with *) or a stromule (panels 4, 5, 6, 10 marked

with S). Panel 9 (**) shows two projections, the longer one suggesting a

stromule while the shorter suggests a CP. Chlorophyll auto-fluorescence is

false colored green. Size bar = 5µm. (C) Graphic depiction of the

continuously changing shape index of a single extension from a chloroplast.

The extension was measured in each frame of a time-lapse video (Movie 1) as

the ratio of the stromule length to it’s radius at the base. Using static

snapshots Holzinger et al. (2007b) had demonstrated that the average shape

indexes may be grouped into two populations, one that averaged 0.8 ± 0.3

and the other at 7 ± 1.3. As analyzed here for a time-lapse series, over time a

single extension can grown and shrink to span both of these categories.

of electron micrographs of stromules it was pointed out that
studies on CP focused on the leaf tissue, in which stromules
are not common, and that stromules are not well preserved by
standard fixation methods for electron microscopy (Köhler and
Hanson, 2000). Today both statements cannot be upheld since
numerous observations on stromules in leaf tissue have been
published at both the light microscopy and TEM level (Holzinger
et al., 2008; Sage and Sage, 2009; Schattat et al., 2012a). A major
effort was made to figure out clear differences between the two

sets of observations by Holzinger et al. (2007b) by creating
a “shape index” to compare the different sizes and volumes
of stromules with those of temperature-induced protrusions in
A.thaliana. Interestingly this study concedes that “an interchange
between these groups might still be possible,” and whether a
protrusion goes on to become a stromule of more typical length
and diameter might depend on the sub-cellular space available
and the unknown factors that cause stromule growth (Holzinger
et al., 2007b). Equally interesting is a contextual comprehensive
review that cites the Holzinger et al. (2007b) publication as
strong evidence of differences between CP and stromules but also
presents a table that lists Arabidopsis as a plant that does not
produce CP (Lütz, 2010).

The publications on CP have largely been based on TEM
snapshots while the FP-aided observations on stromules
elegantly reveal the dynamic nature of the plastid. Nevertheless,
the distinction appears quite artificial and a report of chloroplast
extensions in bundle sheath cells in rice leaves used the terms
CP and stromules interchangeably after realizing that the plastid
extensions observed might be placed into either category (Sage
and Sage, 2009). In addition the excellent transmission electron
micrographs of plastids in Arisarum proboscideum (Bonzi and
Fabbri, 1975) depicted protrusions that today might just as easily
be labeled stromules. On the other hand reports published well
after the term stromule was introduced (Köhler and Hanson,
2000) persisted in presenting narrow tubules as CP (Figures 2E,
4A in Holzinger et al., 2007a; Figures 5.2D,F, 5.4C,E in Lütz et al.,
2012).

As part of our critical appraisal we investigated the behavior of
numerous plastids expressing stroma-targeted tp-FNR:GFP. We
found that in a snapshot of any leaf expressing stroma-targeted
FP might suggest some chloroplasts to be exhibiting CP and
others stromules (Figure 2A). Time-lapse images (Figures 2B,C)
show that all stromules, irrespective of whether they are from
chloroplasts or any other plastid type, develop from small
protrusions that might stretch into tubules of varying lengths and
thickness and retract to produce beaked plastids (Movie 1).

THE NOTION OF PROTEIN EXCHANGE
BETWEEN INDEPENDENT PLASTIDS

While the use of stroma-targeted GFP allowed plastid stromules
to be visualized in living plant cells another FP-based technique
involving fluorescence recovery after photo-bleaching (FRAP)
was presented alongside to suggest a very important finding
(Köhler et al., 1997). The finding was that stromules could
interconnect plastids and GFP could flow between them (Köhler
et al., 1997). This conclusion was reached by carrying out FRAP
on elongated leucoplasts from tobacco roots expressing stroma-
targeted GFP. Although the interconnection of plastids was not
observed it was assumed that it must have taken place and
would have involved stromules. Köhler et al. (1997) were able to
demonstrate flow of GFP within a single plastid compartment.
Presentation of the FRAP-based view on leucoplasts in reviews
and textbooks established a general idea that all plastids
are able to connect and exchange proteins with each other

Frontiers in Plant Science | www.frontiersin.org 7 January 2016 | Volume 6 | Article 1253

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Delfosse et al. Fluorescent Protein Aided Research on Plastids

FIGURE 3 | The use of a stroma targeted green to red photo-convertible mEosFP for differential coloring of plastids allowed the long-standing idea of

plastid-interconnectivity through stromules to be reassessed. (A) A row of single cells showing leucoplasts in a tobacco BY2 cell line expressing the

tpFNR:mEosFP shows the three colors (green, red, yellow) that are typically achieved using the probe. Non-photoconverted plastids and stromules appear green;

after a 5–7 s exposure to 490 ± 30 nm light fully photoconverted leucoplasts appear red while yellow plastids are obtained after a short 2–5 s photoconversion period.

(B) Chloroplasts in a pavement cell of a stably transformed Arabidopsis line expresing stroma-targeted tpFNR:mEosFP and chlorophyll (false colored blue) with

extended stromules that appear to be interacting. Prolonged observations of hundreds of similar, differentially colored, dynamic plastids and stromules failed to show

protein exchange between the chloroplasts. (C) Two perspectives of the plastid are presented. Perspective A interprets it as a single, elongated plastid with a narrow

intervening tubular region such as that observed during normal pleomorphy of dynamic etioplasts, chromoplasts, and leucoplasts. This perspective is favored by

Schattat et al. (2012a,b, 2015). Perspective B underlies the assumption of “interconnected plastids” and considers the narrow intervening region to be a stromule that

connects two bulged domains considered as two independent plastid bodies. Leucoplasts with a very similar morphology were used in FRAP experiments to

establish the idea of FP flow between plastids (Köhler et al., 1997). Whereas independent plastids actually becoming interconnected have not been observed the flow

of a fluorescent protein from one point to another within a single, continuous, membrane bound compartment as depicted here can hardly be disputed. Size bar: A =

25µm; B = 5µm.

(Hanson and Köhler, 2006; Hanson and Sattarzadeh, 2008, 2011).
This view challenges the unitary nature of a plastid but the precise
mechanism of plastid fusion implied in this idea has still not been
elucidated.

Meanwhile advances in FP technology resulted in the
discovery and availability of monomeric Eos, a green to
red photoconvertible fluorescent protein (Wiedenmann et al.,
2004; Mathur et al., 2010) and allowed a stroma-targeted
tpFNR:mEosFP probe to be created (Schattat et al., 2012a).
This probe was originally designed to investigate the mechanism
leading to protein exchange between plastids whose stromules
exhibit prolonged interactions. The probe allows all plastids
expressing it to be differentially colored in hues ranging
from green to red (Figures 3A,B). Schattat et al. (2012a)
reasoned that true fusion of stromules to inter-connect two
independent plastids (e.g., Figure 3B) would result in a mixing
of stromal color and provide an unequivocal demonstration of
protein flow between two plastids. Alternatively maintenance of
separate green and red plastid stroma colors despite apparent
interaction between their stromules would suggest an inability
to exchange fluorescent proteins. To demonstrate that the
differential coloring technique and mixing of colors between
two fusing organelles actually works they used mitochondria,
which like plastids are also double membrane envelope bound
organelles. Observations by Schattat et al. (2012a,b) and Mathur
et al. (2013) did not support plastid fusion at all and thus strongly
contradicted the FRAP-based work on root leucoplasts reported

by Köhler et al. (1997). Despite the evidence that the plastid
unit is maintained and no inter-plastid exchange of proteins is
observed (Schattat et al., 2012a,b) Hanson and Sattarzadeh (2013)
continue to support the original leucoplast-based findings of
Köhler et al. (1997). The matter is therefore presently considered
as a controversy.

An additional viewpoint propagated through literature
based on stroma-targeted FPs suggested the occurrence of
interconnected plastids (Köhler et al., 1997; Hanson and
Sattarzadeh, 2013). This idea has also been challenged (Schattat
et al., 2015), and it is noteworthy that with the exception of
artificially initiated chloroplast fusion and in observations of
senescent or diseased plant tissue, no one has actually observed
two normal and independent plastid units fuse with each other.
Further, etiolated plants often display etioplasts with two or
more bulged regions connected by a thin tubule (Gunning, 1965;
Schattat et al., 2015). Following exposure to light these regions,
that appear very similar to plastid bodies, exhibit fluorescence
as the protochlorophyllide changes into chlorophyll. As part of
our critical appraisal the two views of an elongated plastid are
summarized in Figure 3C.

INSIGHTS FROM FPs TARGETED TO
PLASTID MEMBRANES

A number of probes localize to the three types of plastid
membranes; the internal, thylakoid membranes; and the inner
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and outer membranes of the envelope (Table 1; Breuers et al.,
2011). Many of the membrane-targeted probes have been
expressed transiently under the constitutively active Cauliflower
Mosaic Virus 35S promoter with a view of confirming their
subcellular localization and are supported by biochemical
evidence (Seo et al., 2009; Tan et al., 2011; Mueller et al.,
2014). In several cases the overexpression of such fusion proteins
has resulted in observations of protein patches on the plastid
envelope (Seo et al., 2009; Tan et al., 2011). Alternatively it has
led to the ectopic proliferation of membranes (Oikawa et al.,
2008; Breuers et al., 2012). Specific patterns of extra membrane
formation observed upon transient overexpression show that
when proteins of the inner membrane such as AtTIC40:GFP
are over-expressed multiple membrane layers are formed on the
interior of the plastid envelope while outer membrane proteins
such as AtTOC64:GFP form ectopic membrane extensions into
the cytoplasm (Breuers et al., 2012; also see Figure 5 for protein
over-expression induced artifacts). Using electron microscopy
the authors found that ectopic outer membrane formation was
accompanied by a proliferation of the inner membrane and
thus concluded that the membrane protrusions represented
stromules. However, an electron microscopy based investigation
generally does not provide as many chances of observing a
phenomenon as provided by fluorescence microscopy of living
cells. Thus, at present it is unclear whether all the protrusions
formed due to overexpression of an outer membrane protein are
actually stromules. Nevertheless, the observations of Breuers et al.
(2012) provide an important and testable idea that membrane
envelope remodeling such as that suggested during stromule
formation might occur through changes in the protein: lipid
ratio.

FPs TARGETED TO STARCH GRAINS,
PLASTOGLOBULI, AND NUCLEOIDS

Two distinct types of storage products: starch and plastoglobuli
are found in plastids. Starch is composed of long, branched
polymers of glucose molecules and either takes a long term
storage form, typically found in specialized leucoplasts called
amyloplasts, or can transiently accumulate in photosynthesizing
chloroplasts and be degraded subsequently during the dark
period (Zeeman et al., 2010). Although several probes that
target starch grains have been developed (Table 1; Figures 1C,D)
and significant advances have been made in targeting FPs into
economically important cereal (Primavesi et al., 2008; Wu et al.,
2013; Krishnakumar et al., 2015) and tuberous crops (Sidorov
et al., 1999;) their use in understanding the dynamic process
of starch grain development is still rather limited. Similarly
while biochemical and molecular analysis has identified mutants
with different starch composition and properties the effect
of different mutations on starch-accumulating plastids is just
beginning to be assessed (Matsushima et al., 2014; Sun et al.,
2014; Hara et al., 2015; Zhang et al., 2015). It is also notable that
although many FP probes highlight plastids in roots the diurnal
behavior of leucoplasts, their rapid response to stimuli such as
gravity, physical barriers, water and nutrient stress and to soil

microorganisms remain relatively unexplored areas of FP-based
research.

In this context one particular starch probe that has remained
underexploited is GBSS-GFP (Bahaji et al., 2011; Figure 1C).
This probe exhibits dual localization; it highlights large starch
grains, but when the grains are small or non-existent GBSS:GFP
expressed under a CaMV35S promoter predominantly localizes
to the stroma. This localizationmasks small starch grains in some
plastid types and makes it a challenging probe for studying the
early steps of starch formation. Since GBSS is found exclusively
bound to the starch grain when chloroplast fractions are studied
(Smith et al., 2004) the stromal localization might result from
the 35S promoter induced overexpression or from altered fusion
protein turnover due to the presence of GFP.

In contrast to starch plastoglobuli are found in nearly
all plastids and their biochemical composition varies between
plastid types. They can be formed from a wide variety
of molecules including plastoquinone-9, plastoquinol-9, α-
tocopherol, galactolipids, tri-acylglycerols, and carotenoids
(Lichtenthaler, 2013). Since plastoglobules can be readily purified
biochemically and are being subjected to proteomics (Ytterberg
et al., 2006; Nacir and Bréhélin, 2013) the FP-probes for
plastoglobuli (Table 1) are presently rather under utilized.
However, the formation of plastoglobules, their spatio-temporal
relation to thylakoids, their characteristic accumulation in
different plastid types during development and their fuction
in senescent tissues are all interesting questions that are
beginning to be explored using live-imaging approaches (Nacir
and Bréhélin, 2013; Shanmugabalaji et al., 2013). A very
similar situation exists for plastid nucleoids that have been
visualized (Figure 1E) but whose localization details during
plastid development, differentiation and division await further
exploration.

FP-AIDED INSIGHTS ON PLASTID
INTERACTIONS

The endosymbiont theory for the origin of plastids also points to
their interactions with all other components and compartments
of the plant cell (Margulis, 1970). Plastid interactions have been
suggested through organelle/membrane proximity in electron
micrographs and concluded from biochemical investigations that
have tracked plastid products such as sugars and lipids (Block
and Jouhet, 2015; Kölling et al., 2015) as well as signaling
components (Sandalio and Foyer, 2015 and cited publications)
to other cytoplasmic structures. Several proteins exhibit dual or
multiple localization patterns (e.g., Table 2), and whereas some
of the localizations in transient expression studies might turn out
to be artifacts others suggest biochemical relationships shared
between different organelles. Some localization patterns might
reflect a condition specific status. In addition recent years have
seen widespread availability of various FP-probes for plastids
and other organelles (Mathur, 2007; The Illuminated Plant
Cell, <http://www.illuminatedcell.com>; Mano et al., 2011; The
maize GFP data base <http://maize.jcvi.org/cellgenomics/index.
php>) and these have been very useful in establishing views
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TABLE 2 | Some proteins that show multiple localizations.

Localization Organism/cell type Protein FP Key features References

Dual Chl

ER

C. reinhardtii RB60 G Protein disulfide isomerase; part of redox regulatory

protein complex involved in translation in chloroplasts;

exists as soluble form in stroma or tightly bound to

thylakoid membrane; also retained in the ER

Levitan et al., 2005

Chl

ER

N. benthamiana BnCLIP1 G Lipase; MCS between plastids and ER. Putative plastid

inner membrane of envelope localized

Tan et al., 2011

Chl

P

A. thaliana DRP5B (ARC5) G Chloroplast and peroxisome fission; cytosolic, recruited

to a discontinuous ring around membrane fission sites

Zhang and Hu, 2010

Chl

Cyt

P. patens FtsZ G Part of division ring; cytosolic assembles into a ring in

chloroplasts

Kiessling et al., 2004

Chl

M

A. thaliana AtDEF1 G Peptide deformylase; catalyzes N-formyl group removal

from methionine residues of nascent polypeptides;

AtDEF1.2 and AtDEF2 found in stroma and thylakoid;

AtDEF1.1 localizes to mitochondria

Dinkins et al., 2003

Chl

M

A. thaliana MST1 G Mercaptopyruvate sulfurtransferase Nakamura et al., 2000

Chl

M

N. tabacum AtHRS1 G Histidyl-tRNA synthetase Akashi et al., 1998

Chl

M

O. sativa Virescent2 (V2) G Plastid and mitochondrial guanylate kinase (pt/mtGK) Sugimoto et al., 2007

Chl

M

Z. mays ZmSig2B G Nucleus-encoded sigma factor; accumulates in

chloroplasts and mitochondria

Beardslee et al., 2002

Pl

M

G. max glutathione reductase G Component of ascorbate-glutathione cycle Chew et al., 2003

Pl

M

Z. mays Myosin XI Ab* Myosin motor protein Wang and Pesacreta, 2004

Pl Oryza spp. OsNIN1 (M) G Alkaline/neutral invertase; transported into both

mitochondria and plastids

Murayama and Handa,

2007

M OsNIN3 (Pl) G

Pl A. thaliana AtGLR3.4 Y Glutamate receptor Teardo et al., 2011

Pm N. tabacum

Pl

Vac

A. thaliana ATG8 G ATG-dependent autophagy; co-localizes with

stroma-targeted DsRed in RCBs in vacuoles

Ishida et al., 2008

Triple Chl A. thaliaa tRNA nucleotidyl G Adds 3’-terminal cytidine–cytidine–adenosine to tRNAs von Braun et al., 2007

Cyt transferase

M

Chl/Pl A. thaliana FIS1A Y Tail anchored membrane protein; implicated in

mitochondrial and peroxisomal fission

YFP: Ruberti et al., 2014

P E mEosFP: Jaipargas, 2015

M

Chl/Pl

ER-

Go

A. cea Amyl-1 G α-amylase isoform; localized in amyloplasts degrades

starch

Kitajima et al., 2009

Chl, chloroplasts; Pl, plastids; Pm, plasma membrane; P, peroxisomes; M, mitochondria; ER, endoplasmic reticulum; N, nucleus; Go, Golgi bodies; Vac, vacuole; Ly, Lysosomes; E,

mEosFP; G, GFP; Y, YFP; *Ab, antibodies were used, not FP.
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regarding plastid interactions with other organelles. Some of the
resultant insights are presented.

PLASTIDS AND THE CYTOSKELETON

Plants need light in order undergo photosynthesis.
Photosynthesis takes place in the chloroplasts of plants but too
much or too little light can have negative effects on plant health.
Plants have developed two chloroplast responses to combat
the lack of or excess of light, the chloroplast accumulation and
avoidance responses (Sakai et al., 2001; Kagawa et al., 2004;
Wada, 2013). Chloroplasts have been shown to accumulate on
the irradiated side of the cell under low intensity blue light,
or move away from the light source under high light intensity
(Sakai et al., 2001; Kagawa et al., 2004). Two photoreceptors
phototropin 1 and phototropin 2 (PHOT1, PHOT2) are
implicated in mediating this response (Briggs et al., 2001; Sakai
et al., 2001). The light avoidance response possibly minimizes
chloroplast damage, thus saving photosystem II (Kasahara et al.,
2002, 2004; Takahashi and Badger, 2011) and is mediated by
F-actin that surrounds a chloroplast (cp-actin; Kandasamy and
Meagher, 1999; Kadota et al., 2009). The cp-actin appears to
facilitate chloroplast movement in both the accumulation and
avoidance responses through the formation and disassociation
of cp-actin on the leading edge and the trailing end of the
chloroplast, respectively (Kadota et al., 2009). Major insights
have come from analyses of the CHLOROPLAST UNUSUAL
POSITIONING gene (CHUP1) and different FP-fusions of its
domains and the chup1mutant (Oikawa et al., 2003; Schmidt von
Braun and Schleiff, 2008; Lehmann et al., 2011). The involvement
of myosin motor proteins in plastid movement has been strongly
indicated (Paves and Truve, 2007; Kong and Wada, 2011; Wada,
2013).

The involvement of cytoskeletal elements and motor proteins
in stromule extension was also investigated (Kwok and Hanson,
2003). The use of different cytoskeleton inhibitors suggested that
the formation of stromules and their behavior relies to different
degrees upon both microfilaments and microtubules (Kwok and
Hanson, 2003). The myosin ATPase inhibitor 2,3-butanedione 2-
monoxime (BDM) also resulted in decresed stromule dynamics
and suggested the involvement of myosin motors (Gray et al.,
2001). Subsequently using transient RNA interference of myosin
XI and by localizing a GFP fused to the tail domain of this motor
protein to the chloroplast envelope, again in transient expression
Natesan et al. (2009) concluded that myosins are essential for
stromule formation. Notably, their transient expression based
observations using the cargo domain of myosin XI fused to
GFP suggest a rather non-specific localization as it includes
several other organelles (Natesan et al., 2009). Another transient
expression based study using a trucncated version of myosin XI
reached a similar conclusion (Sattarzadeh et al., 2009).

PLASTIDS AND THE ENDOPLASMIC
RETICULUM

Electronmicroscopy based investigations have indicated intimate
connections between the plastid and the endoplasmic reticulum

(ER) membranes (Wooding and Northcot, 1965; McLean et al.,
1988; Whatley et al., 1991). However, a clear demonstration of
plastid and ER interactivity was achieved through simultaneous
imaging of different colored FPs targeted to the two organelles
(Schattat et al., 2011a,b; Figure 4). A loose ER cage around the
plastid body (Figure 4A), and stromules co-aligned with ER
tubules (Figure 4B) were observed. The organellle interactivity
suggested by these observations was attributed to the presence
of membrane contact sites (MCS) between the plastid envelope
and the ER (Schattat et al., 2011a,b). The presence of MCS
and their strong interconnectivity has been suggested through
laser optical tweezers assisted pulling of GFP-labeled ER strands
attached to chloroplasts (Andersson et al., 2007). In addition a
chloroplast localized lipase from Brassica napus fused to GFP
(BnCLIP1:GFP) that shows co-localization with ER tubules has
been interpreted as indicative of MCS (Tan et al., 2011). While
the precise nature of plastid-ER interactions remains to be
characterized the identification of the trigalactosyldiacylglycerol
(TGD) transporter complex and its association with the ER
during lipid biosynthesis are promising leads that are being
actively pursued (Xu et al., 2008, 2010; Block and Jouhet, 2015).

THE PLASTID-NUCLEUS RELATIONSHIP
AND VIEWS ON RETROGRADE SIGNALING
DURING RESPONSE TO PATHOGENS

As purported descendants of prokaryotic endosymbionts and
possessing their own genetic and protein machinery chloroplast
gene expression must be highly coordinated with nuclear
encoded genes in order to maintain optimal functionality within
the cell. Indeed observations of plastids clustered around the
nucleus in different epidermal cells with stromules ramifying
the grooves and infoldings of the nuclear envelope (Kwok and
Hanson, 2004b; Figure 4F) favor the idea of signaling between
the two organelles. Retrograde signaling from chloroplasts to
the nucleus is known to depend upon exposure to light and the
redox state of the plastid, might be mediated through metabolite
sensing as well as reactive oxygen species (ROS), and involve
plastid membrane bound transcription factors (Fernández and
Strand, 2008; Stael et al., 2014; Chi et al., 2015). Fluorescent
proteins have proved useful in understanding this aspect of
plastid integration within the cell.

An elegant approach to understand retrograde signaling
from the plastid during pathogen response was taken to follow
the movement of N-Receptor Interacting Protein 1 (NRIP1)
from chloroplasts to nuclei using NRIP1 fused to the Cerulean
fluorescent protein with an N-terminal nuclear export signal
(NES) (Caplan et al., 2015). NES-NRIP1-Cerulean can only
accumulate within the nucleus after it has been imported and
processed within the chloroplast, where the chloroplast transit
peptide of NRIP1 is cleaved off along with the NES. Movement
of NRIP1, which accumulates within the chloroplast, to the
nucleus is triggered in response to Tobacco Mosaic Virus (TMV)
infection or expression of the TMV effector protein p50. When
NES-NRIP1-Cerulean was co-expressed with p50, processed
NES-NRIP1-Cerulean accumulated within the nucleus while no
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FIGURE 4 | Visualization of different colored FP to specific organelles facilitates investigations on plastid interactions. (A) Confocal image of chloroplasts

(chlorophyll autofluorescence false colored blue) and RFP-highlighted ER shows the ER-cage around plastids in a stable transgenic Arabidopsis line. (B) An

Arabidopsis line co-expressing stroma-targeted tpFNR:GFP [green; plastid body (pb) with chlorophyll false colored blue] and RFP targeted to the ER allowed the

stromule (s) -ER correlation to be investigated (Schattat et al., 2011a,b). (C) A stable transgenic line coexpressing stroma targeted tpFNR:YFP and mito:GFP (Logan

and Leaver, 2000) is allowing an investigation on the mitochondria (m) relationship to chloroplasts (ch) and stromules (s). (D) Investigations on F-actin (mf) relationship

to chloroplasts (ch) and stromules (s) are being facilitated through a double transgenic line expressing GFP:mTalin (Kost et al., 1998; green) and tpFNR:mEosFP (red).

F-actin around the nucleus (n) is apparent. (E) A small region from a hypocotyl cell of a triple transgenic expressing RFP targeted to the ER (er), GFP targeted to

mitochondria (m) and a YFP targeted to peroxisomes (p). Chloroplasts (ch) are discernable due to their autofluorescence. The line is being used for investigating the

relationship between the four organelles. (F) A double transgenic line co-expressing tpFNR:GFP and RFP-ER shows the peri-nuclear ER cage and the cluster of

chloroplasts (ch) surrounding the nucleus (n) in a hypocotyl cell from a dark grown seedling. The probes might provide several interesting observations and insights

into retrograde signaling between plastids and the nucleus. Size bars: A–C,E,F = 5µm; D = 10µm.

such accumulation was observed when NES-NRIP1-Cerulean
was expressed alone. The observation that during the response to
p50 expression stromules and plastid bodies can be found in close
proximity to the nucleus has been used to suggest that stromules
are involved in the direct movement of NRIP1 to the nucleus
during the innate plant immune response (Caplan et al., 2008,
2015).

Stromules have also been implicated in facilitating plastid-
to-nucleus trafficking during infection of N. benthamiana with
Abutilon mosaic virus (AbMV; Krenz et al., 2010, 2012).
Using BiFC (Bimolecular Fluorescence Complementation) as
interaction between the AbMV movement protein (MP) and the
plastid localized heat shock cognate 70 kDa protein (cpHSC70-1)
was observed regardless of infection; however, when challenged
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with AbMV infection the number of plastids producing
stromules as well as the length of the stromules was increased
(Krenz et al., 2010, 2012). Similar observations made using the
outer envelope protein-7 (OEP7) during AbMV infection have
led to the proposal that stromules are involved in the trafficking of
AbMV MP from the cell periphery to the nucleus, or vice-versa,
during the infection process (Krenz et al., 2010, 2012, 2014).

These observations are interesting and the conclusions
derived from them seem very well thought out. However, it is
difficult to reconcile the direct involvement of stromules in the
retrograde signaling since none of the studies appear to consider
the diurnal fluctuations that lead to stromule extension and
retraction. The diurnal cycle of stromules either as a response
to a change in chloroplast redox status or a change in cellular
sugar levels is quite clear (Schattat and Klösgen, 2011; Schattat
et al., 2012a; Brunkard et al., 2015). What happens to the
postulated retrograde signaling at night when stromules are
not extended? Perhaps the observations are the result of a
physiological perturbation of the cell during infection and not
indicative of a function of stromules (Krenz et al., 2012). Indeed
previous work has interpreted Geminivirus-induced plastid
alterations to perturbed carbon metabolism that is likely caused
by the disruption of sugar translocation through phloem during
infection (Jeske and Werz, 1978). The use of Agrobacterium
mediated overexpression of proteins under consideration again
suggests caution in the interpretations since Agrobacterium
infiltration itself has been shown to increase stromule frequency
(Schattat et al., 2012b; Erickson et al., 2014). Furthermore, as the
development of AbMV is known to be affected by light intensity
as well as diurnal and seasonal conditions (Krenz et al., 2012),
observations linking AbMV infection and stromule formation
should be reconsidered to account for the diurnal rhythm of
stromule formation (Schattat et al., 2012a; Brunkard et al., 2015)
and how the plant’s response to a pathogen might affect this
cycle. Similarly, given the importance of a plant’s developmental
stage in relation to stromule formation (Waters et al., 2004) it
would interesting to extend these observations over the course
of development in both challenged and unchallenged plants
instead of assessing a single time point following infection.
Although Caplan et al. (2015) conclude that stromules are
involved in the direct transfer of processed NES-NRIP1-Cerulean
to the nucleus, it is equally possible that after cleavage of
the NES signal NRIP1-Cerulean leaks to the cytosol and then
accumulates in the nucleus. Accumulation of an untargeted FP
in the nucleus is one of the major caveats associated with their
use (Haseloff et al., 1997; Mathur et al., 2010). Interestingly
many of the observations involving pathogens span several days
without really describing or characterizing the state of the cells
or the plastids during those days. Furthermore, clustering of
plastids and stromules around the nucleus is not restricted
to pathogen response and can be observed throughout the
normal development of plants (Kwok and Hanson, 2004b;
Figure 4F).

We conclude that the coincidental observations of stromules
in virus or other pathogen infected tissue and the suggestion
that stromules facilitate retrograde signaling between the plastid
and nucleus is a possibility but at present it does not fit in into

the well-documented diurnal phenomenon of stromule extension
and retraction.

TARGETED FPs HAVE PROVIDED A
COMPREHENSIVE VIEW OF THE PLASTID
DIVISION PROCESS

In higher plants plastid division by binary fission involves a
coordinated assembly of four concentric division rings that
together constrict both the inner and outer membranes of the
plastid envelope (Osteryoung and Pyke, 2014). Whereas some of
the proteins such as the internal ring localized FtsZ appear to be
of prokaryotic origins others such as the ARC5/DRP5B indicate
a eukaryotic derivation. Fluorescent proteins have been used
to confirm the localization of several division related proteins
at the mid-plastid division site as well as provide convincing
proof for their sequential activity through complementation
of the pertinent mutant (Vitha et al., 2001; Gao et al., 2003;
Miyagishima et al., 2006; Fujiwara et al., 2008; Glynn et al.,
2008, 2009; Nobusawa and Umeda, 2012). Using FP-probes it
was determined that FtsZ proteins are the first to align on
the mid-plastid (Vitha et al., 2001). In subsequent experiments
the expression of ARC5-GFP in pdv1 pdv2 mutants showed
impaired localization of ARC5 and led to the conclusion that
PDV proteins are necessary for ARC5 localization (Miyagishima
et al., 2006). Glynn et al. (2008) performed similar experiments to
determine that ARC6 is required to recruit PDV2 to the division
ring. FP-based observations have thus provided a comprehensive
understanding of the construction of the plastid division ring
(Nakanishi et al., 2009; Osteryoung and Pyke, 2014). Additional
information on the phenomenon was obtained by using a GFP
fused to a bacteria-derived FtsZ1 to assess the effects of higher or
lower FtsZ1 expression on division efficiency (Vitha et al., 2001).
In other experiments, the use of FtsZ2-GFP probes to observe
division ring formation in the presence or absence of cafenstrole,
an inhibitor of very-long-chain fatty acids (VLCFA) synthesis,
provided an insight on the involvement of VLCFAs in plastid
division (Nobusawa and Umeda, 2012).

INSIGHTS INTO PLASTID BREAKDOWN
USING FPs

Senescence is an integral part of the plant’s life cycle and involves
orchestration of physiological changes designed to recapture
and recycle cellular resources. Chloroplasts are amongst the
more robust cellular elements and in many tissues are the last
to disappear. Senescent chloroplasts, also called gerontoplasts
(Figure 1E), appear swollen and often display an amoeboid
behavior. They also acquire very different behavioral and
biochemical characteristics as compared to healthy chloroplasts
(Wise, 2007). At the ultra-structural level gerontoplasts exhibit a
progressive un-stacking of grana, a loss of thylakoid membranes
and amassive increase in the number of plastoglobuli (Harris and
Arnott, 1973; Krupinska, 2007). The controlled disassembly of
the photosynthetic apparatus often resembles autophagy (Ishida
et al., 2014; Izumi et al., 2015) and results in the formation of
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vesicles containing stromal and thylakoid material (Krupinska,
2007; Figure 1E). Amongst the degradation-vesicles are the
Rubisco-containing bodies (Chiba et al., 2003) that have been
observed using stroma-targeted FPs (Ishida et al., 2008; Yamane
et al., 2012).

FPs ARE USEFUL IN LEARNING ABOUT
PLASTID ASSOCIATED REACTIVE
OXYGEN SPECIES

Reactive oxygen species (ROS), such as hydrogen peroxide
(H2O2), are commonly thought of as toxic molecules leading
to cellular damage; primarily through lipid peroxidation and
membrane degradation. There is an obvious association between
the increase of different ROS within the cell during senescence
as well as during abiotic and biotic stresses (Zentgraf, 2007;
Foyer and Noctor, 2009). Several recent studies have employed
fluorescent proteins, such as the redox sensitive GFP (roGFP)
(Jiang et al., 2006; Meyer et al., 2007; Schwarzländer et al., 2008)
to measure subcellular redox states within living plant cells. The
roGFP is sensitive to reduced glutathione pools within the cell
which, with the help of endogenous glutaredoxin, reduces roGFP
and produces a disulfide bridge between two cysteines that have
been engineered into roGFP (Sugiura et al., 2015). Formation of
the disulfide bridge causes a conformational change that shifts
the excitation maxima and allows ratiometric quantitation of the
reduced glutathione pool within a living cell (Hanson et al., 2004;
Jiang et al., 2006; Meyer et al., 2007; Schwarzländer et al., 2008;
Sugiura et al., 2015). Another FP used to directly estimate the
relative concentrations of H2O2 is the modified YFP known as
HyPer (Costa et al., 2010). This probe comprises of YFP fused to
a regulatory domain of the Escherichia coli H2O2 sensor OxyR.
When HyPer is exposed to H2O2, two cysteine bonds form
within the OxyR and produce a conformation-induced shift in
the excitation maxima from 420 to 500 nm, while the emission
maximum of 516 nm remains constant, to allow a ratiometric
measurement of H2O2 (Belousov et al., 2006).

HyPer was first characterized in plants using the guard cells
of stable transgenic Arabidopsis as well as in suspension cell
cultures obtained from these plants where a dosage dependent
increase in cytosolic HyPer fluorescence was observed following
treatments with exogenous H2O2 (Costa et al., 2010). HyPer
has since been used to assess the response of plastids to H2O2

produced during pathogen response and to investigate potential
plastid-to-nucleus signaling via plastid produced H2O2 (Caplan
et al., 2015). Using a chloroplast targeted HyPer, Caplan et al.
(2015), demonstrated that following expression of p50 in N.
benthamiana, which is known to elicit ROS bursts and augment
H2O2 levels the stromule frequency also increased. Furthermore,
when chloroplasts clustered closely around a nucleus were
scanned with a 405 nm laser to generate light-induced ROS in
chloroplasts, the fluorescence intensity of nuclear localized NLS-
HyPer increased; indicating that chloroplast generated H2O2

accumulated in the nucleus and could be involved in chloroplast
to nucleus signaling (Caplan et al., 2015). These studies clearly
demonstrated the utility of HyPer in assessing H2O2 levels within

different compartments of the plant cell. It will be interesting to
see whether these probes can be applied to investigate changes in
cellular redox states during other stresses.

In addition to senescence associated plastid degradation the
breakdown of chloroplasts is also linked to a programmed cell
death phenomenon that occurs under oxidative stress produced
by exposure to high light or physical injury (Apel and Hirt,
2004). The plastid-associated PCD involves the release of singlet
oxygen (1O2) and leads to the formation of micro-lesions without
impairing the general viability of the plant. In green tissue one
of the first signs of this localized phenomenon is the loss of
chloroplast integrity. An elegant FP-based assay estimated the
damage to chloroplasts by observing the leakage of stroma-
targeted GFP into the cytoplasm following the 1O2 stress (Kim
et al., 2012).

TARGETED FPs AND IDENTIFYING THE
POTENTIAL FOR ARTIFACTS

As reviewed here the use of FPs has resulted in several
commendable insights on plastids. However, it is important to
remember that any fusion protein, despite its expression under
the control of the cellular machinery in a living plant cell, is still
an artificially created chimera that is quite different from the tag-
free protein under investigation. In general, the addition of a
20–30 kDa FP changes the properties of a protein, including its
stability and turnover characteristics. In addition the expression
of many FP-fusions is augmented through the use of the strong
CaMV-35S, or even a double 35S promoter, and thus does not
represent the actual protein levels that would be achieved under
the native promoter. FP-fusions, specifically those targeted to
the plastid membranes are prone to zippering and clumping
(Figure 5A), can produce abnormal aggregates and large patches,
lead to ectopic protrusions (Figures 5B,C) and sometimes even
provide wrong localizations due to overexpression. Whereas
transient expression of fusion proteins is quite efficient and
relatively easy to perform it results in a wide range of protein
expression levels that vary with time. Such heterogeneity of gene
expression promotes a “pick and choose” approach that may
bias the observations and resultant conclusions. The creation of
multiple stable transgenic lines expressing a specific construct
allows for more convincing observations that can be revisited, be
subjected to more critical assessments, be studied under different
growth and development conditions, and most importantly, can
be verified by other investigators. However, transgenic plant
creation does require much more time and labor.

A common practice for most plant labs involves the transient
agroinfiltration technique where fusions for Arabidopsis genes
might be carried out in N. benthamiana or other tobacco species.
While non-matching observations are not usually reported it is
worth noting that transient expression patterns obtained using
tobacco plants or single cell cultures are not always replicated in
stable transgenic Arabidopsis plants. Again, consistency between
materials chosen for agroinfiltration remains an important factor
since young leaves are physiologically quite different from older,
fully expanded leaves, which in turn are very different from
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FIGURE 5 | Some of the artifacts resulting from overexpression of a fusion protein. (A) Overexpression of a N-CHUP:GFP fusion results in sticky plastid

envelopes and their massive clumping. (B) N-CHUP:GFP overexpression may also result in ectopic protrusions resembling stromules. Whether all such protrusions

are actually stromules remains to be determined. (C) OE of FIB4:mEosFP that normally localizes to plastoglobuli (Figure 1D) can also produce localized artifacts such

as extra lining of the inner membrane of the envelope. Observation made using transient expression in tobacco cells. (D) Leakage of stroma-targeted FP due to

pressure/touch—induced damage to the cell makes the cytoplasm fluoresce due to mis-localization. Note the presence of chloroplasts in pavement cells. Size Bar =

5µm in (A,B); 10µm in (C); 50µm in (D).

senescent ones. For plastids specially, this is an important
criterion as the plastid types between green tissue and yellow-
green (senescent/stressed) tissue are different. A technique being
used quite often involves virus induced gene silencing (VIGS).
Studies aimed at understanding stromules must consider the
developmental stage of the plant being used as it can have a major
effect on the overall conclusions.

During our critical appraisal of published literature on
stromules we have become aware of a major discrepancy.
Whereas several researchers report and emphasize the diurnal
nature of changes in plastid morphology involving the extension
and retraction of stromules (Schattat et al., 2011a,b, 2012a;
Brunkard et al., 2015) others completely overlook this important
fact and draw conclusions from observations that stretch into
several days and even weeks. At this stage we can only wonder
if conclusions obtained after prolonged periods on a subcellular
phenomenon that is observable within 2–5 h should still be
worthy of consideration. A very similar reasoning requiring
attention concerns inferences on ROS mediated effects on plastid
behavior. The term ROS encompasses many different types of
oxygen species, each with a different lifetime that affects its
ability to penetrate, interact and alter the behavior of cellular
membranes (Foyer and Noctor, 2009). Different ROS also trigger
chain reactions that can involve several other ROS as well
as reactive nitrogen species (RNS). The commonly available
point-scanning laser microscopes are not usually calibrated to

deal with the small time scales involved in ROS induced changes
and provide real-time data. Whereas the emission of ROS as
a general stress induced occurrence in living cells cannot be
challenged the estimation of a single ROS through fluorescence
decay of a specific FP cannot be indicative of the true ROS levels
and the perturbations caused by them in a living cell.

FUTURE PROSPECTS FOR FP BASED
INVESTIGATIONS ON PLASTIDS

Despite the considerable advances in knowledge about plastids
where the use of FPs has played an important role some very
important questions about these essential organelles of plant
cells remain unanswered. The recognition that plastids are
independent functional units still requires unequivocal proof. If
this idea has to hold true then it should be possible through
the use of FPs to distinguish between plastids that look similar
but might be metabolically dissimilar. Further, much of our
information on plastids comes from the study of chloroplasts.
FPs targeted to other plastid types might allow us to fully
comprehend the versatile and inter-convertible nature of these
organelles. The availability of probes that are already targeted to
plastid inclusions such as starch and plastoglobuli suggests that
we could start now start combing these probes with an aim to
investigate carbon partitioning within plastids. Although some
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investigations have been carried out on the interactions between
plastids, mitochondria and peroxisomes (Kwok and Hanson,
2003, 2004b,c; Jouhet et al., 2004; Mathur et al., 2012) more
details are expected to emerge from double and triple transgenic
plants (Figure 4). It will be interesting to actually observe inter-
organelle co-operation during photorespiration and high-stress
conditions to perhaps add more information to that built up on
from seminal TEM and biochemical studies.
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Movie 1 | Time-lapse imaging of a single chloroplast to show that the

difference between a chloroplast protrusion (CP) and a stromule is

completely artificial since the two terms represent snapshots of a

dynamic phenomenon. Whereas this chloroplast is quite dynamic other plastids

might not show pronounced extensions specially if the cytoplasm is also in a

relatively low-dynamic mode. False colored chlorophyll autofluorescence is in

green and the stroma in orange (See Figure 2).
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