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It has been indicated that photosystem I (PSI) is susceptible to chilling-light stress
in tobacco leaves, but the effect of growth light intensity on chilling-induced PSI
photoinhibition in tobacco is unclear. We examined the effects of chilling temperature
(4◦C) associated with moderate light intensity (300 µmol photons m−2 s−1) on the
activities of PSI and photosystem II (PSII) in leaves from sun- and shade-grown plants of
tobacco (Nicotiana tabacum cv. k326). The sun leaves had a higher activity of alternative
electron flow than the shade leaves. After 4 h chilling treatment, the sun leaves showed
significantly a higher PSI photoinhibition than the shade leaves. At chilling temperature
the sun leaves showed a greater electron flow from PSII to PSI, accompanying with a
lower P700 oxidation ratio. When leaves were pre-treated with lincomycin, PSII activity
decreased by 42% (sun leaves) and 47% (shade leaves) after 2 h exposure to the
chilling-light stress, but PSI activity remained stable during the chilling-light treatment,
because the electron flow from PSII to PSI was remarkably depressed. These results
indicated that the stronger chilling-induced PSI photoinhibition in the sun leaves was
resulted from a greater electron flow from PSII to PSI. Furthermore, moderate PSII
photoinhibition depressed electron flow to PSI and then protected PSI activity against
further photodamage in chilled tobacco leaves.

Keywords: chilling temperature, electron transfer, growth light intensity, photosystem I, photosystem II,
photoprotection

INTRODUCTION

During the winter and spring, the combination of daytime chilling temperatures and moderate
light intensity are typical climatic conditions in subtropical and temperate regions. Such
conditions can cause photodamage to photosystem I (PSI) in several species, including Cucumis
sativus (Sonoike and Terashima, 1994; Terashima et al., 1994; Sonoike, 1995, 1999; Kudoh
and Sonoike, 2002; Zhang et al., 2011), Spinacia oleracea (Sonoike, 1995; Hwang et al., 2004),
Solanum tuberosum (Havaux and Davaud, 1994), Arabidopsis thaliana (Zhang and Scheller,
2004), and Nicotiana tabacum (Barth and Krause, 1999, 2002). The electrons supplied from
PSII to PSI induce the production of superoxide anion radicals that can be converted to
hydrogen peroxide (Asada, 1999). This H2O2 reacts with reduced iron in the iron-sulfur
centers to form hydroxyl radicals that immediately cause damage to those centers in the PSI
complex (Sonoike et al., 1997). In previous studies on chilling stress and PSI activity, all plant
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materials were grown under low or moderate light intensities.
However, in routine production, chilling-sensitive crop plants,
e.g., cucumber, potato, and tobacco, are usually cultivated under
field conditions that include brighter illumination. Because
photosynthetic electron flow and photoprotective mechanisms
such as cyclic electron flow (CEF) and no-photochemical
quenching (NPQ) are affected by growth light intensity (Miyake
et al., 2005), any examination of the response of PSI activity
to chilling-light stress should consider the level of growth light
condition. However, little is known about the influence of growth
light condition on that scenario.

At normal growing temperatures (e.g., 25◦C) and low light,
the electron flow from PSII does not exceed the capacity of
PSI electron acceptors to cope with electrons, and PSI remains
stable (Munekage et al., 2002; Tikkanen et al., 2010, 2014).
Damage to PSI occurs only when this electron flow exceeds
the capacity of those PSI acceptors (Tikkanen and Aro, 2014;
Tikkanen et al., 2014). At a chilling temperature, inhibition of
the Calvin Cycle can induce an increase in NADPH/NADP+,
leading to the reduction in electron transport chains and the
production of superoxide anion radicals (Murata et al., 2007).
This subsequently causes photodamage to PSI in cucumber,
spinach, and Arabidopsis thaliana (Sonoike, 2006). When the
electron flow from PSII to PSI is blocked by DCMU and DBMIB,
PSI photoinhibition is not observed in the chilled leaves of
potato, cucumber and spinach, apparently because those electron
transport chains are oxidized and production of superoxide
anion radicals on the PSI acceptor side is inhibited (Havaux and
Davaud, 1994; Sonoike, 1995). Therefore, based on those reports,
one might conclude that electron flow from PSII is necessary for
PSI photoinhibition at chilling temperatures.

Tobacco plants grown under high light have greater
photosynthetic capacity and electron transport from PSII to PSI
than those exposed to low light, regardless of the temperature
at which measurements are made (Yamori et al., 2010a).
Consequently, we speculated that, when illuminated at chilling
temperature, tobacco leaves grown under high light had higher
electron flow from PSII to PSI than those leaves grown under low
light. Because the electron transport responding to alternative
electron sinks contributes to the production of ROS in the
acceptor side of PSI, the sensitivity of PSI to photoinhibition
at chilling temperature is induced by alternative electron flow
(Sonoike, 1995). However, it is unclear whether the difference of
chilling-induced photoinhibition of PSI between tobacco sun and
shade leaves is related to alternative electron flow.

Photoinhibition of PSII was regarded as an ultimate
mechanism for protecting PSI activity in pgr5 mutants of
Arabidopsis thaliana that lack PGR5-dependent CEF (Tikkanen
et al., 2014). When PSII activity was decreased by about
40% in pgr5 plants, PSI activity was protected against further
photodamage because of decreased electron flow from PSII
(Tikkanen et al., 2014). In plants, CEF and NPQ are two
protective mechanisms for PSII activity (Munekage et al., 2002,
2004; Takahashi et al., 2009; Brestic et al., 2014, 2015; Zivcak
et al., 2014a). Activation of CEF and NPQ alleviate PSII
photoinhibition at chilling temperature (Kim et al., 2001; Li et al.,
2004; Huang et al., 2011). Tobacco plants grown under high light

had greater capacities for CEF and NPQ when compared with
plants grown under low light (Miyake et al., 2005). The extent
of chilling-induced PSII photoinhibition is diminished in more
brightly lit plants. The ROS production was highly correlated
to PSII activity (Oukarroum et al., 2015). Thus, the higher PSII
activity in those plants probably aggravates PSI photoinhibition
under chilling-light stress.

Here, we investigated the response of PSI and PSII activities
to 4◦C and 300 µmol photons m−2 s−1 in tobacco leaves grown
under two different light conditions (95% sunlight for sun leaves,
28% sunlight for shade leaves). Our aim was to examine whether
the growth light intensity influences the response of PSI activity
to combined chilling and light stresses. Here, PSI was more
susceptible to such stress in sun leaves than shade leaves, due
to higher electron flow from PSII to PSI. When PSII repair was
inhibited by lincomycin, a large decrease in PSII activity limited
electron flow from PSII to PSI, and thus PSI activity was not
sensitive to chilling-light stress in either leaf type.

MATERIALS AND METHODS

Plant Materials
Seedlings of the ‘k326’ cultivar from tobacco (Nicotiana
tabacum) were cultivated in plastic pots in a phytotron at
Kunming Institute of Botany, Yunnan, China (elevation 1900 m,
102◦41′E, 25◦01′N). Day/night temperatures were 24◦C/18◦C.
Relative humidity was kept at 60% and the atmospheric
CO2 concentration (Ca) was held at 400 µmol mol−1. The
phytotron used sunlight as the source of illumination, and the
light intensity received by sun plants was about 95% of full
sunlight (maximum intensity at noon ≈ 1990 µmol photons
m−2 s−1). The shade plants were grown under 28% sunlight
(maximum intensity ≈ 580 µmol photons m−2 s−1). During
the experimental period, none of the plants experienced any
water or nutrient stresses. After the plants were transplanted and
cultivated for 50 days, the newly produced, mature leaves were
used for photosynthetic measurements.

Simultaneous Measurements of
Chlorophyll Fluorescence and P700
Redox State
A Dual-PAM-100 system (Heinz Walz, Effeltrich, Germany) was
used for simultaneous measurements of chlorophyll fluorescence
and the P700 redox state. In the early morning, after dark-
adaptation overnight, values for Fv/Fm were obtained from
intact mature leaves (Fv, variable fluorescence; Fm, maximum
fluorescence). Those leaves with Fv/Fm values > 0.8 were chosen
for chilling treatments.

The following chlorophyll fluorescence parameters were
calculated: Fo′ = Fo/[(Fm – Fo)/Fm + Fo/Fm′] (Oxborough and
Baker, 1997), qL= (Fm′ – Fs)/(Fm′ – Fo′)× Fo′/Fs. Fo and Fm are
the minimum and maximum fluorescence after dark-adaptation;
Fo′ and Fm′ are the minimum and maximum fluorescence
under light, respectively; qL is the coefficient of photochemical
quenching based on the “lake” model (Oxborough and Baker,
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1997); Fs is the light-adapted steady-state fluorescence; and
Y(II) is the effective quantum yield of PSII under light. Fm
and Fm′ were measured upon illumination with a 300-ms pulse
of saturating light (10000 µmol photons m−2 s−1). Because
damage to PSI increases Fo and, therefore, Fv/Fm is affected by
photodamage to both PSI and PSII, we used Fm to estimate the
amount of active PSII reaction centers (Tikkanen et al., 2014).

The maximum photo-oxidizable P700 was measured with a
dual wavelength unit (830/875 nm) according to the method
of Klughammer and Schreiber (2008). A saturation pulse
(10000 µmol photons m−2 s−1) was applied for assessing P700
parameters. The P700+ signal (P) varies between a minimum
(P700 fully reduced) and maximum level (P700 fully oxidized).
At a defined optical property, the amplitude of Pm depends on
the maximum amount of photo-oxidizable P700. As a result, the
alteration in Pm serves as an indicator of change in PSI activity
(Huang et al., 2010a,b, 2013; Gao and Wang, 2012; Suorsa et al.,
2012). In our present study, Pm was measured to estimate the
amount of PSI reaction centers. Pm′ was also defined in analogy
to the fluorescence parameter Fm′. Pm′ was determined similarly
to Pm, but with background actinic light instead of far-red
illumination. The P700 oxidation ratio [Y(ND)] was measured as
P/Pm (Pfundel et al., 2008; Huang et al., 2011, 2012; Suorsa et al.,
2012; Tikkanen et al., 2014).

Simultaneous Measurements of Gas
Exchange and Chlorophyll Fluorescence
An open gas exchange system incorporating infrared CO2 and
water vapor analyzers (Li-6400XT; Li-Cor Inc., Lincoln, NE,
USA) was used to determine the rate of CO2 assimilation
(An) in the phytotron. Chlorophyll fluorescence was measured
simultaneously with gas exchange measurements using a
fluorometer chamber (6400-40; Li-Cor Inc.). The fluorescence
parameters Fs and Fm′ were determined as previously described
(Baker and Rosenqvist, 2004), with Fs representing the steady
fluorescence and Fm′ the maximum fluorescence after light-
adaptation. The effective quantum yield of PSII was calculated
as 8PSII = (Fm′ – Fs)/Fm′ (Genty et al., 1989). During the
measurement period, the relative air humidity was 60% and
the air temperature was 24◦C. To generate a light response
curve, the leaves of both sun and shade plants were exposed
to high light (i.e., 1200 µmol photons m−2 s−1) for 20 min
to obtain a steady state. Afterward, photosynthetic parameters
were evaluated every 2 min at a controlled Ca of 400 µmol
mol−1 and photosynthetic photon flux densities (PPFDs) of
2000, 1600, 1200, 800, 500, 300, 200, 100, 50, 20, or 0 µmol
photons m−2 s−1. The PSII electron transport rate (JF) based
on chlorophyll fluorescence measurement was calculated as
JF = 0.85 × 0.5 × PPFD × 8PSII (Miyake et al., 2005; Zhang
et al., 2013; Huang et al., 2014, 2015). The rate of electron
transport consumed by carboxylation plus oxygenation of RuBP
(JG) was calculated as JG = 4(An + Rd)(Ci + 20∗)/(Ci – 0∗)
(Harley et al., 1992; Zivcak et al., 2013), where An represents
measured CO2 assimilation rate, Rd represents the mitochondrial
respiration measured after 5 min dark adaptation, Ci represents
the intercellular CO2 concentration, and 0∗represents the CO2

compensation point measured in the absence of respiration. The
value of 0∗ was calculated to be 32.2 at 25◦C according to Long
and Bernacchi (2003).

Photoinhibitory Treatment at 4◦C
To examine the effect of growth light condition on chilling-
induced PSI photoinhibition, detached sun and shade leaves
incubated with water overnight in darkness were transferred to
4◦C and 300 µmol photons m−2 s−1. To examine the effect of
PSII photoinhibition on chilling-induced PSI photoinhibition,
detached sun and shade leaves incubated in the presence of
lincomycin (Lin, 1 mM) overnight in darkness were transferred
to 4◦C and 300 µmol photons m−2 s−1. Before chilling-light
treatment, qL and Y(ND) were measured at 25◦C and 297 µmol
photons m−2 s−1. After chilling-light treatment for 2, 4, and 6 h,
qL and Y(ND) were measured immediately at 4◦C and 297 µmol
photons m−2 s−1. Subsequently, Pm and Fm were measured after
30 min dark adaptation.

Statistical Analysis
All results were displayed as mean values of six independent
experiments. Data were subjected to an Independent-Samples
T-test with SPSS 16.0 statistical software. Independent-Samples
T-test was used at α = 0.05 significance level to determine
whether significant differences existed between different
treatments.

RESULTS

Alternative Electron Flow in the Sun and
Shade Leaves
To estimate the linear electron flow that is not used for RuBP
carboxylation and photorespiration, PSII electron flow calculated
from chlorophyll fluorescence measurements (JF) and electron
transport calculated from gas exchange (JG) was compared in
the sun and shade leaves (Figures 1A,B). The difference between
JF and JG represents the electron flow utilized by alternative
electron sinks. Light response curves indicated that under high
light the sun leaves had significantly higher values of JF and JG
at 25◦C (Figures 1A,B), due to higher rate of CO2 assimilation
and photorespiration (Huang et al., 2014). Furthermore, the value
of JF – JG largely differed between the sun and shade leaves
(Figure 1C), indicating the sun leaves had significantly a higher
capacity of alternative electron flow than the shade leaves.

Photoinhibition of PSI and PSII
To examine the effect of growth light condition on chilling-
induced PSI photoinhibition, detached sun and shade leaves
incubated with water overnight in darkness were transferred to
4◦C and 300 µmol photons m−2 s−1. By contrast, exposure for
4 h was associated with declines in Pm of 28% and 14% for sun
and shade leaves, respectively (Figure 2A). This indicated that
PSI activity was more sensitive to chilling-light stress in the sun
leaves. However, prolonging the chilling period did not enhance
PSI photodamage in either sun or shade leaves (Figure 2A).
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FIGURE 1 | Light response changes in photosynthetic electron flow in
the sun and shade leaves of tobacco. (A) PSII electron transport rate (JF)
calculated based on measurements of PSII quantum yields, assuming the
equal distribution of absorbed light between PSI and PSII. (B) Rate of electron
transport consumed by carboxylation plus oxygenation of RuBP (JG),
calculated by the data from gas exchange measurements. (C) The difference
between JF and JG, JF – JG represents a common way to estimate alternative
electron flow besides the Calvin cycle and photorespiration. Values are
means ± SE (n = 6).

Under such stress, shade leaves showed higher PSII
photoinhibition when compared with the sun leaves. For
example, after 2, 4, and 6 h of treatment, Fm values decreased by
22, 34, and 40% in the sun leaves, respectively, versus declines of
26, 39, and 48% in the shade leaves (Figure 2B). The extent of
PSII photoinhibition differed slightly between the two types. In
the initial 4 h chilling treatment, the reduction in PSII activity

was accompanied by a decrease in PSI activity for both type leaves
(Figures 2A,B). Between hours 4 and 6, PSII activity continued
to drop whereas that of PSI was unaffected (Figures 2A,B).
These results suggested that the chilling-induced decrease in
PSI activity was dependent on a high PSII activity, and that PSI
might have been protected from further photodamage while PSII
activity declined by approximately 40%.

To further understand the effect of chilling-induced PSII
photoinhibition on PSI activity, detached leaves incubated with
lincomycin overnight in darkness were exposed to the above
chilling-light stress. Although neither the sun nor the shade
leaves showed a significant reduction in Pm values (Figure 2C),
the Fm for both leaf types was largely decreased. For example,
after exposure to the combined stress for 2, 4, and 6 h, Fm
dropped by 42, 44, and 46%, respectively, in the sun leaves, and
by 47, 49, and 54%, respectively, in the shade leaves (Figure 2D).
Therefore, in the presence of lincomycin, PSII photoinhibition
was aggravated and then photodamage to PSI was prevented. This
strongly suggested that chilling-induced PSI photoinhibition was
dependent on PSII activity.

Relative QA Reduction and PSI Redox
State
To understand the effect of chilling-induced PSII photoinhibition
on relative QA reduction and PSI redox state, the changes
in qL and Y(ND) during chilling treatment were measured.
During chilling-light treatment, qL decreased gradually in both
the sun and shade leaves (Figure 3A). The sun leaves showed
significantly higher qL values than the shade leaves during
chilling-light treatment (Figure 3A). This result implied that at
chilling temperature the sun leaves displayed higher electron flow
from PSII to PSI. With increasing time of chilling-treatment,
Y(ND) gradient increased in both type leaves. Furthermore, the
Y(ND) values were lower in the sun leaves compared with the
shade leaves (Figure 3B). Interestingly, the value of Y(ND) was
lower than 0.2 in the sun leaves after 2 h chilling treatment,
implying the over-reduction of PSI acceptor side. In the presence
of lincomycin, qL largely decreased after initial 2 h exposure to
chilling-light stress in both the sun and shade leaves (Figure 3C).
Meanwhile, Y(ND) largely increased in them (Figure 3D). These
results indicated that, when down-regulation of PSII activity was
induced by mild lincomycin treatment, the electron flow from
PSII to PSI was limited, resulting in the decrease in qL and the
increase in Y(ND).

DISCUSSION

PSI Activity in Tobacco is More Sensitive
to Chilling-Light Stress in Sun Leaves
Previous studies indicated that PSI activity was sensitive to
chilling-light stress in tobacco leaves grown under low light
(Barth and Krause, 1999, 2002). However, the effect of chilling-
light stress on PSI activity is unclear for tobacco leaves grown
under high light. Our results strongly indicated that chilling-
induced PSI photoinhibition was significantly stronger in the sun
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FIGURE 2 | Relationship between photoinhibition of PSII (B,D) and PSI (A,C) in sun and shade tobacco leaves. Detached leaves incubated in the presence
or absence of lincomycin (1 mM) overnight in darkness were exposed to 4◦C and 300 µmol photons m−2 s−1 for 2, 4, or 6 h. Fm was measured after dark
adaptation to estimate the amount of active PSII centers. Pm was measured after dark adaptation to estimate the amount of active PSI centers. All values are
expressed relative to the controls before chilling-light treatment, and shown as means ± SE (n = 6). Asterisks indicate significant differences between the sun and
shade leaves.

leaves than the shade leaves (Figure 2A). This suggested that
the extent of chilling-induced PSI photoinhibition was influenced
by growth light intensity. The effect of growth irradiance on
chilling-induced PSI photoinhibition was previously examined
in common bean (Sonoike et al., 1995). Common bean leaves
grown in 6.5% of full sunlight displayed stronger chilling-induced
PSI photoinhibition than those grown in full sunlight (Sonoike
et al., 1995). On the contrary, our results indicated that PSI was
more sensitive to chilling-light stress in sun leaves than shade
leaves in tobacco. Thus, we assumed that the effect of growth
light condition on chilling-induced PSI photoinhibition strongly
depended on plant species.

It has been indicated that, when exposed to chilling-
light stress, the inhibition of Calvin cycle decreases the
NADP+/NADPH ratio and leads to the generation of superoxide
anion radicals (Murata et al., 2007), which can be converted
into H2O2 (Asada, 1999). In the presence of reduced metal
ions, this H2O2 is converted to the hydroxyl radical, which
is highly reactive and destroys the iron–sulfur centers on the
acceptor side of PSI (Sonoike, 1995, 2006, 2011). Excess electron
flow from PSII to PSI can lead to reduction of PSI acceptors

and production of superoxide anion radicals (Oukarroum et al.,
2015), as a result, PSI only gets photodamaged when electron
transfer to PSI is in excess of the capacity of PSI electron
acceptors (Tikkanen and Aro, 2014; Tikkanen et al., 2014).
Our results indicated that the sun leaves of tobacco had a
higher capacity of alternative electron flow than the shade leaves
(Figure 1C). The alternative electron flow is mainly caused by
photoreduction of O2, which generates ROS at the acceptor side
of PSI. During chilling-light treatment, the sun leaves had higher
qL values than the shade leaves (Figure 3A). More electrons being
transferred to PSI in the sun leaves not only led to stronger
production of superoxide anion radicals in PSI acceptor side,
but also increased the P700 reduction ratio. Taking together, the
higher PSI photoinhibition in the sun leaves was significantly
related to the higher alternative electron flow at chilling-light
stress.

In plants, CEF can protect PSI against photodamage under
high light by preventing over-reduction on the acceptor side in
PSI (Munekage et al., 2002, 2004; Suorsa et al., 2012; Tikkanen
et al., 2014; Zivcak et al., 2014a; Brestic et al., 2015). At
a chilling temperature, CEF alleviates PSI photoinhibition in
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FIGURE 3 | Changes in relative QA reduction (qL) (A,C) and PSI oxidation ratio [Y(ND)] (B,D) during exposure to 4◦C and 300 µmol photons m−2 s−1.
After measuring qL and Y(ND) at 24◦C and 297 µmol photons −2 s−1, leaves were incubated in the presence or absence of lincomycin (1 mM) overnight in
darkness and subsequently exposed to 4◦C and 300 µmol photons m−2 s−1 for 2, 4, or 6 h. During chilling-light treatment, qL and Y(ND) were measured at 4◦C
and 297 µmol photons m−2 s−1. Values are means ± SE (n = 6).

cucumber (Kim et al., 2001; Bukhov et al., 2004) and tropical
tree species (Huang et al., 2011). The capacity for CEF can
also be affected by the growth light intensity to which tobacco
plants are exposed, and the tobacco sun leaves have higher
CEF capacity than the shade leaves (Miyake et al., 2005; Huang
et al., 2015). If CEF in tobacco did in fact have a major
role in protecting PSI activity against photodamage at chilling-
light stress, then we would expect the sun leaves to have less
PSI photoinhibition. On the contrary, the sun leaves showed
significantly stronger PSI photoinhibition, indicating that CEF
provided only minimal photoprotection for PSI in tobacco
leaves at chilling-light stress. The slight difference in chilling-
induced PSII photoinhibition between the sun and shade leaves
further indicated that CEF was hardly activated at chilling
temperature in tobacco leaves. Barth and Krause (2002) indicated
that NAD(P)H dehydrogenase (NDH)-mediated CEF did not
protect PSI against short chilling-light stress. Furthermore,
NDH-dependent CEF was less important under chilling-stressed
condition (Wang et al., 2006). Thus, CEF hardly prevented
PSI photoinhibition in tobacco leaves illuminated at chilling
temperature.

Moderate PSII Photoinhibition Prevents
PSI Photoinhibition Under Chilling-Light
Stress
Our results clearly demonstrate that chilling-induced
photoinhibition of PSI in tobacco leaves is dependent upon
PSII activity. In the absence of lincomycin, PSI activity decreased
during the first 4 h of chilling treatment (Figure 2A). However,
longer exposure to chilling-light stress did not aggravate PSI
photoinhibition in either sun or shade leaves (Figure 2A). After
4 h of treatment, PSII activity decreased by 34 and 39% in sun
and shade leaves, respectively. Meanwhile, qL largely decreased
in both the sun and shade leaves (Figure 3A). This large decrease
in qL led to a decline in electron transfer from PSII to PSI,
and then increase P700 oxidation ratio. Consequently, there
was no significant decrease in PSI activity between 4 and 6 h
of chilling-light treatment in both type leaves. In the presence
of lincomycin, PSII activity decreased by 42 and 47% after
2 h in stressed sun and shade leaves, respectively. This large
decrease in PSII activity led to a depression of linear electron
flow, as indicated by the decrease in qL and increase in Y(ND)
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(Figures 3C,D). Moreover, PSI activity was maintained stable in
either leaf type after 6 h chilling-light treatment in the presence
of lincomycin. Therefore, when PSII activity decreased by about
40%, PSI activity was protected from further chilling-induced
photodamage.

Photosystem I becomes irreversibly photodamaged if the
electrons supplied from PSII to PSI exceed the capacity of PSI
electron acceptors. At normal growing temperatures and low
light, the electrons transported from PSII to PSI can be efficiently
quenched by the Calvin cycle and photorespiratory pathway.
However, when plants are subjected to a chilling temperature,
the electrons transported to PSI cannot be efficiently quenched
through the Calvin cycle and photorespiratory pathway, which
then leads to a reduction in photosynthetic electron chains and
the production of superoxide anion radicals. In other chilling-
sensitive species, such as cucumber and Arabidopsis thaliana,
chilling-light stress induces a slight decrease in PSII activity but a
large decrease in PSI activity (Sonoike, 1995; Zhang and Scheller,
2004), indicating that the slight decrease in PSII activity has
little influence on electron flow from PSII to PSI. The CEF-
deficient pgr5 plants showed large PSI photoinhibition upon shift
to high light. However, when the PSII repair was inhibited by
lincomycin in pgr5 plants, moderate PSII photoinhibition led
to a depression of linear electron flow and then protected PSI
against further photodamage in pgr5 plants (Tikkanen et al.,
2014). In the samples pre-treated with lincomycin, the chilling-
light stress did not cause significant PSI photoinhibition in either
sun or shade leaves. Meanwhile, the Lin-treated samples had
significantly lower qL and higher Y(ND) than the H2O-treated
samples in the initial 2 h exposure to the chilling-light stress.
This depression of electron flow from PSII to PSI following a
decline in PSII activity increased the level of P700 oxidation
and diminished the production of superoxide anion radicals
(Tikkanen et al., 2014; Oukarroum et al., 2015). Taken together,
our data support the proposal that moderate down-regulation
of PSII has the potential role in protecting PSI activity against
further photodamage at chilling-light stress.

CONCLUSION

Plants regulate photosynthetic machinery to acclimate different
growth conditions including changes in irradiance (Yamori et al.,
2010a; Huang et al., 2014; Zivcak et al., 2014b), nutrients
(Hikosaka, 1996; Kalaji et al., 2014), temperature (Yamori et al.,
2010b, 2011), and water availability (Lehtimaki et al., 2010).

The shade leaves have a high capacity of light reactions as
compared to the capacity of the sink. Because of this, chilling-
light treatment is able to induce higher lumenal protonation
in the shade leaves than the sun leaves, resulting in slow-
down of cytochrome b6/f in the shade leaves (Tikkanen and
Aro, 2014). The sun leaves had higher alternative electron flow
than the shade leaves. Furthermore, the higher qL values at
chilling-light stress indicated higher alternative electron sinks
such as photoreduction of O2 that produces O2

−, causing
stronger PSI photoinhibition in the sun leaves. Furthermore,
the lower connectivity between PSII units in the shade leaves
limited electron transport between PSII and PSI (Zivcak et al.,
2014a), which alleviated PSI photoinhibition at chilling-light
stress. When PSII photoinhibition was aggravated by the addition
of lincomycin, PSI activity was insusceptible to chilling-light
stress in both sun and shade leaf types, as a result of lower
qL values and higher Y(ND) values. Therefore, moderate PSII
photoinhibition depressed the electron flow from PSII to PSI
and thus alleviated PSI photoinhibition. Our results strongly
supported the hypothesis that photoinhibition of PSI occurs
only when electron flow to PSI exceeds the capacity of PSI
electron acceptors as proposed by recent studies (Suorsa et al.,
2012; Tikkanen and Aro, 2014; Tikkanen et al., 2014). Because
of the importance of PSI in photosynthetic regulation, when
tobacco sun leaves are exposed to long-term chilling-light stress,
a strong irreversible photodamage of PSI can lead to severe
photoinhibition of PSII and finally to the death of the plant.
During the short-term chilling treatment, PSII photoinhibition
can be regarded as an important mechanism protecting PSI
against further photoinhibition in tobacco.
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