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Drought stress is a severe environmental factor that greatly restricts plant distribution
and crop production. Recently, we have found that overexpressing AtWRKY57
enhanced drought tolerance in Arabidopsis thaliana. In this study, we further reported
that the Arabidopsis WRKY57 transcription factor was able to confer drought tolerance
to transgenic rice (Oryza sativa) plants. The enhanced drought tolerance of transgenic
rice was resulted from the lower water loss rates, cell death, malondialdehyde contents
and relative electrolyte leakage while a higher proline content and reactive oxygen
species-scavenging enzyme activities was observed during stress conditions. Moreover,
further investigation revealed that the expression levels of several stress-responsive
genes were up-regulated in drought-tolerant transgenic rice plants, compared with
those in wild-type plants. In addition to the drought tolerance, the AtWRKY57 over-
expressing plants also had enhanced salt and PEG stress tolerances. Taken together,
our study indicates that over-expressing AtWRKY57 in rice improved not only drought
tolerance but also salt and PEG tolerance, demonstrating its potential role in crop
improvement.
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INTRODUCTION

Drought is a critical abiotic stress that severely restricts crop production (Zhu, 2002). With the
process of evolution, plants have gained a variety of strategies with the purpose of avoiding drought
stress by reducing water loss or increasing water uptake. Nevertheless, other strategies need to
protect plant cells from damage when water is exhausted and tissue dehydration unavoidable
(Verslues et al., 2006). Additionally, the molecular, cellular, and whole-plant levels strategies should
be coordinated to adapt to drought stress (Yu et al., 2008).

Under drought- or salt-stress conditions, plants accumulate reactive oxygen species (ROS)
(Verslues et al., 2006). In living cells, ROS such as superoxide, hydrogen peroxide (H2O2), and
hydroxyl radicals are generated as harmful substances via aerobic metabolism. Through partially
reduced or activated derivatives of oxygen, ROS can destroy DNA, proteins and carbohydrates,
resulting in cell death (Mittler et al., 2004). A master level of ROS gives rise to the oxidation
of biomolecules, such as lipids, nucleic acids and proteins, which caused cellular damage. When
CO2 fixation is restricted under environmental stress conditions, the photosynthetic electron
transport system generates ROS (Asada, 1999). To defend oxidative stress, organisms have
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evolved an effective system to protect themselves. For example,
numerous stress-related genes were induced by ROS in response
to oxidative stress in these defensive systems (Demple and
Amabile-Cuevas, 1991; Gasch et al., 2000; Desikan et al., 2002).
As higher plants have the ability to coordinately regulate
multiple antioxidant genes, they are much tolerant to oxidative
stresses.

Normally, the maintenance of routine homeostasis is achieved
through the ROS-scavenging system in plant cells, which is
mainly mediated by enzymatic defenses, including superoxide
dismutase (SOD), catalase (CAT), and peroxidases (POX)
(Mittler et al., 2004). Generally, SODs, which catalyze the
dismutation of superoxide into oxygen and H2O2, provide
the first line of defense against ROS in various subcellular
compartments, such as chloroplast, mitochondria and cytosol
(Raychaudhuri and Deng, 2000). The physiological role of CAT
is to break down H2O2 in the cell (Scandalios, 2002). Therefore,
increased CAT activity would result in H2O2 degradation.
PODs are a group of enzymes that catalyze the oxidation of
many substrates (e.g., phenolic compounds) at the expense of
H2O2 (Asada, 1987). The increased activity of these enzymes
would decrease ROS levels. Recent reports have demonstrated
that transgenic rice plants with enhanced ROS-scavenging
abilities had improved drought tolerance (Ouyang et al., 2010;
Zhang et al., 2011). For example, OsSIK1 functions in stress
signaling through scavenging and detoxification of ROS. In
OsSIK1-overexpressing plants, the high levels of POD and
CAT enzymes resulted to low levels of H2O2 (Ouyang et al.,
2010). Similarly, the improved drought tolerance of HRF1-
overexpressing transgenic rice plants was partially resulted
from the increased ROS-scavenging activities (Zhang et al.,
2011).

Under environment stress conditions, the stress-related
proteins not only function in protecting cells from damage
but also regulate the expression of downstream genes for
signal sensing, perception and transduction (Kreps et al.,
2002; Seki et al., 2002). These proteins can be classified into
two groups. The first group protein plays a crucial role to
avoid cellular injury, such as detoxification enzymes, Late
Embryogenesis Abundant (LEA) proteins, and the key enzymes
for osmolyte biosynthesis (Kreps et al., 2002; Seki et al.,
2002). The second group includes numerous transcription
factors involved in further regulation of transcriptional
control and signal transduction. The CBF/DREB factor,
Basic Leucine Zipper families, CUC transcription factor,
NAM, plant nuclear factor Y (NF-Y) B subunits, zinc finger
and ATAF, belong to this group (Umezawa et al., 2006;
Nelson et al., 2007; Takasaki et al., 2010). Studies on these
transcription factors will contribute to uncover the respect for
commercially improving drought tolerance in crops through
genetic engineering.

The WRKY family consists of 74 and 102 members in
Arabidopsis thaliana and Oryza sativa, respectively (Eulgem
et al., 2000; Wu et al., 2005); and majority of them play
critical roles in biotic and abiotic stress responses (Eulgem
and Somssich, 2007; Miller et al., 2008). Recently, increasing
evidences confirmed that numerous of WRKY genes are

involved in drought stress. For example, ABO3/WRKY63 plays
a key role in plant responses to ABA and drought stress (Ren
et al., 2010). Overexpression of a stress-induced OsWRKY45
significantly confer drought tolerance in Arabidopsis and
rice (Qiu and Yu, 2008; Tao et al., 2011). Especially, our
previous study demonstrated that overexpression of AtWRKY57
improved drought tolerance by directly targeting the promoter
sequences of NCED3 to increase the content of ABA in
Arabidopsis (Jiang et al., 2012). These evidences give us a
hypothesis that the improvement of plant drought tolerance
might be realized through gene manipulation approaches. To
test this hypothesis, we further over-expressed AtWRKY57
in rice and demonstrated that the stress tolerance of the
transgenic rice under drought conditions was significantly
improved. 3,3′-Diaminobenzidine (DAB) and nitro blue
tetrazolium (NBT) staining analyses showed that the ROS
levels in transgenic lines were lower than in control plants
after drought-stress treatment. Consistent with the low
ROS levels, the antioxidative enzyme activities were also
enhanced in the transgenic lines. Moreover, high expression
levels of stress-responsive genes also supported the drought
tolerance in transgenic lines. Overall, our results indicated
that the over-expression of AtWRKY57 in rice conferred the
adaptation of rice to drought tolerance by reducing ROS
damage and up-regulating the expression of stress-responsive
genes.

MATERIALS AND METHODS

Construction and Transformation of
AtWRKY57 in Rice
The full-length cDNA sequence ofAtWRKY57 was obtained from
Arabidopsis using the same method as described in our previous
study (Jiang et al., 2012). The full coding sequence of AtWRKY57
was cloned into pUN1301 in the sense orientation behind the
Ubiquitin promoter. Then the T-DNA was transformed into
ZH11 (Oryza sativa L. ssp. japonica cv. Zhonghua11) via the
Agrobacterium tumefaciens-mediated method (Hiei et al., 1994).
After transformation, the calli were selected from half-strength
(MS) medium containing 100 μg/ml hygromycin. Seedlings
with hygromycin-resistant were transplanted to soil in a growth
chamber.

Plant Growth Conditions
The sterilized Oryza seeds sowed on medium and kept in
a growth chamber at 22◦C under long-day conditions [16 h
light/8 h dark cycles]. One week generation, seedlings were then
transplanted in soil and half-strength MSmedium supplemented
with 1.5% (W/V) sucrose for drought stress, NaCl and PEG
treatments. The soils are commonly used loam, mixed 50%
humus soil, 30% coconut tree branny, 20% red clay.

Drought-Tolerance Assays
Drought-tolerance assays were performed using 4-week-
old plants. The transgenic rice and control seedlings were
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transplanted in the same pot and treated with drought stress by
withholding water for 20 days. Three independent pots repeated
at the same time and a representative result displayed. Three
independent experimental replications were conducted.

To evaluate the water loss rates, flag leaves were detached
from the plants and weighed at designated time intervals at room
temperature. The proportion of fresh weight lost was calculated
based on the initial plant weight. At least three biological
replicates for each sample were used for the calculation.

Trypan Blue, DAB and NBT Staining
For DAB staining, leaf sections of approximately 5 cm in length
were cut and soaked in a 1% solution of DAB in 50 mM
Tris-HCl buffer (pH 6.5). After 30 min vacuum infiltrating,
the immersed leaves were incubated in the dark for 20 h at
room temperature. And then the leaves were bleached by bath
in boiling ethanol until the brown spots appeared clearly. The
area of brown spots are represented the DAB reaction degree
to H2O2.

Leaf sections of approximately 5 cm in length were excised
to detect superoxide accumulation by a 0.1% solution of NBT
in 10 mM potassium phosphate buffer (pH 7.8) as described
previously (Fitzgerald et al., 2004). After 15 min vacuum
infiltrating, the immersed leaves were incubated overnight at
room temperature. After incubation, the leaves were fixed
and cleared in alcoholic lacto-phenol (2:1:1, 95% ethanol:lactic
acid:phenol) at 65◦C for 30 min, rinsed with 50% ethanol, and
then rinsed with water. When NBT interacts with superoxide, a
blue precipitate forms is visible in leaves.

Proline (Pro) Content, Malondialdehyde
(MDA) Content, and Electrolyte Leakage
Measurements
The proline concentration was determined as described (Bates,
1973). Approximately 0.5 g of transgenic and control leaf
segments were homogenized in 10 ml 3% aqueous sulfosalicylic
acid and centrifuged at 3,000 × g for 20 min. 2 ml of supernatant
was reacted with 2 ml acid ninhydrin and 2 ml glacial acetic acid
in a test tube at 100◦C for 1 h, cooled on ice, and the absorbance
at 520 was measured. L-Pro was used as a standard to calculate
the proline concentration.

The MDA content was determined as described (Heath and
Packer, 1968) with slight modifications. Approximately 1 g
of transgenic and control leaf segments were homogenized
in 10 ml of 10% trichloroacetic (v/v) and centrifuged at
5,000 × g for 10 min. 2 ml of supernatant was reacted
with 2 ml thiobarbituric acid in a test tube at 100◦C for
15 min, quickly cooled on ice, and the absorbance at 532
was measured. The MDA content was confirmed using the
extinction coefficient of 155 nM−1 cm−1, and expressed as nmol
g−1 FW.

The relative ion leakage was checked following the method
of Clarke et al. (2004). For the above assays, each data point is
the average of three replicates. At least three experiments were
performed, and the results are consistent. The result from one set
of experiments is presented here.

Oxidative Enzyme Activity
Measurements
The leaves of 4-week-old rice seedlings were dehydrated for
2 h, and then homogenized in a solution of 50 mM sodium
phosphate buffer (pH 7.8) containing 1% polyvinylpyrrolidone
and 10 mM β-mercaptoethanol in an ice-cold mortar. After
centrifugation (13,000 × g, 15 min) at 4◦C, the supernatant
was used to identify SOD, POD and CAT activity levels. U
min−1 mg−1 protein was represented the enzyme activity of
SOD, POD, and CAT.

The ability to inhibit the photochemical reduction of NBT
chloride was used for the determination of the total SOD activity
as described by Beauchamp and Fridovich (1971). The reduction
of NBT by 50% of the quantity of enzyme required was defined as
one unit of SOD activity.

The activity of POD was determined as described by Maehly
and Chance (1954). Threemilliliter of reaction mixture contained
30 μl enzyme extract, 5.4 mM guaiacol, 50 mM sodium
acetate buffer (pH 5.6), and 15 mM H2O2. The oxidation
of guaiacol to tetraguaiacol was contributed to the increase
in absorbance monitored at 470 nm. A 0.01 absorbance
increase per min at 470 nm was defined as one unit of POD
activity.

The activity of CAT was measured following the method of
Cakmak and Marschner (1992) by determining the rate of H2O2
disappearance at 240 nm. Three milliliter of reaction mixture
contained 30 μl enzyme extract, 10 mM H2O2 and 50 mM
phosphate buffer (pH 7.0). A 0.01 absorbance decrease per min
at 240 nm was defined as one unit of CAT activity.

For each enzyme’s activity, the data points are the average
of three replicates. Three experiments were performed, and the
results are consistent. The result from one set of experiments is
presented here.

Salt and Osmotic Tolerance Assays
For salt tolerance assays, 2-week-old seedlings grown on half-
strength MS agar medium were transferred into half-strength
MS liquid medium for 2 weeks growth and then transferred into
half-strength MS liquid medium supplemented with 175 mM
NaCl and incubated at 22◦C under long-day conditions for
2 days. After 2 days of NaCl treatment, the seedlings were
transferred into half-strength MS liquid medium for 7 days
recovery.

For PEG tolerance assays, 2-week-old seedlings grown on
half-strength MS agar medium were transferred into half-
strength MS liquid medium for 2 weeks of growth and then
transferred into half-strength MS liquid medium supplemented
with 25% PEG6000 (m/v) and incubated at 22◦C under long-day
conditions for 4 days. After 4 days of PEG treatment, the seedlings
were transferred into half-strength MS liquid medium for 7 days
recovery.

The transgenic rice and control seedlings were transplanted in
the same pot for NaCl and PEG treatments. Three independent
pots repeated at the same time and a representative result
displayed in the manuscript. Three independent experimental
replications were conducted.
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Real-Time RT-PCR Analysis
For the real-time RT-PCR analysis, the same method was
used as described in our previous studies (Jiang et al., 2012,
2014). We conducted three independent experiments (three
biological replications and three technological replications in
every independent experiment) and one representative result was
displayed. All of the primer sequences used in real-time RT-PCR
analysis were listed in Supplementary Table 1.

Statistical Analysis
Statistically significant differences (∗P < 0.05) based on the
Student’s test computed by the SigmaPlot10.0. Data are the
means ± SE of three independent experiments (3 biological
replications and three technological replications in every
independent experiment).

RESULTS

Constitutive Expression of AtWRKY57 in
Transgenic Rice Lines
In our previous study, we confirmed that overexpression
of AtWRKY57 significantly enhanced drought tolerance in
Arabidopsis (Jiang et al., 2012). To explore whether AtWRKY57
plays an important role in improving the agronomic traits
through gene manipulation approaches, we introduced this
gene to rice. More than 20 transgenic lines were generated
and five lines were randomly selected to check AtWRKY57
expression by northern blotting (Supplementary Figure 1). And
then two lines, Line 3 and Line 5, were chosen for further
analysis (Supplementary Figure 1). There were no significant
differences in morphology between the control and transgenic
plants (Figure 1A).

Improved Drought Tolerance in
AtWRKY57 Transgenic Plants
The transgenic lines and control seeds were germinated
simultaneously on half-strength MS agar medium containing
2% sucrose with or without hygromycin at 100 μg/ml and
then planted in soil after 1 week. Four-week-old plants
were treated with natural drought stress (not supplied
with water). The control plants showed wilting symptoms
6 days before the transgenic lines. After 14 days treatment,
the transgenic plants did not display any drought-stress
symptoms, while the wild-type plants exhibited severe drought
symptoms (Figure 1B). Up to 20 days of treatment, the control
showed obvious drought-stress symptoms (Figure 1C). When
plants were re-watered, only 12.3% of control plants were
survived and most of them never recovered; however, all of
the transgenic rice plants survived (Figures 1D,E). These
results suggested that these transgenic rice plants acquired
significantly improved drought tolerance. Soil moisture
contents and their dynamics showed in Supplementary
Figure 2.

Transpiration water loss is an important factor related to
drought tolerance. Flag leaves were detached and the changes

of fresh weight were determined over a 200-min period to
assess the water loss rate of transgenic and control plants.
A slower water loss rate was displayed in the transgenic lines’
leaves than the control’ (Figure 1F). The reduced water loss
rate is favorable for an increased drought tolerance in the
transgenic lines. In response to drought stress, stomata often
close to limit water loss by transpiration. Given that water
loss rate were lower in two transgenic lines than in control
plants, we further investigated whether stomata density and/or
stomata aperture affects this progress. White nail polish blotting
was used to count the stomata density and measure stomata
aperture. The ratio of stomatal width to length indicated the
degree of stomatal closure. The results showed that the stomata
density didn’t displayed significant difference between control
and two transgenic plants leaf adaxial surface (Supplementary
Figures 3A,B). However, two transgenic lines’ stomata showed
more quick closure than control’ under dehydration treatments
(Supplementary Figure 3C). These results suggest that more
quick closure of stomata in two transgenic lines result in the lower
water loss rate, which may be critical for transgenic plants to
adapt to drought stress.

The accumulation of proline in plant is associated with
adaptation to environmental stress through metabolic
adjustments (Ábrahám et al., 2003). We also checked the
proline contents of transgenic and control plants under
normal growth and drought-stress conditions to characterize
the physiological basis for the improved stress tolerance.
No differences in the proline contents were observed in
the leaves of transgenic and control plants under normal
conditions (Figure 1G). However, under drought conditions,
transgenic plants began to accumulate proline after 14 days
and further accumulated an up to fourfold higher proline
content compared with the levels prior to drought stress,
whereas control plants showed a low increase in proline.
This result demonstrates that the proline accumulation
corresponded to the increased drought tolerance of transgenic
plants.

Decreasing the ROS Damage in
AtWRKY57 Transgenic Plants
Leaves of control plants began to produce brownish lesions after
14 days of drought stress (Figure 2A). In contrast, none of
the transgenic plants exhibited lesion formation grown under
the same conditions. Lesion formation was accompanied by
significant trypan blue staining that indicates cell death in the
control leaves (Figure 2B).

Stress usually causes damage via oxidative damage in
plants including the generation of ROS, represented as H2O2
and superoxide (Zhu, 2001; Mittler, 2002; Xiong and Zhu,
2002). As activation of AtWRKY57 enhanced the drought
tolerance of transgenic rice plants, we further determined
whether AtWRKY57 is involved in drought tolerance via
ROS detoxification. Transgenic rice and control seedlings were
subjected to DAB staining and NBT staining to detect H2O2
and superoxides in their leaves. After 14 days of drought stress,
the transgenic plants had very few brown H2O2 and superoxide
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FIGURE 1 | Improved drought tolerance in AtWRKY57 transgenic rice. (A) Before drought treatment. (B) Drought for 14 days. (C) Drought for 20 days. (D)
Recovery for 7 days after 20 days drought treatment. Drought stress was imposed on 4-week-old T3 transgenic seedlings in greenhouse. Drought experiments were
repeated three times and at least 40 plants for each individual lines were used in each repeated experiment and one representative picture was shown. (E) Survival
rate after 20 days drought stress. Values are mean ± SE (n = 40 plants, ∗P < 0.05). (F) Rate of water loss by detached leaves from control and transgenic plants.
Values are the mean ± SE (n = 6 plants, ∗∗P < 0.01). (G) Proline content in the leaves of 4-week-old transgenic and control plants with or without drought
treatments. Values are the mean ± SE of three independent experiments (∗P < 0.05). FW, Fresh weight.

spots within the leaf segments, whereas more than half of the leaf
area of the control plants became brown (Figures 2C,D). The
leave segments of control plants displayedmore brown areas than
compared transgenic plants. These results confirmed that over-
expressing AtWRKY57 in rice could efficiently remove the H2O2
and superoxide produced during drought stress.

Malondialdehyde, acting as a biomarker for lipid peroxidation,
is an effect of oxidative damage deriving from decomposition
product of polyunsaturated fatty acid hydroperoxides. The MDA
contents in transgenic lines and controls were similar under
normal growth conditions, but there was a significant difference
after drought stress. Then, the MDA contents of two AtWRKY57
over-expressing lines were significantly lower than those of
control plants (Figure 2E).

Electrolyte leakage, an indicator of membrane damage, was
also measured following drought stress. The results showed that
the leaves of two AtWRKY57 over-expressing lines exhibited
significantly lower electrolyte leakage levels, compared to those of
control leaves (Figure 2F). After 14 days of drought stress, more
than 60% of the ions leaked from cells in control plants, whereas
the ion leakage of AtWRKY57 over-expressing lines was less
than 50%.

Overall, these results indicated that the over-expressing
AtWRKY57 gene in rice increased the tolerance to drought stress
by decreasing ROS damage.

The Enhanced ROS-Scavenging Ability
and High-Level Expression of Oxidative
Enzyme Genes in AtWRKY57 Transgenic
Plants
A decreased cell viability and even cell death was resulted from
the over-accumulation of ROS; therefore, scavenging ROS avoids
or alleviates the harmful effects on plant under stress conditions.
In the ROS-scavenging mechanisms of plants, POD, SOD, and
CAT are key enzymes (Mittler, 2002; Xiong and Zhu, 2002;
Apel and Hirt, 2004), and are involved in the H2O2 elimination.
Following drought stress, the enzyme activities of seedlings were
subjected to measurement. Under normal growth conditions,
POD, SOD, and CAT activity levels were not different; however,
after 14 days of drought stress, the activities of the antioxidative
enzymes were all significantly enhanced in the AtWRKY57-
overexpressing plants compared with those in the control plants
(Figures 3A–C). These results suggested that over-expression of
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FIGURE 2 | Decreased the ROS damage in transgenic rice. Phenotype of brownish lesions (A), Typan blue staining (B), DAB staining (C) and NBT staining (D)
after 14 days drought stress. (E) MDA content in the leaves of control and transgenic plants after 0, 14, and 20 days drought stress. Values are the mean ± SE of
three independent experiments (∗P < 0.05). FW, Fresh weight. (F) Relative electrolyte leakage in the leaves of control and transgenic plants after 0, 14, and 20 days
drought stress. Values are the mean ± SE of three independent experiments (∗P < 0.05).

AtWRKY57 genemay enhance the ROS-scavenging ability, which
decreases ROS damage.

To test whether drought stress modifies transcript levels, the
expression levels of several antioxidant genes were measured.
Consistent with the increase of antioxidative enzymes activities,
control and two transgenic plants up-regulated the transcript
levels of OsCAT B, OsCu/Zn-SOD1, OsCu/Zn-SOD2 and OsPOD
in response to drought stress, with a greater increase in the
transgenic plants (Figures 3D–G). This was enhancing the
capacity to decompose H2O2 and superoxide in the leaves.

High-Level Expression of
Stress-Response Genes in AtWRKY57
Transgenic Plants
To better understand the mechanisms of drought tolerance
conferred by over-expressing AtWRKY57, the expressions of
several stress-related genes were investigated. As shown in
Figure 4A, the expression levels of a pyrroline-5-carboxylate
synthesis gene (OsP5CS; Igarashi et al., 1997) were strongly
induced in transgenic lines under drought stress compared with
those in control plants. This higher expression level of OsP5CS
was consistent with the higher proline content in twoAtWRKY57
overexpressing lines (Figure 1G). However, the expression level
of an ABA synthesis gene (OsNCED5) was not significantly
different in transgenic lines and control plants after drought
stress (Figure 4B). Dehydration-responsive element-binding

(DREB) transcription factors play key important roles in plant-
stress responses. DREB proteins encoding by OsDREB1A and
OsDREB2A were strongly up-regulated in drought stress, with
a greater increase in the transgenic plants compared to the
control plants (Figures 4C,D). We also checked another two
well-characterized drought resistance-related genes (OsRab21
and OsRab16D), and found that they were significantly affected
by water stress. Their expression levels were obviously higher
in transgenic plants than in control after drought treatment
(Figures 4E,F).

These results indicated that over-expressing AtWRKY57 gene
in rice may enhance the expression of some stress-response genes
and finally increase the tolerance to drought stress.

Improved NaCl and PEG Tolerance in
AtWRKY57 Transgenic Plants
Our results revealed that the constitutive expression of
AtWRKY57 enhanced the drought tolerance in rice (Figure 1).
Given the function of WRKY-type regulators in abiotic stress, we
further explored the functions of AtWRKY57 in NaCl and PEG
stress conditions. We tested the survival rates of transgenic and
control plants on MS medium additionally added with 175 mM
NaCl. The control plants displayed more severe phenotype,
including leaf curves and dehydration, than the transgenic lines
after 2 days of NaCl treatment (Figures 5A,B). When plants
were recovered in fresh MS medium, none of the control plants
survived but most of the transgenic lines reversed (Figure 5C;
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FIGURE 3 | Enhanced the ROS-scavenging ability and the expression of oxidative enzymes genes in transgenic rice. (A–C) POX, SOD, and CAT
activities in the leaves of 4-week-old transgenic and control plants before and after drought stress. Values are the mean ± SE of three independent experiments
(∗P < 0.05). FW, Fresh weight. Relative expression of oxidative enzymes genes Cu/Zn-SOD1 (D), Cu/Zn-SOD2 (E), POX8.1 (F), and CatB (G) in the leaves of
4-week-old transgenic and control plants before and after drought stress. Values are the mean ± SE of three independent experiments (∗P < 0.05).

Supplementary Figure 4). We also tested the survival rate of
transgenic lines and control plants on MSmedium supplemented
with 25% PEG6000. The control plants showed more severe
phenotype than transgenic lines after 4 days PEG treatments
(Figures 5D,E). When plants were recovered in fresh MS
medium, none of the control plants survived, but all of the
transgenic lines lived (Figures 5F,G; Supplementary Figure 5).

These results showed that consecutively expressing
AtWRKY57 enhanced not only drought tolerance but also
the NaCl and PEG stress tolerance in rice.

DISCUSSION

Combination of abiotic and biotic stresses used to limit the
production of crop. Drought severely restricts crop production
as the most important abiotic stress (Boyer, 1982; Rockstrom and
Falkenmark, 2000). In a previous study, we confirmed that over-
expressing AtWRKY57 significantly conferred drought tolerance
in Arabidopsis (Jiang et al., 2012). These results suggested that

AtWRKY57 may improve crops’ drought adaptability using gene
manipulation. In this study, we evaluated the role of AtWRKY57
in transgenic rice after drought stress.

The drought-tolerance phenotype of AtWRKY57 transgenic
rice plants were the result of a collection of physiological
indexes observed in the over-expressing plants. AtWRKY57
overexpressing plants displayed higher survival rates most likely
because the water loss was reduced in these plants compared
to control plants under drought conditions (Figure 1F). P5CS,
catalyzing proline biosynthesis, is critical for the increasing
of osmotolerance. Drought, salt, and abscisic acid induce the
expression of OsP5CS and the conferred osmotolerance is
reuslting from an up-regulated expression of OsP5CS which
increases proline content in transgenic plants (Xiang et al.,
2007). The significantly higher transcript levels of OsP5CS
were consistent with the high proline content in transgenic
plants after drought stress (Figures 1G and 4A). These
results confirmed that the transgenic plants’ adaptation to
drought stress was associated with mechanisms of dehydration
avoidance through proline metabolic adjustments. Programmed

Frontiers in Plant Science | www.frontiersin.org 7 February 2016 | Volume 7 | Article 145

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Jiang et al. AtWRKY57 Functions in Drought Tolerance

FIGURE 4 | High level expression of stress-responsive genes in transgenic rice. (A–F) Relative expression levels of P5CS, NCED5, DREB1A, DREB2A,
Rab21 and Rab16D in the leaves of 4-week-old transgenic and control plants before and after drought stress. Values are the mean ± SE (∗P < 0.05) of three
independent experiments.

cell death (PCD) and lesion formation in some lesion mimic
mutants, such as lsd1, was mainly caused from the elevated
levels of extracellular superoxide (Jabs et al., 1996). We
ovserved high levels of superoxide, H2O2 and cell death in
control plants than in transgenic lines. We believe that the
lesion formation in control plants results from their reduced
capability to detoxify ROS compared with transgenic plants
(Figure 2A). These results are similar to those of Yang et al.
(2004), who reported that salicylic acid-deficient transgenic rice
contains elevated levels of superoxide and H2O2 and exhibits
spontaneous lesion formation in an age- and light-dependent
manner.

Drought or salt-stress conditions promoted the accumulation
of ROS in plants. MDA is often considered as a reflection of
cellular membrane degradation or dysfunction and is also an
important intermediary agent in ROS scavenging. Thus, high
level ofMDA causes PCD and induces toxicity to plant cells (Apel
and Hirt, 2004; Hou et al., 2009). High ability of ROS-scavenging
enzymes decreased over-accumulated ROS levels which induces
PCD in plants (Mittler, 2002; Apel and Hirt, 2004; Chaves
and Oliveira, 2004; Farooq et al., 2009; Hou et al., 2009). In
AtWRKY57 transgenic plants, lower levels of PCD, DAB and
NBT staining, MDA content and relative electrolyte leakage were
detected (Figures 2B–F), but increased SOD, POD, and CAT
activity levels (Figures 3A–C) and elevated oxidative enzyme
genes’ transcript levels (Figures 3D–G) were detected after
drought stress, demonstrating that they were better protected
from oxidative damages through the enhanced capability to
scavenge ROS.

The transcript levels for several stress-tolerant genes were
more elevated in AtWRKY57 transgenic rice than in control
plants under drought-stress conditions (Figure 4). It is
interesting that the relative transcript levels of OsNCED5 and
the ABA content were not significantly changed (Figure 4B;
Supplementary Figure 6) in AtWRKY57 transgenic plants
under drought-stress conditions, which may demonstrate
that there were different regulatory mechanisms in transgenic
Arabidopsis and transgenic rice. Our previous study revealed
that the activated expression of AtWRKY57 conferred
Arabidopsis transgenic plants drought tolerant by elevating
the ABA contents through directly binding the promoter
sequence of AtNCED3 (Jiang et al., 2012). In this study,
we found that the enhanced capability to scavenge ROS
was important for AtWRKY57 overexpressing transgenic
rice plants to tolerate drought stress (Figures 2 and 3).
Interestingly, there are increasing studies demonstrated
that the same gene may have different regulatory functions
and/or mechanisms when overexpressed in different
plants species, such as in rice, cotton and Arabidopsis.
For example, OsWRKY45 overexpressing transgenic rice
showed sensitivity to drought stress (Tao et al., 2011);
however, heterologous overexpression of OsWRKY45 in
Arabidopsis conferred plants drought tolerant mainly
resulting from the reduction of transpiration rate (Qiu
and Yu, 2008). Overexpression of OsSNAC1 enhanced
drought tolerance of transgenic rice plants by targeting
genes that control ROS homeostasis and stomatal closure
(Yu et al., 2013), whereas overexpressing OsSNAC1 rendered
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FIGURE 5 | Improved NaCl and PEG tolerance in transgenic rice. (A) Before NaCl treatment. (B) NaCl treatment for 2 days. (C) Recovery for 7 days after
2 days NaCl treatment. (D) Before PEG treatment. (E) PEG treatment for 4 days. (F,G) Recovery for 7 days after 4 days PEG treatment. NaCl and PEG stress was
imposed on 4-week-old T3 transgenic seedlings under water culture conditions in greenhouse. Experiments were repeated three times and at least 30 plants for
each individual lines were used in each repeated experiment and one representative picture was shown.

transgenic cotton plants more drought tolerance by reducing
transpiration rate and enhancing root development (Liu
et al., 2014). Heterologous expression of the AtDREB1A
gene in peanut conferred transgenic plants drought and
NaCl tolerance by upregulating proline synthesis to better
osmotic adjustments (Sarkar et al., 2014), while the AtDREB1A
transgenic Arabidopsis enhanced drought by activating some
stress-related genes expression (Liu et al., 1998). Thus, it’s
possible that there may be diversified regulatory functions
and/or mechanisms for one protein to regulate different
physiological processes in different species under stress
conditions.

WRKY transcription factors belong to a large family that
functions under a variety of abiotic stresses. Our results provided
evidences that overexpressing AtWRKY57 also increased the
tolerance to salt and PEG stresses (Figures 1 and 5),
demonstrating that this is a potential candidate gene for

crop improvement. Recently, several studies confirmed that
overexpression of some stress-related genes may enhance
drought tolerance in rice (Dubouzet et al., 2003; Park et al., 2005;
Chen et al., 2008; Hou et al., 2009; Huang et al., 2009; Cui et al.,
2011; Gao et al., 2011; Yang et al., 2012; Zou et al., 2012). However,
a persistent problem is that the constitutive over-expression
of stress-related genes often result in abnormal development
and thus reduces crop productivity (Kasuga et al., 1999; Hsieh
et al., 2002; Dubouzet et al., 2003; Nakashima et al., 2007;
Priyanka et al., 2010). The improvement in drought tolerance
should be perfectible without limitation in plant growth and
production (Cattivelli et al., 2008). Yu’s study confirmed that the
heterologous expression of AtEDT1/HDG11 in rice significantly
improved its drought tolerance and also simultaneously increased
the grain yield under both normal and drought-stress conditions
(Yu et al., 2013). In our study, AtWRKY57 transgenic
plants underwent normal development compared with controls
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(Figure 1A), but we have not statistically analyzed the effects on
productivity. Further studies should focus on the grain yield of
transgenic plants under drought-stress conditions.
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