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Early and more recent studies have suggested that some polyamines (PAs), and
particularly spermine (Spm), exhibit anti-senescence properties in plants. In this work,
we have investigated the role of Arabidopsis Polyamine Oxidase 4 (PAO4), encoding a
PA back-conversion oxidase, during dark-induced senescence. Two independent PAO4
(pao4-1 and pao4-2) loss-of-function mutants have been found that accumulate 10-
fold higher Spm, and this associated with delayed entry into senescence under dark
conditions. Mechanisms underlying pao4 delayed senescence have been studied using
global metabolic profiling by GC-TOF/MS. pao4 mutants exhibit constitutively higher
levels of important metabolites involved in redox regulation, central metabolism and
signaling that support a priming status against oxidative stress. During senescence,
interactions between PAs and oxidative, sugar and nitrogen metabolism have been
detected that additively contribute to delayed entry into senescence. Our results indicate
the occurrence of metabolic interactions between PAs, particularly Spm, with cell
oxidative balance and transport/biosynthesis of amino acids as a strategy to cope with
oxidative damage produced during senescence.

Keywords: Arabidopsis, polyamines, senescence, spermine, oxidative stress, polyamine oxidases

INTRODUCTION

Polyamines (PAs) putrescine (Put), spermidine (Spd), and spermine (Spm) are nitrogen-containing
compounds of low molecular weight known to participate in stress responses (Alcázar et al.,
2010; Takahashi and Kakehi, 2010; Minocha et al., 2014; Tiburcio et al., 2014). The polycationic
nature of PAs enables their participation in the modulation of cell ion balance as well
as in the interaction with negatively charged molecules such as membrane lipids, proteins,
and nucleic acids (Schuber, 1989; Cai et al., 2014). Protection of plant cell membranes by
PAs has been documented and this might underlie some of the anti-senescence properties
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reported (He et al., 2002; Liu et al., 2007; Del Duca et al.,
2014). However, PAs cannot only be considered as mere
polycations stabilizing macromolecules. Evidence indicate that
PAs have intrinsic properties and some act as signaling molecules
(Minocha et al., 2014; Moschou and Roubelakis-Angelakis, 2014;
Tiburcio et al., 2014). Some of the reported anti-senescent effects
of PAs have been associated with their ability to act as free radical
scavengers and inhibitors of lipid peroxidation (Stoynova et al.,
1999; Navakoudis et al., 2007; Yaakoubi et al., 2014). Therefore,
the mechanisms of action of PAs seem multiple and additive. As
such, the use of omic approaches might be useful for unraveling
PA mechanistic processes, and to integrate PAs in the context of
global metabolic networks.

Polyamine levels mostly depend on the balance between
PA biosynthesis and catabolism. PA catabolism is mediated by
two types of amine oxidases: copper-containing amine oxidases
(CuAO) and FAD-containing PA oxidases (PAO) (Cona et al.,
2006; Angelini et al., 2010). Spd, Spm, and thermospermine
(tSpm) are preferential substrates of PAO activity (Takahashi
et al., 2010; Fincato et al., 2011; Tavladoraki et al., 2012). PAOs
are classified depending on whether they terminally oxidize
PAs or catalyze their back-conversion (Angelini et al., 2010;
Moschou et al., 2012). PAOs catalyzing PA back-conversion
oxidize the carbon at the exo side of the N4 of Spd and
Spm, producing Put and Spd, respectively. Arabidopsis thaliana
(thereafter referred to as Arabidopsis), carries five genes coding
for PAOs (AtPAO1–5; Takahashi et al., 2010; Fincato et al.,
2011). Tissue- and organ-specific expression studies of AtPAO
gene family members have shown some overlapping patterns
but also contrasted differences. This, together with their
different substrate specificity, suggests a functional evolutionary
diversification of the AtPAO gene members (Takahashi et al.,
2010). The different subcellular localization of AtPAO proteins
may further support this view. AtPAO2–4 are peroxisomal
proteins, whereas AtPAO1 and AtPAO5 are predicted to be
cytosolic (Takahashi et al., 2010; Fincato et al., 2011, 2012; Kim
et al., 2014).

Oxidation of PAs by amine oxidases not only contributes to
the regulation of PA homeostasis but also generates products
linked to different biological functions (Angelini et al., 2010;
Tiburcio et al., 2014). PAs are metabolically linked to reactive
oxygen species (ROS) through the production of H2O2 via PA
catabolism (Moschou et al., 2008; Takahashi et al., 2010; Fincato
et al., 2011; Ono et al., 2012). Indeed, H2O2 generated by amine
oxidase activity has been shown to contribute to stomatal opening
(An et al., 2008), trigger programmed cell death (PCD; Tisi
et al., 2011) and γ-aminobutyric acid (GABA) accumulation
(Bhatnagar et al., 2002; Mohapatra et al., 2010), which is thought
to participate in stress signaling (Bouché et al., 2003; Shelp et al.,
2012).

Peroxisomes constitute a very important source of ROS and
reactive nitrogen species (RNS). Current data suggest a link
between PAs and ROS/RNS in stress signaling (Molassiotis and
Fotopoulos, 2011; Filippou et al., 2013; Tanou et al., 2014).
However, the relationship between PAs, ROS, and RNS, and
their integrated effects in plant physiology are not completely
established.

PAO4 exhibits high affinity for Spm oxidation, and transforms
via back-conversion Spm into Spd, but not Spd into Put
(Kamada-Nobusada et al., 2008; Takahashi et al., 2010; Fincato
et al., 2011). Previously, Arabidopsis pao4 loss-of-function
mutants were found to display high Spm and low Spd
levels in roots (Kamada-Nobusada et al., 2008). From a
signaling perspective, Spm can modify the expression of several
genes encoding redox components (Kamada-Nobusada et al.,
2008; Mitsuya et al., 2009). Blockage of Spm oxidation by
exogenous inhibitors suppressed this transcriptional response,
thus suggesting that H2O2 derived from Spm oxidation
underlies this response (Mitsuya et al., 2009). Even though
a potential signaling role has been recognized for Spm
through transcriptional approaches, global metabolite profiling
in engineered genotypes in which Spm levels are endogenously
affected are, to our knowledge, not yet reported. Such studies
might provide clearer associations between genotypes and stress-
tolerance phenotypes, as well as a better integration of PAs in the
context of global metabolic networks (Bitrián et al., 2012).

In this work, we have studied the involvement of AtPAO4
in Arabidopsis during dark-induced senescence, through the
phenotypic analysis of two independent pao4 loss-of-function
mutant alleles (pao4-1 and pao4-2). We demonstrate that pao4
mutation leads to delayed dark-induced senescence. Global
metabolic profiling of pao4 mutants and wild-type plants
was carried out to investigate mechanisms linked to primary
metabolism that underlie the anti-senescent properties. We
found that pao4 mutation promotes the accumulation of
hub metabolites in central metabolism and phytohormone
biosynthesis, which are known to protect plants against abiotic
stress. We also found interactions between PAs and oxidative,
sugar, lipid, and nitrogen metabolism. Our results indicate that
Spm accumulation modifies the metabolic profile of Arabidopsis
plants, thus delaying dark-induced senescence.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Arabidopsis thaliana accession Columbia-0 (Col-0) was used as
wild type (WT) in this study. Seeds were stratified for 3 days in
the dark at 4◦C and sown in pots containing a mixture of soil and
vermiculite (1:1 [v/v]), irrigated with water and Hoagland-based
mineral solution and grown at 21◦C under long-day photoperiod
(16 h of white fluorescent light, photon flux of 70–90 mmol m−2

s−1). Dark-induced senescence was carried out on adult plants.
Fully expanded leaves from 4-week-old plants were used for
all analyses. Dark-induced senescence was established essentially
as described (Fotopoulos and Kanellis, 2013). In brief, leaves
were floated on water in 25 mm-diameter Petri dishes and
incubated in the dark at ambient temperature for a period of
4 days.

Isolation of pao4 Mutants and Gene
Expression Analyses
Total RNA was isolated from 4-week-old Arabidopsis leaves
using TRIzol (Invitrogen). Total RNA was treated with DNase

Frontiers in Plant Science | www.frontiersin.org 2 February 2016 | Volume 7 | Article 173

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00173 February 16, 2016 Time: 20:46 # 3

Sequera-Mutiozabal et al. Metabolomics of pao4 under senescence

I (RNase-free; Promega USA) and reverse-transcribed using
the SUPERSCRIPT First-Strand Synthesis kit (Invitrogen)
following manufacturer’s instructions. PCR from equal amounts
of cDNA was performed using AtPAO4-specific primers and
TaKaRa Ex TaqTM. Amplification of the Arabidopsis Actin
2 gene (AT3G18780.2) (forward primer, 5′-TCACCACAACA
GCAGAGCGGGA -3′and reverse primer, 5′-GAAGATGCCCA
GAAGTCT -3′) was used for normalization. The PCR conditions
were as follows: 96◦C 5 min, followed by 35 cycles (5 s at 96◦C,
10 s at 64◦C, and 40 s at 72◦C). PCR products were separated on
a 1.0% agarose gel. The analysis was repeated three times with
identical results.

The AtPAO4 mutants [AtPAO4 SALK_109229 (Kamada-
Nobusada et al., 2008), pao4-2 in this study; AtPAO4
SALK_133599 (Liu et al., 2014), named pao4-1] were
obtained from SALK. The position of the T-DNA insertion
in SALK_109229 was confirmed by PCR using a combination of
AtPAO4 specific gene primers (forward, 5′- GGTGGTCATGGT
CTAATGGTG-3′and reverse, 5′- GAGAGGCACAGTTGCAGT
TTC-3′) and T-DNA primer (SALK-LB 5′-TTTGGGTGATGG
TTCACGTAGTGGG-3′). For SALK_133599 we used SALK-
LB in combination with AtPAO4 specific primers, forward
5′- TTCCGATAAGCTTCGTCGTTG -3′ and reverse 5′-
TGGAGTCATCCCCGCTAGTTC -3′.

Polyamine Analyses
Polyamines were analyzed by high-performance liquid
chromatography (HPLC) separation of dansyl chloride
derivatives. The extraction and determination methods have
been previously described (Marcé et al., 1995). The analyses
were performed in triplicates from three or more independent
experiments.

Pigments Content
Leaf pigments were extracted from 12 mm leaf disks in
dimethyl sulfoxide as described by Richardson (Richardson
et al., 2002). Chlorophyll concentrations were determined
using the equations described by Sims and Gamon
(2002).

Protein Extraction
Total protein was extracted with phenol, as previously described
(Wang et al., 2006). Protein concentration was determined
by Bradford (Bio-Rad), diluted to a final concentration of
20 µg/µl, and stored at −20◦C. 20 µg of total protein extracts
were separated by SDS-PAGE in 12.5% acrylamide gels. Bands
were resolved using Colloidal Comassie Brilliant Blue G-250
stain.

Hydrogen Peroxide and Nitric Oxide
Quantification
Hydrogen peroxide was quantified using the KI method, as
described by Velikova et al. (2000). Nitrite-derived NO content
was measured using the Griess reagent in homogenates prepared
with Na-acetate buffer (pH 3.6) as described by Zhou et al. (2005).

NO content was calculated by comparison to a standard curve of
NaNO2.

Lipid Peroxidation
Lipid peroxidation was determined measuring malondialdehyde
(MDA) content resulting from the thiobarbituric acid (TBA)
reaction using an extinction coefficient of 155 mM−1cm−1 as
described by Hodges et al. (1999).

Metabolite Profiling
Metabolite profiling by GC-time of flight (TOF)-MS was
performed as previously described (Lisec et al., 2006; Erban et al.,
2007). 110 mg of frozen ground homogenized material from
rosette leaves was extracted in 360 µL of methanol including
internal standard ([13C6] -sorbitol) at 70◦C for 15 min and with
200 µL of chloroform at 37◦C for 5 min. The polar fraction
was prepared by liquid partitioning with 400 µL of water. An
aliquot of 80 µL from the upper polar phase was dried in a Speed
Vacuum Concentrator for derivatization by methoxyamination
in pyridine (40 mg/mL) and subsequent trimethylsilylation in
a final volume of 80 µL. Alkanes were added to pyridine for
use as retention index standards. Samples were measured using
GC-TOF-MS (LECO Instrumente GmbH, Mönchengladbach,
Germany). Chromatograms and mass spectra were processed and
evaluated using TagFinder software (Luedemann et al., 2008).
Metabolite identification was manually supervised using the mass
spectral and retention index collection of the Golm Metabolome
Database (Kopka et al., 2005; Hummel et al., 2010). Peak heights
of the mass fragments were normalized based on sample fresh
weight and internal standard [13C6]-sorbitol.

Metabolic implication of reported altered metabolites in this
work, further classification and simplified metabolic maps were
made by the use of public database KEGG (Kanehisa and Goto,
1999; Kanehisa et al., 2014) and AraCyc developed by Plant
Metabolic Network project (PMN; Mueller et al., 2003; Chae
et al., 2012).

Statistical Analyses
Statistical analyses were performed using IBM R© SPSS R© Statistics
V.22. Biochemical and physiological damage measurements were
subjected to ANOVA. Significant differences between individual
means were determined using Tukey’s HSD (Honestly significant
difference) pairwise comparison test at the 5% confidence
level. Data from metabolomics were analyzed and heat maps
obtained from MeV: MultiExperiment Viewer v.4.9 (Saeed et al.,
2003).

RESULTS

Isolation of pao4 Mutants
Two independent AtPAO4 (At1g65840) T-DNA insertion
mutants (pao4-1 and pao4-2) were isolated that carried single
T-DNA insertions. pao4-2 exhibited no expression of PAO4,
consistent with a loss-of-function mutation. Conversely, pao4-1
exhibited residual AtPAO4 expression and thus resulted in a
knock-down mutation (Figure 1A). No obvious phenotypical
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FIGURE 1 | AtPAO4 expression and PA levels. (A) PAO4 gene expression in pao4 mutants compared with wild-type. (B) Free levels of Put, Spd, and Spm in
4 week-old pao4 mutants grown under optimal growth conditions. Values represent the mean of at least five biological replicates ±SD. Asterisks indicate values
which are significally different from the wild-type, as determined by both one-way ANOVA and Tukey HSD post hoc tests (P < 0.05).

differences were observed between pao4-1, pao4-2, and wild-
type genotypes under optimal growth conditions, which is in
agreement with previous reports (Kamada-Nobusada et al., 2008;
Liu et al., 2014). Both pao4-1 and pao4-2 mutant alleles were
used throughout the experiments.

PA Levels in pao4 Mutants
The levels of free Put, Spd, and Spm levels were analyzed in
4 weeks-old pao4-1, pao4-2 and wild-type plants. PA analyses
indicated that both pao4 mutants accumulated up to 10-fold
higher levels of Spm than the wild-type, consistent with Spm
being the preferential substrate of PAO4 activity. Conversely,
both pao4-1 and pao4-2 mutants exhibited lower Spd levels than
the wild-type (Figure 1B). The levels of Put were only increased
in pao4-2 and not in pao4-1, probably as result of the residual
PAO4 expression in the latter. We concluded that accumulation
of Spm and dampening of Spd levels are common metabolic
hallmarks of pao4-1 and pao4-2.

Dark-Induced Senescence in pao4
Mutants
We investigated the differential response of pao4 mutants and
wild-type plants to early senescence induced by dark treatment.
For this, detached mature leaves from 4 week-old pao4 mutants
and wild-type plants grown under optimal conditions were used.
No differences in size, senescence status (determined by total
chlorophyll and protein levels) or turgor were visible between
leaves of the wild-type and pao4 mutant before the dark-induced
treatments (data not shown). Interestingly, both pao4-1 and
pao4-2 mutants evidenced signs of delayed senescence after
4 days of continuous dark treatment (Figure 2A). Total protein

levels were measured to quantify the extent of senescence delay
induced by PAO4 mutation. Protein levels were significantly
higher in pao4-1 and pao4-2 than the wild type, thus suggesting
a lower rate of protein degradation consistent with delayed
senescence (Figure 2B). Quantification of chlorophylls in pao4-
1 and pao4-2 further supported these observations (Figure 2C),
suggesting that pao4 mutation leads to delayed dark-induced
senescence.

Polyamine levels were determined during senescence in pao4
mutants and wild-type. Levels remained constant for most
PAs throughout the induced senescence, except for Spd levels,
which dropped in pao4 from fivefold lower than the wild-type
under basal conditions to 10-fold lower than the wild-type after
senescence treatment (Figure 2D).

H2O2, MDA, and NO Levels in pao4
Mutants During Dark-Induced
Senescence
Reactive oxygen species and RNS are important players of
the oxidative and nitrosative response that exhibit contrasted
effects on senescence. While ROS generally promote senescence
(Khanna-Chopra, 2012), RNS might underlie anti-senescence
effects (Niu and Guo, 2012; Liu and Guo, 2013). We
measured H2O2 and NO levels in pao4-1, pao4-2 and wild-
type plants after dark-induced senescence (Figure 3). Both
pao4 mutants exhibited lower H2O2 levels than the wild-
type plant after the senescence treatment, thus suggesting
the enhancement of the antioxidative machinery in pao4
(Figure 3A). Consistent with these observations, the levels
of MDA (a measurement of membrane damage by lipid
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FIGURE 2 | Effect of dark-induced senescence in wild-type and pao4 mutants. (A) Macroscopic observation of wild-type and pao4 leaves after dark-induced
treatment. (B) Total protein levels in pao4 senescent leaves after dark-induced senescence treatment. (C) Chlorophyll contents in pao4 senescent leaves. (D) Free
PAs (Put, Spd, and Spm) levels in senescent pao4 leaves. Each value represents the mean of at least five independent biological replicates ±SD. Asterisks indicate
values which are significally different from the wild-type, as determined by both one-way ANOVA and Tukey HSD post hoc tests (P < 0.05).

peroxidation) were significantly lower in pao4 than the wild-type
(Figure 3A). Interestingly, the levels of NO exhibited an opposite
pattern and accumulated in pao4 compared with the wild-type
(Figure 3B). We concluded that ROS production induced by
senescence is restricted in pao4 mutants, whereas NO production
is stimulated.

Metabolomic Profiling of pao4 Mutants
Under Basal Conditions
In order to analyze the metabolic consequences of PAO4 loss-
of-function on primary metabolism, we performed GC-TOF/MS
metabolomic profiling (Erban et al., 2007; Allwood et al., 2011)
in 4-week-old pao4 mutants and wild-type plants grown under
optimal conditions in the absence of stress, referred to as ‘basal’
conditions. Primary metabolite profiling identified a total of 75
metabolites, 37 of which did not show significant differences
respect to the wild-type (Supplementary Table S1). From the

remaining 38 metabolites, 28 were increased (Figure 4) and 10
decreased in pao4 compared to the wild-type (Supplementary
Table S2). Most down-regulated metabolites could not be
classified into metabolic groups, because their chemical structure
is unknown (Supplementary Table S2). Up-regulated metabolites
could be sorted into four major metabolic categories belonging to
oxidative and nitrogen metabolism, sugars and lipids. However,
many metabolites were shared between categories (Figure 4A).
Increased metabolites in pao4 included sugars (galactose), sugar
alcohols (myo-Inositol, erythritol), ethanolamine and many
amino acids (Ser; aromatic amino acids Phe and Tyr; precursors
of PAs Orn and Met; branched-chain amino acids Ile and Val).
Indeed, amino acids represented the largest group of up-regulated
metabolites in pao4 under basal conditions (Figure 4A). Other
important upregulated metabolites included pyruvate, which
is a crucial hub metabolite, GABA, which is suggested to
participate in stress responses, and ascorbate/dehydroascorbate
(ASC/DHA), which are important metabolites involved in
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FIGURE 3 | H2O2, MDA, and NO levels in pao4 mutants and wild-type after dark-induced senescence treatment. (A) H2O2 and MDA levels (B) NO levels.
Free radical levels were determined after dark-induced senescence treatment. Values represent the mean of at least five biological replicates ±SD. Asterisks indicate
values which are significally different from those of the corresponding wild-type plants, as determined by both one-way ANOVA and Tukey HSD post hoc tests
(P < 0.05).

antioxidant defense pathways. Pearson’s correlation analyses
indicated the occurrence of strong positive correlations between
Spm and up-regulated metabolites, but negative correlations
with Spd (P < 0.05; Figure 4B). Based on these analyses, we
conclude that pao4 mutants exhibit constitutive accumulation of
several amino acids and important stress protection metabolites,
and this associates with higher Spm levels and/or Spm/Spd
ratios.

Metabolomic Profiling of pao4 Mutants
After Dark-Induced Senescence
Metabolomic profiling after dark-induced senescence in pao4
and wild-type leaves identified a total of 103 metabolites
(Figure 5A and Supplementary Table S3), 28 of which exhibited
significant differences between pao4 and wild-type senescent
leaves (Figure 5A). Among these, 13 metabolites were up-
regulated and 15 down-regulated in pao4 compared to the wild-
type (Figure 5A). 8 of the 13 up-regulated metabolites were
already increased in pao4 compared to the wild-type under

basal conditions (Figures 4A and 5A). Such constitutively up-
regulated metabolites were the PAs Put and Spm, antioxidative
metabolites ASC/DHA, myo-Inositol, GABA and the amino
acids Thr and Phe. Among up-regulated metabolites exclusively
induced after senescence treatment in pao4, and not in the wild-
type, we identified sugars (glucose and xylose) and the TCA cycle
intermediate 2-oxoglutarate (Figure 5A).

Down-regulated metabolites in senescent pao4 leaves were
amino acids involved in senescence signaling such as Glu,
pyroglutamate, Trp, Asn, and 3-Cyanoalanine (Figure 5A). The
decrease in Glu and Asn is associated with late senescence
partly because Asn and 3-Cyanoalanine are products of the
cyanide detoxification pathway induced by ethylene biosynthesis
(Diaz et al., 2005). Other molecules involved in glucose
biosynthesis/degradation, such as α,α, trehalose were down-
regulated in pao4.

A strong positive correlation was found between up-regulated
metabolites in senescent pao4 leaves and Spm levels, but negative
correlations with Spd (P < 0.05; Figure 5B). Conversely, down-
regulated metabolites showed an opposite pattern of strong
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FIGURE 4 | Heat-map representation of up-regulated metabolites in pao4 compared with wild-type under control conditions. (A) Metabolite levels were
determined in 4 week-old plants and are expressed as log2 relative to wild-type. (B) Pearson’s correlation values (r) related to Spm and Spd. Values were obtained
from at least four independent biological experiments (P < 0.05).

positive correlation with Spd but negative with Spm, suggesting
that homeostasis of these PAs may be relevant in the response to
senescence (P < 0.05; Figure 5B).

DISCUSSION

The identification of metabolic networks in which PAs are
integrated is a necessary step to elucidate potential mechanisms
underlying PA-triggered stress protection (Shi and Chan, 2014).

Here, we report that loss-of-function mutations in PAO4, a
member of the five Arabidopsis AtPAO gene family, leads to
delayed dark-induced senescence and this associates with higher
Spm and/or lower Spd/Spm ratios.

Accumulation of Spm in pao4 mutants (Figure 1B) is
consistent with the reported higher affinity of PAO4 enzyme
toward Spm (Kamada-Nobusada et al., 2008; Takahashi et al.,
2010; Fincato et al., 2011). Given the previously reported anti-
senescence properties of Spm in plants and animals (Pandey
et al., 2000; Serafini-Fracassini et al., 2010; Del Duca et al.,
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FIGURE 5 | Heat map of pao4 mutants altered metabolite pools after dark-induced senescence. (A) Metabolite levels were determined from detached
leaves of 4 week-old plants grown as described (see Materials and Methods). Values represent log2-transformed fold-changes relative to the wild-type. The first
group (top) represents up-regulated metabolites in pao4 compared with wild-type, and the second group (bottom) down-regulated metabolites in the same
comparison. Altered metabolites were detected with MeV tool V.4.9 by rank product statistical test (P < 0.05). (B) Pearson correlation values (r) related to Spm and
Spd, values were obtained from at least four independent biological experiments (P < 0.05).

2014; Moschou and Roubelakis-Angelakis, 2014), and the high
Spm levels in pao4-1 and pao4-2 mutants, current findings
suggest that the delayed pao4 senescence may be associated with
the endogenous Spm levels. However, because pao4 mutants
also exhibit lower Spd levels, it cannot be completely ruled
out that the Spd/Spm ratio may modulate this response. In
any case, global metabolic analyses in both pao4 mutants
indicated that primary metabolism is intricately connected with
PA metabolism, and this is differentially regulated in pao4 under
senescence conditions. Our results indicate that loss of PAO4
functionality is beneficial to prevent senescence under dark-
inductive conditions.

Global metabolite analyses in pao4 mutants under basal
conditions (Figure 4) identified amino acids as the largest group
of metabolites which were up-regulated, compared with wild-
type plants. Up-regulated amino acids included PA precursors
(Met and Orn), branched-chain amino acids, aromatic and
polar uncharged, which are essential for post-translational
modifications. In addition, most altered amino acids were either
involved in day/night cycle transitions (Gibon et al., 2006) or
adaptation to extended dark conditions (Gibon et al., 2006, 2009).
Spm has previously been shown to reprogram the oxidative status
of citrus plants exposed to salt stress, and to increase the ASC
redox state (Tanou et al., 2014). In this study, the metabolic profile
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FIGURE 6 | Metabolic interactions between PAs and primary metabolism, and the observed increases/decreases in the comparisons between pao4
and wild-type under dark-induced senescence. 2-HG, 2-Hydroxyglutarate; 2HGDH, 2-Hydroxyglutarate Dehydrogenase; ETF, Electron-transfer flavoprotein;
ETFQO, Electron-transfer flavoprotein: Ubiquinone oxidoreductase; 2-OG, 2-Oxo-glutarate; SAM, S-Adenosylmethionine; dcSAM, Decarboxilated
S-Adenosylmethionine; ACC, Aminocyclopropane Carboxilic Acid; CNH, Hydrogen Cyanide; IAA, Indole-3-Acetic Acid; SA, Salycilic Acid; JA, Jasmonic acid
N-Ac-Glu; N-Acetyl-L-Glutamate; Ac-Orn, Acetylornithine; L-Glu-Cys, L-Glutamylcysteine.

of pao4 suggests the constitutive enhancement of anti-oxidative
mechanisms, mainly through the accumulation of ASC/DHA,
nicotinate and sinapate, which are essential metabolites in the
maintenance of anti-oxidative capacity (Hashida et al., 2010;
Wang et al., 2010; Foyer and Noctor, 2011; Gallie, 2012).

pao4-1 and pao4-2 exhibited accumulation of metabolites in
central metabolism and signaling hubs under basal conditions.
Such metabolites included pyruvate and myo-Inositol, which is
involved in sugar and phospholipid signaling (Gillaspy, 2011;
Williams et al., 2015). AtPAO4 loss-of-function also led to the
up-regulation of nitrogen-mobilization molecules, such as GABA
(Bitrián et al., 2012; Shelp et al., 2012). The role of GABA during
stress remains unclear. However, GABA has been proposed to
act as a signaling molecule that coordinates the C:N balance in
challenging environments, such as prolonged dark conditions
(Buchanan-Wollaston et al., 2005). GABA also serves as nitrogen-
storage molecule during nitro-oxidative stress (Tanou et al.,

2012). Overall, the metabolic profile of pao4 mutants under basal
conditions is consistent with a prime-like status, in which the
antioxidant machinery is pre-activated and GABA accumulates.
It is therefore suggested that Spm and/or low Spd/Spm ratio
triggers pre-acclimation to stress in Arabidopsis.

Subsequently, mechanisms underlying the pao4 anti-
senescence phenotype from a metabolic perspective were
investigated. The levels of H2O2 and NO were determined in
wild-type and pao4 mutants after dark treatment. Interestingly,
delayed senescence in pao4 correlated with significant increases
in NO levels (Figure 3B), which is a pattern consistent with
previous observations (Niu and Guo, 2012; Liu and Guo, 2013).
Conversely, the levels of H2O2 were lower in pao4 than wild-type
plants (Figure 3A), which is in agreement with promotion
of the ASC/DHA cycle in pao4 (Figure 4A) and supports
previous findings in which ROS inhibition leads to delayed
senescence in tobacco and wheat (Hui et al., 2012; Fotopoulos
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and Kanellis, 2013; Tian et al., 2013). NO might be an inductive
element of the oxidative response after stress imposition (Linka
and Theodoulou, 2013; Corpas and Barroso, 2014). It can
be hypothesized that priming by Spm confer a more intense
dark-induced stress response involving NO signaling.

Compared with the wild-type, most metabolites altered by
dark in pao4 were related to oxidative and nitrogen metabolism
(Figure 5). Down-regulated metabolites in dark-treated pao4
were amino acids and compounds involved in their metabolism
(Figure 5A). This pattern is consistent with high nitrogen
mobilization in pao4 induced by senescence (Soudry et al.,
2005). Indeed, interactions have been observed between PA
and amino acid metabolism during senescence in Arabidopsis
(Mattoo et al., 2010; Watanabe et al., 2013). NO is also known
to be involved in the regulation of free amino acid levels during
the stress response by induction of the γ-glutamyl cycle for GSH
biosynthesis (Innocenti et al., 2007), and through modulation of
proteolytic mechanisms such as autophagy or the TOR pathway
in Arabidopsis and other species (López-Berges et al., 2010;
Tripathi et al., 2013). Some down-regulated amino acids by
dark-induced senescence in pao4 have important implications
in senescence signaling. As such, Glu influences adaptation to
dark periods in Arabidopsis (Gibon et al., 2009). Glu is also
a product of glutathione catabolism along with pyroglutamate
(Ohkama-Ohtsu et al., 2007, 2008), which is also involved in
mitochondrial reassembly during oxidative stress (Obata et al.,
2011) and GABA formation (Soudry et al., 2005; Watanabe et al.,
2013). Recent evidence also indicates that increases in nitrogen
assimilation favors GSH biosynthesis with concomitant decreases
in pyroglutamate and Glu levels (Paulose et al., 2013).

The above data suggest the potential modulation of GSH
homeostasis by PAO4 activity, which conditions Spm or Spd/Spm
ratio. Metabolite profiling suggests the occurrence of a Spm-
triggered oxidative response involved in the maintenance of the
redox status throughout modulation of amino acid transport
and recycling. Trp is a main precursor of the phytohormone
indole-3-acetic acid (IAA; Zhao, 2014), and it participates in
plant development and dark-induced senescence signaling (Van
der Graaff et al., 2006). Asn and 3-cyanoalanine are products of
cyanide detoxification pathway (Piotrowski et al., 2001), which
is activated after the final biosynthetic reaction of ethylene
(Yamagami et al., 2003). Both Asn and 3-cyanoalanine are
considered as senescence markers (Van der Graaff et al., 2006;
Watanabe et al., 2013). Cross-talk between PAs and hormones
such as ethylene and IAA has been reported, but the molecular
nature of such interactions remains elusive (Bitrián et al., 2012).
Because pao4 mutants display lower levels of 3-cyanoalanine,
Asn and Trp, it is suggested that high Spm levels might
promote delayed entry into dark-induced senescence through
inhibition of ethylene biosynthesis, although this requires further
investigation.

Aromatic and branched-chain amino acids have been shown
to act as alternative electron donors for mitochondrial respiration
during the stress response, in a process whereby the hydrolysis
of 2-hydroxyglutarate (2-HG) produces 2-oxoglutarate (2-OG)
with concomitant release of electrons donated to ubiquinol via
the ETFQO complex (Ishizaki et al., 2005; Araújo et al., 2010,

2011; Obata et al., 2011). Interestingly, Phe, 2-HG, and 2-OG
were increased in pao4 mutants compared with wild-type plants,
thus suggesting that Spm promotes the alternative electron donor
pathway for mitochondrial respiration (Figure 5). In support
to this view, an Spm-induced signaling pathway leading to
mitochondrial dysfunction has previously been reported during
biotic stress in tobacco and Arabidopsis (Takahashi et al., 2004;
Mitsuya et al., 2009). Therefore, it seems reasonable that increases
in Spm and NO might enhance mitochondrial energy production
after dark-induced senescence.

Other molecules involved in glucose biosynthesis/degradation
and enhancement of oxidative burst were also identified, such as
α,α, Trehalose (O’Hara et al., 2013). This metabolite has emerged
as a redox signaling molecule with a proposed role during stress
and senescence (Fernandez et al., 2010; Krasensky et al., 2014).
Trehalose degradation confers drought tolerance by producing
glucose (Van Houtte et al., 2013), a pattern which has also been
observed during dark-induced senescence (Buchanan-Wollaston
et al., 2005; Gibon et al., 2006), and is consistent with the
increase in glucose levels observed in pao4 after dark treatment
(Figure 5).

Furthermore, increases in xylose observed in dark-treated
pao4 plants suggest activation of the phosphate-pentose pathway,
which is reported to be up-regulated in Arabidopsis roots after
oxidative stress imposition (Lehmann et al., 2009) as a source
of reducing equivalents in peroxisomes for GSH biosynthesis
(Corpas et al., 2009). Increased lactate was also found, which is
consistent with a link between sugar and pyruvate-related amino
acid metabolism.

Overall, we provide a global view of metabolic changes
affected by PAO4 mutation in Arabidopsis, which are associated
with delayed entry into dark-induced senescence (Figure 6).
Current findings suggest that the delayed pao4 senescence may
be associated with high Spm levels, reduced ROS production
and increased NO levels. Furthermore, our results point
to an important role of Spm as a ‘signaling’ metabolite
promoting stress protection through metabolic connections
involving ASC/GSH redox state modifications, changes in sugar
and nitrogen metabolism, cross-talk with ethylene biosynthesis
and mitochondrial electron transport chain modulation, all of
which are involved in the nitro-oxidative response after stress
imposition.
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