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Plant stem cells give rise to all tissues and organs and also serve as the source for plant
regeneration. The organization of plant stem cells has undergone a progressive change
from simple to complex during the evolution of vascular plants. Most studies on plant
stem cells have focused on model angiosperms, the most recently diverged branch of
vascular plants. However, our knowledge of stem cell function in other vascular plants
is limited. Lycophytes and euphyllophytes (ferns, gymnosperms, and angiosperms) are
two existing branches of vascular plants that separated more than 400 million years
ago. Lycophytes retain many of the features of early vascular plants. Based on genome
and transcriptome data, we identified WUSCHEL-RELATED HOMEOBOX (WOX ) genes
in Selaginella kraussiana, a model lycophyte that is convenient for in vitro culture
and observations of organ formation and regeneration. WOX genes are key players
controlling stem cells in plants. Our results showed that the S. kraussiana genome
encodes at least eight members of the WOX family, which represent an early stage
of WOX family evolution. Identification of WOX genes in S. kraussiana could be a useful
tool for molecular studies on the function of stem cells in lycophytes.

Keywords: Selaginella kraussiana, lycophyte, stem cell, WOX, regeneration, vascular plants

INTRODUCTION

Stem cells are characterized by their ability to self-renew in an undifferentiated state and their
potential to differentiate into functional cells (Jaenisch and Young, 2008; Lander, 2009). All
plant organs are derived from stem cells, and stem cells are also important in plant regeneration
(Sugimoto et al., 2011; Xu and Huang, 2014). In angiosperms, stem cells are organized in a special
environment; that is, the stem cell niche within the meristem (Scheres, 2007; Aichinger et al., 2012).
Genes in the WUSCHEL-RELATED HOMEOBOX (WOX) family encode the key controllers of
stem cell niche in many plant species. The WOX family homeobox proteins can be divided into
three clades according to the time of their appearance during plant evolution: the ancient clade,
the intermediate clade, and the WUS clade (Haecker et al., 2004; van der Graaff et al., 2009). The
specification and organization of stem cells have become increasingly complex during the evolution
of vascular plants, accompanied by increased complexity of WOX genes in diverse stem cell
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niches (Aichinger et al., 2012). To fully understand the
complexities of stem cell activity, it would be useful to understand
how stem cells functioned in the early evolution of vascular
plants, as this may provide an evolutionary view of plant stem
cells and stem cell niches.

More than 400 million years ago, the appearance of vascular
plants was an important step in evolution during the colonization
of land by plants (Bennici, 2007, 2008; Banks, 2009). Since
then, vascular plants have diverged into several lineages,
only two of which survive today; the lycophytes such as
Selaginella (spikemosses), and the euphyllophytes consisting
of monilophytes (ferns), gymnosperms, and angiosperms
(Figure 1A; Raubeson and Jansen, 1992; Duff and Nickrent,
1999; Qiu and Palmer, 1999; Pryer et al., 2001; Qiu et al., 2007;
Banks, 2009; Banks et al., 2011; Kenrick and Strullu-Derrien,
2014). Many lycophytes retain the typical features of early
vascular plants, and therefore, are suitable for studies on the
early evolution of vascular plants. For example, lycophytes have a
simple and bifurcating apical meristem at the shoot and root tips
(i.e., dichotomous branching), which is representative of early
vascular plants during evolution (Banks, 2009). The genome
of Selaginella moellendorffii, a model plant of lycophytes, was
sequenced (Banks et al., 2011), and this greatly improves our
knowledge on lycophytes. Identification of WOX family genes in
S. moellendorffii suggests that lycophytes do not have the WUS
clade (Deveaux et al., 2008; Mukherjee et al., 2009; van der Graaff
et al., 2009).

Selaginella kraussiana, another model lycophyte, is easy
to culture in vitro and suitable for studies on stem cells
and regeneration. In this study, we identified WOX genes in
S. kraussiana and analyzed their expression patterns in tissues
based on genome and transcriptome data.

RESULTS

In Vitro Culture System of S. kraussiana
Selaginella is a lycophyte lineage that separated from the
euphyllophytes more than 400 million years ago (Figure 1A;
Kenrick and Crane, 1997; Banks, 2009). Several species of
Selaginella have been used to study different aspects of
development. The stem phenotypes of Selaginella species are
generally characterized by a prostrate or upright growth habit
(Rost et al., 1997). S. moellendorffii has an upright stem
(Figure 1B), and its genome has been sequenced (Banks
et al., 2011). Different from S. moellendorffii, S. kraussiana is
another commonly used species that has a typical prostrate stem
(Figure 1C; Harrison et al., 2005; Floyd and Bowman, 2006;
Prigge and Clark, 2006; Harrison et al., 2007; Otreba and Gola,
2011; Sanders and Langdale, 2013).

Compared with S. moellendorffii, S. kraussiana is more
readily cultured in vitro and more amenable to morphological
observations (Sanders and Langdale, 2013). In our conditions,
the detached distal part of S. kraussiana seedlings with one or
two branches grows readily on wet stones with water (Figure 1D).
This growth method provides a humid environment that allows
the survival of detached branchlets and also provides a physical

support for stem, rhizophore, and root development. The
rhizophore is a root-bearing organ in Selaginella. The detached
S. kraussiana branchlets can grow continuously on the wet stones,
producing more dichotomous shoot branches and rhizophores
at the Y-shaped branch junctions (Figure 1E). In contrast, it is
difficult to culture detached tissues of S. moellendorffii in vitro,
and difficult to induce these tissues to form rhizophores.

Organ Formation and Cell Fate Transition
in S. kraussiana
Using the in vitro culture system, S. kraussiana is suitable
for studying organ formation and regeneration. The rooting
process was clearly observed (Figures 2A–E; Otreba and Gola,
2011). In detached S. kraussiana branchlets, a rhizophore
primordium was observed at the dorsal angle meristem
located at the Y-shaped junction of dichotomous branching
2 days after culture (DAC; Figures 2A,B). Rhizophores
continued to elongate (Figures 2C,D), and at 5 DAC the
distal portion of the rhizophores started to bend (Figure 2D),
indicating that their tips grew in response to gravity. The
rhizophores continued to grow and produced bifurcating root
tips (Figure 2E).

We also analyzed the regenerative ability of S. kraussiana in
the in vitro culture system. It was reported that Selaginella has the
ability to change the fate of angle meristem cells from rhizophore
to shoot upon injury of the shoot apexes (Williams, 1937;Webster
and Steeves, 1964; Webster, 1969; Wochok and Sussex, 1975).
We repeated this experiment by excision of the two shoot apexes
from the detached branchlet (Figure 2F). After excision, the
new shoot apex regenerated within 5 DAC from the dorsal
angle meristem (Figure 2G), where the rhizophore primordium
usually grew in non-excised branchlets (Figures 2B–D). This
suggests that the fate of stem cells within the angle meristem was
changed from rhizophore or root to shoot during regeneration.
The regenerated shoot apex grew continuously to form a
seedling (Figure 2H). Overall, these observations confirmed that
S. kraussiana is a good system for studying organ formation and
regeneration.

Identification of WOX Genes from
Genome and Transcriptome Sequencing
Data of S. kraussiana
To estimate the size of the S. kraussiana genome, we performed
a flow cytometry analysis. The data showed that the genome
of S. kraussiana is smaller than that of Arabidopsis thaliana
(Figure 3A), consistent with the previous study (Little et al.,
2007). We conducted a DNA-seq analysis of the S. kraussiana
genome (Figure 3B). The draft assembly of contigs confirmed
that the S. kraussiana genome is smaller than that of A. thaliana
and similar to the length of the genome of S. moellendorffii (The
Arabidopsis Genome Initiative, 2000; Banks et al., 2011).

To analyze the transcriptome of S. kraussiana, we performed
an RNA-seq analysis using four different tissues: microphyll,
shoot tip, rhizophore tip, and stem (Figure 3B). Since WOX
genes are key regulators of stem cells in plants, we identified
genes encoding members of the WOX family in S. kraussiana
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FIGURE 1 | Selaginella kraussiana as a model plant for studies on lycophytes. (A) Simplified evolutionary route of green plants, showing two existing
branches of vascular plants; lycophytes and euphyllophytes. (B,C) Phenotypes of S. moellendorffii (B) and S. kraussiana (C). Note that the stem of S. moellendorffii
is upright (B), while that of S. kraussiana is prostrate (C). (D,E) In vitro culture system of S. kraussiana. Detached branchlets of S. kraussiana were cultured on wet
stones at time 0 (D) and 11 DAC (E). Growth of rhizophores that bear roots could be observed (E). Scale bars, 1 cm in (B–E).

(SkWOX genes). Based on our DNA-seq and RNA-seq data,
we identified eight genes predicted to encode a homeodomain
similar to that of the WOX family proteins (Figure 3B; Table 1).
We named the eight candidate SkWOX genes SkWOX13A–E and
SkWOX11A–C according to the protein sequence similarity of
their homeodomains to those of A. thaliana WOX (AtWOX)
proteins. The cDNA or CDS sequences of the eight SkWOX genes
were further confirmed by reverse transcription-polymerase
chain reaction (RT-PCR) using total RNA from whole seedlings.

The predicted transcriptional profiles of SkWOX genes
showed diverse patterns in the four tissues based on the
RNA-seq data (Figures 4A–H). SkWOX13A and SkWOX11A
were barely expressed in the tested tissues (Figures 4A,F),
and there were low transcript levels of SkWOX13D in all
tissues tested (Figure 4D). SkWOX13C, SkWOX13E, SkWOX11B,
and SkWOX11C showed relatively high transcript levels in all
four tissues (Figures 4C,E,G,H). Interestingly, SkWOX13B was
preferentially expressed at the rhizophore tip (Figure 4B). These
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FIGURE 2 | Organ formation and regeneration in S. kraussiana. (A–D) In vitro culture of S. kraussiana, showing rhizophore growth from detached branchlets at
time 0 (A), 2 DAC (B), 3 DAC (C), and 5 DAC (D). Note that rhizophore primordium was observed from the dosal angle meristem at 2 DAC (B). (E) Root formation
from rhizophore. Note that the newly formed roots could bifurcate continuously. (F–H) Regeneration of shoot at angle meristem after excision of shoot apexes from
branchlets. Shown are time-0 (F), 5-DAC (G), and 15-DAC (H) branchlets. Note that the regenerated shoot apex was observed from the dosal angle meristem at
5 DAC (G). Detached branchlets were cultured on wet stones and removed to an agar plate to take pictures. Scale bars, 1 mm in (A–H).

data suggested that each of the SkWOX genes may play specific
role(s) in different tissues.

Evolution of WOX Family Genes in Plants
To analyze the possible evolutionary history of the WOX family,
we aligned the homeodomains of SkWOX proteins against
the WOX homeodomains from the green algae Ostreococcus

tauri (OtWOX13) and Ostreococcus lucimarinus (OlWOX13),
the bryophyte/moss Physcomitrella patens (PpWOXs), the
monilophyte/fern Ceratopteris richardii (CrWOXs), the
gymnosperm Gnetum gnemon (GgWOXs), and the angiosperms
Oryza sativa (OsWOXs) and A. thaliana (AtWOXs) (Figure 5A;
Mukherjee et al., 2009; Nardmann and Werr, 2012, 2013;
Sakakibara et al., 2014). Previous studies have suggested that
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FIGURE 3 | Genome and transcriptome analyses of S. kraussiana.
(A) Flow cytometry analysis of genome size of S. kraussiana. Genome size of
S. kraussiana (red peak, %CV = 4.74) was estimated using the internal
reference standard Arabidopsis thaliana (indigo peaks: 2C, %CV = 4.81; 4C,
%CV = 3.66). (B) DNA-seq and RNA-seq analyses of S. kraussiana. Genomic
DNA from seedlings was used for DNA-seq and four different tissues were
used for RNA-seq. Eight SkWOX genes (SkWOX13A to E and SkWOX11A to
C) were identified.

particular peptide sequences in the WOX homeodomain can
distinguish the three clades of WOX proteins (red box in

TABLE 1 | Accession numbers of projects/sequences used in this study.

Projects/sequences Deposition Accession
number

Whole Genome Shotgun
project (DNA-seq, Draft
assembly)∗

DDBJ/EMBL/
GenBank

LDJE00000000

RNA-seq GEO GSE69388

BankIt1826187 skWOX11A GenBank KR870323

BankIt1826187 skWOX11B GenBank KR870324

BankIt1826187 skWOX11C GenBank KR870325

BankIt1826187 skWOX13A GenBank KR870326

BankIt1826187 skWOX13B GenBank KR870327

BankIt1826187 skWOX13C GenBank KR870328

BankIt1826187 skWOX13D GenBank KR870329

BankIt1826187 skWOX13E GenBank KR870330

∗The version described in this paper is version LDJE01000000.

Figure 5A): YNWFQNR for the ancient clade, FYWFQNR for
the intermediate clade, and FYWFQNH for the WUS clade
(Nardmann and Werr, 2012; Zeng et al., 2015).

Green algae and mosses only have the ancient clade of WOX
genes, and moss WOX genes (PpWOX13Ls) have been shown
to play a role in apical stem cell formation and regeneration
(Mukherjee et al., 2009; Sakakibara et al., 2014). Our data showed
that S. kraussiana has at least five ancient-clade WOX genes,
SkWOX13A–E (Figures 5A,B).

Consistent with previous genomic studies on S. moellendorffii
(Mukherjee et al., 2009; van der Graaff et al., 2009; Lian et al.,
2014), our data showed that the genome of S. kraussiana
also encodes WOX proteins in the intermediate clade
(Figures 5A,B). SkWOX11C has a FYWFQNR sequence in
its homeodomain, typical of the intermediate clade. Interestingly,
in S. kraussiana there is a lycophyte-specific clade of WOX
proteins, SkWOX11A and B, which have a YYWFQNR (or
YYWFNKR) sequence that appears to be transitional between
the ancient (YNWFQNR) and the intermediate (FYWFQNR)
clades (Figures 5A,B). Based on overall homeodomain
sequence similarity, SkWOX11A/B separated from other
WOX proteins in all the species tested in this study (Figure 5A),
suggesting that this clade may have evolved far apart from
the trunk road of the WOX family after they separated from
SkWOX11C.

The S. kraussiana genome does not encode WUS-clade
genes. The fern C. richardii contains WOX members similar
to WUS-clade proteins, such as CrWUL (Nardmann and
Werr, 2012). Sequence analysis showed that the CrWUL
protein from C. richardii and GgWOXY and GgWOX2A/B
from the gymnosperm G. gnemon show high sequence
similarity to WUS-clade proteins (Figure 5A). However,
none of these proteins contain the WUS-clade sequence
FYWFQNH in the homeodomain (Figure 5A; Mukherjee
et al., 2009; Nardmann and Werr, 2012, 2013; Zeng et al.,
2015). Instead of FYWFQNH, GgWOXY and GgWOX2A/B
have an intermediate sequence FYWFQNR (Figure 5A). This
suggests that CrWUL, GgWOXY, and GgWOX2A/B might
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FIGURE 4 | Predicted expression profiles of SkWOX genes in S. kraussiana. (A–H) RNA-seq analyses of expression patterns of WOX genes in S. kraussiana:
SkWOX13A (A), SkWOX13B (B), SkWOX13C (C), SkWOX13D (D), SkWOX13E (E), SkWOX11A (F), SkWOX11B (G), and SkWOX11C (H). Peaks indicate RNA-seq
reads aligned to the corresponding gene loci.

represent a transitional evolutionary stage from intermediate
to WUS-clade proteins, although these proteins are usually
included in the WUS clade (Figures 5A,B; Mukherjee et al.,
2009; Nardmann and Werr, 2012, 2013; Zeng et al., 2015).
The WUS-clade genes have further evolved in gymnosperms
and angiosperms (Figures 5A,B) (Mukherjee et al., 2009;
Nardmann et al., 2009; van der Graaff et al., 2009; Lian et al.,
2014).

DISCUSSION

Lycophytes retain many features of vascular plants at the early
stage of landing, and therefore, are useful for understanding the
early evolution of vascular plants (Banks, 2009). S. moellendorffii
and S. kraussiana are two commonly used lycophyte model plants
that differ according to their stem phenotype (typical upright
and prostrate stems, respectively). Both of them have merits
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FIGURE 5 | Evolution of WOX family. (A) Alignment of WOX homeodomains from different model plants. Phylogenetic analysis of homeodomain sequences was
conducted using MEGA3.0 (Kumar et al., 2004). Protein sequences were obtained from published bioinformatics data (Haecker et al., 2004; Mukherjee et al., 2009;
van der Graaff et al., 2009; Zhang et al., 2010; Nardmann and Werr, 2012, 2013; Lian et al., 2014; Zeng et al., 2015). Red box indicates sequence for classification
of three clades. (B) Possible evolutionary route of WOX family genes.

for studies on lycophytes. Compared with S. moellendorffii,
S. kraussiana has several advantages for studying organ formation
and stem cell functions. First, S. kraussiana grows rapidly and is
easy to culture in vitro. Second, it is easy to trace rhizophore and
root development in S. kraussiana. Third, it is easy to observe
the fate transition of stem cells during organ regeneration in
S. kraussiana.

The genome sequence of S. moellendorffii has been reported
previously (Banks et al., 2011). This genomic information has

greatly improved our understanding of the evolution of the plant
kingdom. In this study, we provided raw data of DNA-seq of the
S. kraussiana genome and RNA-seq of four different S. kraussiana
tissues (Table 1). These sequencing data provide a useful tool
to study the developmental regulation of S. kraussiana using a
molecular approach.

The WOX genes have evolved from ancient to intermediate
to WUS clades, accompanied by the evolution of stem cell
function in plants (Haecker et al., 2004; Mukherjee et al.,
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2009; van der Graaff et al., 2009; Aichinger et al., 2012; Lian
et al., 2014; Zeng et al., 2015). The WOX family could be
a useful tool for studying stem cells in plants. Green algae
and mosses only have the ancient clade. Our data from
S. kraussiana and previous studies in S. moellendorffii (Deveaux
et al., 2008; Mukherjee et al., 2009; van der Graaff et al., 2009)
showed that lycophytes have ancient and intermediate clades.
Ferns, gymnosperms and angiosperms have all the three clades.
Therefore, the intermediate clade might first originate in the
common ancestor of lycophytes and euphyllophytes, suggesting
that this clade evolved specifically in vascular plants. Conversely,
there are no WUS-clade members in lycophytes, suggesting
that stem cells in lycophytes are still at an early evolutionary
stage.

In this study, we identified a lycophyte-specific clade
in S. kraussiana; the evolutionary position of this clade is
probably between the ancient and intermediate clades. This
clade may have separated from the intermediate clade and
further evolved in lycophytes. Studies on the functions of
S. kraussiana WOX genes, together with studies on stem cell
activities, organ formation, and regeneration in lycophytes
using a molecular approach, may help us to understand the
developmental mechanisms in the early evolution of vascular
plants.

MATERIALS AND METHODS

Plant Materials, Culture Conditions, and
Microscopy
Plants of S. kraussiana were grown at 26◦C under a 16-h light
(∼5000 Lux)/8-h dark photoperiod in a greenhouse or plant
chamber. Microscopy analyses were performed using a Nikon
SMZ1500 microscope (Nikon, Tokyo, Japan).

Genome Sequencing and Assembly
We extracted genomic DNA from seedlings of S. kraussiana
and then employed whole-genome shotgun strategy to decode
the genome of S. kraussiana. DNA library construction and
deep sequencing were performed by Genergy Biotechnology
Co. Ltd. (Shanghai, China). The average length of the inserted
library was about 200 bp. The paired-end library was sequenced
by Illumina HiSeq 2000 platform following the manufacturer’s
instructions (Illumina Inc., San Diego, CA, USA.). About 289
millions (289,347,796) of pair-ended reads were generated, which
corresponded to 250× sequencing depth. The pair-ended reads
were assembled with ABySS software v1.5.1 (Simpson et al.,
2009), using the default parameters in ABySS assembler. A total
of 49,647 contigs were larger than 500 bp and 8561 contigs were
larger than N50 (3096 bp).

RNA-seq and Alignment
We extracted RNA samples from four different tissues of
S. kraussiana: microphyll, shoot tip, rhizophore tip, and stem.
The RNA extracts were used to construct RNA libraries and
sequenced by Genergy Biotechnology Co. Ltd. (Shanghai, China).

The average length of inserted library was about 300 bp. The pair-
ended libraries were sequenced by Illumina HiSeq 2000. A total
of 936843033 (stem, 208693928; leaf, 240658608; rhizophore,
229142616; seeding, 258347936) pair-ended reads were obtained.
The first ten base pairs were trimmed off the reads. The trimmed
reads were aligned against the assembled genome sequence using
TopHat V2.0 and then analyzed by CuffLinks V2.1 (Trapnell
et al., 2010).

Genome Annotation by MAKER
To identify SkWOX genes, we used MAKER annotation pipeline
(v 2.31) to annotate the assembled genome of S. kraussiana.
The aligned RNA-seq dataset were used as EST evidences.
The protein sequences of related S. moellendorffii species
were used as protein evidences. We trained SNAP predictor
with the protein sequences of S. moellendorffii. The repeat
sequences dataset from S. moellendorffii were used as the
input of RepeatMasker (v 4.0.5). After annotated by MAKER,
those genes which were not supported by evidence or did
not have a PFAM domain were filtered out. The genes were
annotated by InterProScan (version: 5.15-54.0) (Jones et al.,
2014).

Flow Cytometry
Flow cytometry analyses to determine the nuclear DNA contents
of S. kraussiana and A. thaliana were performed according
to the method described previously (Galbraith et al., 1983;
Dolezel et al., 2007; Little et al., 2007). Approximately 150-
mg rosette leaves of 3-week-old A. thaliana (Col-0) plants and
60-mg young branchlets of S. kraussiana were homogenized
on ice in 1-ml ice-cold modified Galbraith’s buffer (45-mM
MgCl2, 30-mM sodium citrate, 20-mM MOPS, 1% (vol/vol)
Triton X-100, pH7.0, 5-mM sodium metabi-sulfite and 5-μl
β-mercaptoethanol) complemented with 50-μg/ml PI and 100-
μg/ml RNase. The homogenate was filtered through a 40-μm
nylon cell strainer (Falcon, BD Biosciences, San Jose, CA, USA),
then the filtrate with an additional 50-μg RNase was incubated
at 37◦C for 30 min. Samples were kept on ice in the dark
until analysis. Approximately 5000 particles were measured
at a low sample flow rate using a CytoFLEX flow cytometer
(585/42 BP channel, 488-nm laser, Beckman Coulter Inc., Brea,
CA, USA), and the data were analyzed with FlowJo_V10
software.

RT-PCR
RNAwas extracted from seedlings or rhizophores of S. kraussiana
using TRIzol Reagent (Life Technologies, Carlsbad, CA, USA)
and used as the template for reverse transcription as previously
described (Xu et al., 2003; He et al., 2012). The RT-PCR analyses
were performed using the following gene-specific primers:

5′-GTAAGTAAGCTTTTCAGATG-3′ and 5′-GTATGTGAT
CTATAAGCTTG-3′ for SkWOX13A; 5′-CACATGCACCTTATA
TTCCTCC-3′ and 5′-CGTACATACCATTGCATGAG-3′ for
SkWOX13B; 5′-GCAGAACGAGGAGATTAGCG-3′ and 5′-GTC
GTGTTAGCTCTAGTATAG-3′ for SkWOX13C; 5′-CAATCGCA
ACGTACGTTACAG-3′ and 5′-GTACTTTGTCGAGAAGGAC
AC-3′ for SkWOX13D; 5′-TAGGATCAAGTGACCACCTG-3′
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and 5′-CAACTCAGAAGTCTGATGATC-3′ for SkWOX13E; 5′-
CGAGTCTCTCACACTCAGAC-3′ and 5′-GAGCCTGAACCT
GAACACAG-3′ for SkWOX11A; 5′-GTCTCCGTGAAGAAGC
CCAAAG-3′ and 5′-GCGCACACAGCGGTGCACTG-3′ for
SkWOX11B; and 5′-GGTTCGTGAGTCATTTGTGA-3′ and 5′-
GTCGCCAGACTTACGAATTC-3′ for SkWOX11C.

ACCESSION NUMBERS
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