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Boron is an important micronutrient for plants. However, boron is also toxic to cells at
high concentrations, although the mechanism of this toxicity is not known. This study
aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth
and its possible regulatory pathway. Our results showed that a high concentration
of boron inhibited pollen germination and tube growth and led to the morphological
abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective
electrode technique detected that boron toxicity could decrease [Ca2+]c and induce
the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar
growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization
and fluorescence labeling, together with fourier-transform infrared analysis, suggested
that boron toxicity influenced the accumulation and distribution of callose, de-esterified
pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above
results provide new insights into the regulatory role of boron in pollen tube development.
In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c,
actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen
germination and tube polar growth.
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INTRODUCTION

Boron is an essential micronutrient for the normal development of higher plants (Blevins
and Lukaszewski, 1998). Its main role is to form borate-diol ester bonds to link two
rhamnogalacturonan II (RGII) chains of pectic polysaccharide (Pérez-Castro et al., 2012;
Funakawa and Miwa, 2015). Recent research illustrated that boron also cross-link glycosylinositol
phosphorylcer amides of the plasma membrane with arabinogalactan proteins (AGPs) of the cell
wall, thereby attaching the membrane to the cell wall (Tenhaken, 2014; Voxeur and Fry, 2014).
Thus, boron is known to affect the mechanical properties of the cell wall (Dumont et al., 2014).
There is a narrow range of favorable boron concentrations for plant development. Abnormal
levels of boron can be toxic or can trigger deficiency symptoms (Pérez-Castro et al., 2012). The
optimum boron level for one species can be either toxic or insufficient for other species (Blevins
and Lukaszewski, 1998). Boron toxicity is an important agricultural problem that limits crop
productivity (Nable et al., 1997) and attracts increase interest. Boron toxicity has been shown to
affect several developmental or biochemical processes in plants (Sakamoto et al., 2011), including
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inhibiting the formation of glutathione (Ruiz et al., 2003) and
tocopherol (Keles et al., 2004), reducing root cell division
(Aquea et al., 2012), and shoot cell wall expansion (Loomis
and Durst, 1992), decreasing fruit number, size and weight,
formatting reactive oxygen species(ROSs) (Paull et al., 1992;
Nable et al., 1997; Karabal et al., 2003; Cervilla et al., 2007),
increasing oxidative damage (Gunes et al., 2006; Molassiotis
et al., 2006; Sotiropoulos et al., 2006), affecting the photosynthesis
and antioxidant apparatus (Landi et al., 2013), and leading to
DNA damage (Sakamoto et al., 2011). A cDNA-AFLP analysis
revealed that long-term boron stress induced changes related to
signal transduction, metabolism of carbohydrate, energy, nucleic
acid, protein, amino acid and lipid, cell wall and cytoskeleton
modification, stress responses, and cell transport in Citrus grandis
and Citrus sinensis (Guo et al., 2014). Furthermore, several genes
involved in plant tolerance to boron stress have been identified,
including Arabidopsis thaliana BOR4 and TIP5;1 (Miwa et al.,
2007; Pang et al., 2010), barley (Hordeu mvulgare) Bot1 (Sutton
et al., 2007), wheat and barley HvBOR2 (Reid, 2007), and
citrus (Citrus macrophylla) CmBOR1 (Cañon et al., 2013). These
genes encode transport molecules that exclude excess boron
or regulate intracellular boron homeostasis to prevent boron
stress (Sakamoto et al., 2011). Although a number of studies
have been performed in this field, as described above, the
effects of boron toxicity on sexual plant reproduction remain
largely unknown.

Pollen tubes represent a fast growing system that requires
boron to germinate and maintain tube elongation (Taylor and
Hepler, 1997), making it a good system with which to investigate
the influence of boron toxicity. Pollen tubes are cells that
grow from their tips, whose elongation exhibits a polarized
pattern (Hao et al., 2013). During the process of pollen tube
growth, large amounts of membrane, and cell wall precursors
are transported by the secretory vesicles derived from the Golgi
apparatus to the tip to form the new cell wall and thus lead
to pollen tube elongation (Taylor and Hepler, 1997; Ketelaar
et al., 2008; Moscatelli and Idilli, 2009; Zhang et al., 2010;
Bou and Geitmann, 2011). The pollen tube wall is mainly
composed by cellulose, callose, and pectins, among which the
pectins seem to be the major component of the cell wall (Li
et al., 1996, 2002; Ferguson et al., 1998). The Golgi apparatus
produced esterified pectin residues and the latter is secreted at
the extreme apex of the pollen tube (Hasegawa et al., 1998).
The esterified pectins are de-esterified by the enzyme pectin
methyl-esterase (PME) when arrival at the cell wall (Geitmann,
1999; Li et al., 2002). De-esterification of pectin produces acidic
residue which cross-links Ca2+ ions to form a semi rigid
pectate gel (Braccini and Perez, 2001), thus providing mechanical
support for the elongating tube. Esterified pectins are mainly
present at the apex and speculated to allow tube expansion
(Franklin-Tong, 1999). Therefore, de-esterified and esterified
pectins control jointly the growth of plant cell (Wolf and Greiner,
2012).

Boron is necessary for pollen tubes (Obermeyer et al., 1996),
and affects pollen tube morphology and tube growth (Dickinson,
1978; Holdaway-Clarke and Hepler, 2003). However, few data are
available on the effects of boron toxicity on pollen germination

and tube growth. The detailed regulatory effects of boron toxicity
on pollen tube development remain to be elucidated.

In the present study, Malus domestica pollen was chosen
as the material with which to study the influence of boron
toxicity on germination and pollen tube growth, focusing on
the dynamics of calcium, actin, and cell wall components. Our
results revealed that boron toxicity could interrupt the calcium
gradient at the tip of a pollen tube and block its polar growth,
likely via disturbing the actin organization and thus disturbing
the cell wall material directional transportation and cell wall
construction.

MATERIALS AND METHODS

Plant Materials and Pollen Culture
Mature pollen grains were collected from Malus domestica trees
grown in Henan Province on April 10, 2014. The collected pollen
grains were dried on paper towels and then stored in vials
at−20◦C until use.

The basal medium for pollen tube growth was composed by
20% (w/v) sucrose and 0.01% CaCl2, pH 6.8. Pollen grains was
placed into culture medium in concentration of 1.0 mg mL−1.
Different concentrations of boric acid (Sigma, St. Louis, MO,
USA) was added to the medium at the beginning of incubation.
The culture with shake for 100 rpm at 30◦C in the darkness.

Method of Dafni (2000) was used to determine the pollen
germination rates under BX51 microscope which is equipped
with a CoolSNAP HQ CCD camera (Photometrics) after 2 h of
incubation. The lengths of pollen tubes were measured using
MetaMorph (Universal Imaging) after 2 h of incubation. All
experiments were performed in triplicate and at least 150 pollen
tubes were measured in each experiment. Viability of the pollen
tube was detect with fluorescein diacetate (FDA) according to
Chebli et al. (2013).

Measurement of Extracellular Ca2+Influx
Net Ca2+ fluxes of pollen tubes were measured in the
Younger USANMT Service Center (Xuyue Beijing) using a
Non-invasive Micro-test Technique (NMT-YG-100, Younger
USALLC, Amherst, MA01002, USA) with the ASET 2.0
(Sciencewares, Falmouth, MA 02540, USA) and the iFluxes
1.0 (Younger USA, LLC, Amherst, MA 01002, USA) software
packages (Wang et al., 2013). Excel sheet (Microsoft) was
employed to analyze the obtained data and convert data into ion
influx (pmol cm−2 sec−1) accordingly.

Labeling of Cytoplasmic [Ca2+]c
Fluo-3/AM ester was loaded into pollen tubes to label cytoplasmic
[Ca2+]c at low temperature in the dark at a final concentration of
10 µM, as described previously (Zhang and Renzel, 1998). After
1 h of incubation, the pollen tubes were washed with standard
medium several times and placed under room temperature for
1 h. After that the pollen tubes photographed using a Leica
TCS SP5 laser-scanning confocal microscope (LSCM) (Leica
Co., Germany) with excitation at 488 nm and emission at
515 nm.
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Fluorescent Labeling of Actin Filament
Fluorescent labeling of actin filament was according to Hao et al.
(2013). Control and boron toxicity treated pollen tubes were
fixed in a freshly prepared solution of 4% paraformaldehyde in
PBS (pH 6.9) for 1.5 h at room temperature, followed by three
washes with PBS, and treated with enzyme solution containing
1% cellulase R-10 and 1% pectinase at 37◦C for 15 min. Then the
pollen tubes were washed in PBS, and incubated in 1% Triton X-
100 at room temperature for 1 h. After three times with PBS, the
pollen tubes were incubated in 0.2 µM phalloidin-FITC (Sigma,
USA) in PBS (pH 6.9) buffer for 2 h in darkness (Hao et al., 2013).
Then, the pollen tubes were washed with PBS and observed under
the LSCM with Excitation at 488 nm and emission at 515 nm.

Localization and Analysis of Cell Wall
Components
Calcofluor was employed to stain cellulose as described by
Lazzaro et al. (2003), callose was stained with 0.05% aniline
blue according to Chen et al. (2007). The stained pollen tubes
were observed and photographed under a FSX100 microscope
(Olympus, Japan). Method described by Chen et al. (2007) was
used to label pectins and AGPs of pollen tubes. The labeled pollen
tubes were observed under the LSCM with excitation at 488 nm
and emission at 515 nm. Values for fluorescence intensity was
analyzed according to Chebli et al. (2013). At least 10 tubes
were analyzed for each treatment, which was repeated three
times. Fourier Transform Infrared (FTIR) spectroscopy analysis
of wall components was performed according to Hao et al. (2013).
At least 10 tubes were analyzed for each treatment, which was
repeated three times.

RESULTS

Boron Toxicity Affected Pollen
Germination and Tube Growth
Boron affected pollen tube morphology (Figure 1). In
germination medium including 20% sucrose, 0.015% CaCl2
and 0.01% H3BO3, pollen tubes appeared healthy with a regular
shape. The constant diameter is illustrated in Figure 1A. The
morphology of pollen tubes treated with high concentrations of
boron was abnormal: the pollen tube was short, the tip of the tube
swelled, and the diameter of the tube increased (Figures 1B,C).
Strong FDA fluorescence indicated the viability of the swollen
tube (Figure 1D).

Boron affects pollen germination and tube growth in a dose-
dependent manner. Apple pollen grain has been reported to
contain 55.45 µg/g boron (Gao et al., 2014), and our results
showed that the endogenous levels were able to support pollen
germination. At low concentrations, boron stimulated pollen
germination and tube growth. Above 0.02%, boron inhibited
pollen germination and tube growth. In the presence of 0.2%
boric acid, the germination percentage was 12.87%, much lower
than the 60.25% germination of the control pollen grains
(Figure 2A). The average growth rate of pollen tubes treated
with 0.2% boric acid was distinctly slower than for the control:

FIGURE 1 | Morphology of Malus domestica pollen tube under boron
toxicity. (A) Morphology of a control pollen tube with slender diameter and
straight shape. (B) Morphology of a pollen tube treated with 0.2% boric acid,
showing an abnormal tube. (C) Abnormal pollen tubes showing the twisted
morphology and swollen tip, respectively. (D) Fluorescein diacetate (FDA)
fluorescence indicated viability of the swollen pollen tube. Scale bar: 50 µm.

the average growth rate of control pollen tubes was 163.7 µm/h,
whereas the growth rate was only 30.65 µm/h in the presence of
0.2% boric acid (Figure 2B).

Boron Toxicity Induced a Decrease in
[Ca2+]c Concentration and
Disappearance of the [Ca2+]c Gradient
Ca2+ influx was measured at the extreme apex of the growing
pollen tubes using a vibrating electrode technique (non-invasive
micro-test technique). The results showed that Ca2+ influx was
equal to efflux in the control tube apex at 2 h after culture. The
magnitude of Ca2+ influx at the extreme apex was increased upon
0.2% boric acid treatment (Figures 3A,B).

Furthermore, [Ca2+]c was detected using Fluo-3/AM in
pollen tubes. The control pollen tube tips showed a representative
[Ca2+]c gradient within 20–30 µm (Figure 3B), while the pollen
tubes treated with 0.2% boric acid showed very weak [Ca2+]c
fluorescence in their swollen tips compared to the control,
and the [Ca2+]c distribution was totally altered, (Figure 3C,
Supplementary Figure S1a) indicating that boron toxicity led to
the disappearance of the [Ca2+]c gradient.

Boron Toxicity Varied the Actin Filaments
Actin filaments take an active part in vesicle trafficking, cell
wall construction, and tip growth of pollen tubes (Hao et al.,
2013). Thus, the actin cytoskeleton in control and boron toxicity-
treated pollen tubes was compared. As observed by LSCM, the
actin filaments showed a contiguous bundle through the tube,
which was parallel to the growth axis in the control pollen
tubes (Figures 4A,A1). However, under boron toxicity, the actin
filaments were clearly twisted and condensed. The disrupted
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FIGURE 2 | Effect of different concentrations of boric acid on Malus domestica pollen germination and tube length. (A) Effect of different concentrations
of boric acid on pollen germination. (B) Effect of different concentrations of boric acid on tube growth.

FIGURE 3 | Effect of boron toxicity on the influx of calcium at the apex of Malus domestica pollen tube and [Ca2+]c. Bar = 25 µm. (A) Influx of calcium in
the apex of a pollen tube at different time points. The blue line represents the CK, and the green line represents pollen treated with 0.2% boric acid. (B) The [Ca2+]c
gradient at the apex of the control pollen tube. (C) Very weak fluorescence was detected at the apex of the pollen tube under boron toxicity, indicating the
disappearance of the Ca2+ gradient.

actin filament fragments accumulated into clusters with a very
strong signal in the apical region (Figures 4B,B1, Supplementary
Figure S1b).

Effect of Boron Toxicity on Cellulose and
Callose Deposition on the Pollen Tube
Wall
As shown in Figure 5, boron toxicity did not alter the distributive
pattern and deposition of the cellulose in pollen tube wall
(Figures 5A,B,E). Aniline blue staining showed that callose was
present evenly along the tube except for the tip in control pollen
tubes (Figures 5C,C1). On the contrary, strong fluorescence

was observed in the pollen tube tip treated by boron toxicity,
suggesting enhanced callose deposition at the tip in response to
boron toxicity (Figures 5D,D1,F).

Impact of Boron Toxicity on Pectin and
AGP Deposition on Pollen Tube Wall
In the control pollen tubes, the distribution of JIM5-labeled (de-
esterified or acid) pectin was relatively uniform, with much at
the basal part near the grain and less at the tip (Figures 6A,A1),
whereas the localization of JIM7-binding (esterified) pectin was
relatively uniform, with stronger fluorescence at the apex of
the growing tubes (Figures 6C,C1,E). Both types of pectin
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FIGURE 4 | Actin filaments of Malus domestica pollen tube in normal and boron toxicity media. (A) Actin filament paralleled with the pollen tube in the
normal culture medium. (A1) Corresponding bright field image of (A). (B) Actin filaments showed serious fracture at the apical part of the pollen tube treated
with0.2% boric acid. (B1) Corresponding bright field image of B. Scale bar: 25 µm.

showed a polar distribution. By contrast, more de-esterified
pectin was detected along the entire tube (Figures 6B,B1) and
more esterified pectin was detected on the entire pollen tube
under boron toxicity (Figures 6D,D1,F). That is, no obvious
polar distribution of pectin was observed in these pollen tubes.

Boron toxicity clearly disrupted the distribution pattern
of AGPs. The typical characteristic AGP distribution on the
pollen tube wall is a periodic ring-like pattern with a stronger
signal in the basal part and weaker signals at the apex
(Figures 7A,A1). However, under boron toxicity, the typical
pattern disappeared. Instead, continued but irregular deposition
was observed (Figures 7B,B1). Quantitative analysis of the
fluorescence signal of AGPs in the wall indicated that boron
toxicity induced more AGP accumulation in the pole of the tube
(Figure 7C).

FTIR Spectroscopy Analysis of Pollen
Tube Wall Components
Representative FTIR spectra gained from the tip domain of
control and 0.2% boric acid-treated pollen tubes are shown in
Figure 8. For the control pollen, saturated esters absorbed at
1740 cm−1, amide stretching bands of proteins absorbed at 1638
and 1529 cm−1, carboxylic acid groups absorbed at 1457 cm−1,
and carbohydrates absorbed between 1200 and 900 cm−1. In
the presence of 0.2% boric acid, the ester peak at 1738 cm−1

was increased, free acid stretched at 1455 cm−1, and the amide
stretching bands of proteins absorbing at 1628 and 1515 cm−1

were increased, indicating that pollen tubes under boron toxicity
showed increased esterified pectins, acid pectins and AGPs
compared with the values in normal pollen tubes.

DISCUSSION

Boron toxicity has been report to affect various developmental
processes in plants (Nable et al., 1990, 1997; Reid, 2007; Guo
et al., 2014). Baluška et al. (2003) reported that interactions

between pectins, boron, and the cytoskeleton were important
for the assembly of the cell wall-cytoskeleton continuum as well
as for its maintenance via signal-mediated processes. So the
changes in boron concentrations may cause to a mechanical
cascade of signals extending into the cytoplasm via the cell wall-
plasma membrane-cytoskeleton continuum, with the possible
involvement of AGPs (Camacho-Cristóbal et al., 2008). The
hypothesis is sustained by the researches that boron deficiency
resulted in an varied polymerization pattern of cytoskeletal
proteins (Yu et al., 2001, 2003) and in inhibition of the endocytic
pathway for the internalization of B-cross-linked RG-II pectins
(Yu et al., 2002). Our present work provides novel evidence for
this proposal.

Boron Toxicity Induced a Decrease of
[Ca2+]c and Disappearance of the
[Ca2+]c Gradient
It has been appreciated that Ca2+ plays a key role in determining
the structure and function of the cell wall (Hepler, 2005).
The apical wall of normal pollen tube consists almost entirely
of pectin, with cellulose and callose being located behind the
apex (Ferguson et al., 1998). Ca2+ affected the mechanical
properties of the cell wall through cross-linking de-esterified
HG of pectin (Peaucelle et al., 2012). As a consequence, when
the [Ca2+] is lowered sufficiently the pollen tube wall loses its
structural integrity and therefore bursts, whereas when [Ca2+]
is high, the pectin chains will be cross-linked and aggregated,
and the wall maximally rigidified (Hepler and Winship, 2010).
Picton and Steer (1983) stated that the permissive [Ca2+]
for pollen tubes extends between 10 µM to10 mM. Because
20–30% of the newly deposited pectin will be de-esterified,
there will be always an immediate need for Ca2+ by the
growing pollen tube (Hepler and Winship, 2010). Ca2+ has
been reported to be involved in the signal transduction pathway
of boron deficiency (González-Fontes et al., 2014), which was
supported by the reports that boron deficiency increased the
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FIGURE 5 | Effect of boron toxicity on the distribution of cellulose and callosein the Malus domestica pollen tube. (A) Cellulose distributed on the whole
control pollen tube indicated by fluorescence of calcofluor. (A1) Corresponding bright field image of A. (B) Boron toxicity treated pollen tube showed more cellulose
at the pollen tube tip indicated by fluorescence of calcofluor. (B1) Corresponding bright field image of B. (C) Callose was distributed along the entire length of the
control pollen tube except the apex. (C1) Corresponding bright field image of C. (D) Strong fluorescence was detected along the entire pollen tube treated by boron
toxicity, including the apex, indicating more callose accumulation at the apex under boron toxicity. (D1) Corresponding bright field image of D. (E) Quantitative
analysis of the florescent signal of cellulose in the wall of control pollen tubes (CK, pink line) and tubes under boron toxicity (0.2% boric acid, blue line).
(F) Quantitative analysis of the fluorescent signal of callose in the wall of control pollen tubes (CK, pink line) and tubes under boron toxicity (0.2% boric acid, blue
line). Scale bar: 25 µm.

levels of cytosolic Ca2+ in tobacco BY-2 cells (Koshiba et al.,
2010) and Arabidopsis thaliana roots (Quiles-Pando et al.,
2013).

In the present study, we revealed that boron toxicity induced
a decrease in [Ca2+]c concentration and a disappearance of the
[Ca2+]c gradient, suggesting the sensitive and critical role of
Ca2+ in boron signaling in the proposed mechanical cascade of
signals which extended from cell wall to the cytoplasm via the

cell wall-plasma membrane-cytoskeleton continuum (Camacho-
Cristóbal et al., 2008). Calcium is likely a major element in
transmitting boron signals and modulating cytoplasmic activities.
We speculate that excessive boron first binds to pectin in
the wall of the pollen tube and provides many more binding
sites for calcium, which results in a [Ca2+]c decrease and
the disappearance of the calcium gradient in the tip of the
pollen tube, resulting in irregular pollen tube growth. Although
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FIGURE 6 | Effect of boron toxicity on the distribution of acid and esterified pectins, respectively. (A) Fluorescence by JIM5 labeling of control pollen tubes
with much acid pectin at the basal part and less in the apex. (A1) Corresponding bright field image of a. (B) Fluorescence indicated more acid pectins in the apex of
the boron toxicity-treated pollen tube. (B1) Corresponding bright field image of b. (C) Fluorescence from JIM7 labeling of control pollen tube with much esterified
pectin in the apex. (C1) Corresponding bright field image of c. (D) Fluorescence was observed evenly along the tube after antibody JIM7 labeling of pollen tubes in
the presence of boron toxicity. (D1) Corresponding bright field image of d. (E) Quantitative analysis of the fluorescence signal of acid pectins in the wall of control
pollen tubes (CK, pink line) and tubes under boron toxicity (0.2% boric acid, blue line). (F) Quantitative analysis of the fluorescence signal of esterified pectins in the
wall of the control pollen tubes (CK, pink line) and tubes under boron toxicity (0.2% boric acid, blue line). Scale bar: 25 µm.

more evidence is needed to support this proposal, our results
indicated that calcium might be involved in the responses
to boron toxicity.

Boron Toxicity Disturbed the Actin
Filaments
Boron deficiency induced alteration of cytoskeleton biosynthesis
(Yu et al., 2001, 2002), suggesting that a linkage between
boron and cytoskeleton may exist. Previous evidence indicates
that actin filaments play an essential role in the transport of
secretory vesicles and pollen tube growth (Cárdenas et al.,
2008; Fu, 2015; Qu et al., 2015). In normal pollen tubes, actin
filaments are reported to be arrayed in bundles and extend
the subapical region (Shi and Yang, 2010). It was reported that
there exists crosstalk between calcium signaling and cytoskeleton
in the pollen tube, while Ca2+ is a central factor controlling
the transition from G-actin in the tube apex to the F-actin
cables in the shank (Shi and Yang, 2010). These results suggest
that Ca2+ is critical for the actin organization in pollen
tubes.

In the present research, we have revealed that actin
organization is sensitive to boron toxicity. Both the specialized
structure and distribution were clearly disturbed in pollen
tubes under boron toxicity. This abnormal appearance of actin
organization was coupled with decreased [Ca2+]c and the
disappearance of the [Ca2+]c gradient in pollen tubes under
boron toxicity. Based on the previous findings noted above, it
is reasonable to speculate that actin organization abnormality
might result from boron toxicity-induced low [Ca2+]c. It is likely
that boron toxicity signaling is mediated by calcium dynamics to
achieve the cytoplasmic response.

Boron Toxicity Altered the Deposition of
Pollen Tube Wall Components
Boron toxicity affects the morphology of pollen tube, thus we
want to know whether the tube wall composition was affected
by boron toxicity. Results showed that cellulose was present
throughout the pollen tube wall under normal conditions and
under boron toxicity. Boron toxicity showed no obvious effect
on the cellulose deposition of the pollen tube. Callose can be
synthesized in the normal pollen tube walls (Qin et al., 2012). In
addition, callose is distributed at the tips of abnormal pollen tubes
(Hao et al., 2013). Our results showed that boron toxicity altered
the deposition pattern of the callose in the pollen tube walls of
Malus domestica. In the control pollen tube, callose was detected
along the entire pollen tube except for the tip, but in the presence
of boron toxicity, callose was distributed along the entire tube
including the tip.

Beside cellulose and callose, pectin is an important
composition of the pollen tube wall. Pectin is secreted mainly as
methoxy-esters, and later de-esterified t by the enzyme pectin
methyl esterase (PME) (Bosch and Hepler, 2005; Peaucelle
et al., 2012). Plant cell wall also contains essential minerals
including calcium and boron, which are necessary for formation
of networks of pectic polysaccharides in cell walls. The extent
and strength of Ca2+ cross-linking depend on the acidic residue
of the de-esterified pectins (Hepler and Winship, 2010). Research
by Fang et al. (2008) illustrated that pectin associates with
carboxyl moieties which participate in binding with free Ca2+

to form plastic gels. Ngouémazong et al. (2012) reported that at
high [Ca2+], with a low degree of methoxylation, pectins reach
maximum strength. According to the previous studies, pollen
tube growth is speculated to depend on a balance between the
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FIGURE 7 | Influence of boron toxicity on the distribution of arabinogalactan proteins (AGPs) in Malus domestica pollen tubes. (A) Fluorescence after
antibody LM2 labeling of pollen tubes cultured in normal medium, indicating more AGPs in the basal part and decreasing levels from the base to the pollen tip.
(A1) Corresponding bright field image of (A). (B) Fluorescence was observed throughout the entire tube; note the irregular distribution. (B1) Corresponding bright
field image of (B). (C) Quantitative analysis of fluorescence signal of AGPs in the wall of control pollen tubes (CK, pink line) and boron toxicity-treated tubes (0.2%
boric acid, blue line). Scale bar: 25 µm.

number of available acidic residues and the [Ca2+]. That is too
few acidic groups or too little Ca2+ will lead to the pollen tube
burst, but too many acidic groups and/or too much Ca2+ will
result in overly cross-linked wall and therefore pollen tube can’t
extend (Hepler and Winship, 2010). Our immunolabeling results
showed that in the boron toxicity-treated pollen tube, there
was more acidic pectin, which could create more binding sites
for calcium and thus result in less calcium ion in the cytoplast.
Therefore, the ratio of de-esterified pectin to esterified pectin
plays a critical role in the adjustment of the cytoplasmic calcium
level and in the transmission of boron toxicity-induced effects on
pollen tube growth.

Arabinogalactan proteins are proteins which exist in plant
and distribute through different developmental stages (Pereira
et al., 2014). AGPs can interact with pectins or other

cell wall-localized proteins (Baldwin et al., 1993; Showalter,
2001). Recent researches have enhanced our understanding
of AGP’s role in plant (Lamport and Várnai, 2013; Lamport
et al., 2014). AGPs may play an essential role in the boron
deficiency signal transduction by binding Ca2+ (González-
Fontes et al., 2014). In the present study, AGPs were
deposited by LM2, indicating that boron toxicity caused
AGPs to accumulate throughout the pollen tube except
the basal part near the grain, instead of the characteristic
periodic ring-like deposits with less signal at the tip. Boron
toxicity changed the distribution pattern and quantity of
AGPs, which may interlink with calcium and actin alteration.
More AGPs might bind to more calcium and result in low
[Ca2+]c. These findings indicated that boron toxicity induced
reconstruct of tip cell wall components, resulting in cell
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FIGURE 8 | Fourier-transform infrared analysis spectra from the tip regions of Malus domestica pollen tubes (control pollen tube: CK; pink), pollen
tubes treated with 0.2% boric acid medium (blue, 0.2% H3BO3) and the FTIR differential spectrum (red) generated by digital subtraction of the pink
spectra (CK) from the blue spectra (0.2% H3BO3).

wall rigidity/extensibility changes and subsequent slowing and
cessation of growth.

It can be expected that boron toxicity alters the cell wall
structure, and a rapid change in the mechanical strength of
the cell wall occurs. This effect triggers a mechanical cascade
of signals through the cell wall-plasma membrane-cytoskeleton
continuum, in which AGPs most likely take an active part
(Goldbach and Wimmer, 2007). This expectation agrees with the
structural modification of the cell wall pectin and cytoskeleton
under boron toxicity in this research.

Boron toxicity is an important agricultural problem that limits
crop productivity, however, under boron stress condition, how
much boron could accumulated in style and directly regulate
pollen tube growth remains unknown. Therefore, in vitro test the
influence of the high boron on pollen tube growth will provide
useful clue to understand possible response of pollen tube to the
stress.

In the low rainfall and on highly alkaline and saline soil where
the rate of boron is over 2.0 mg/L, there is boron pollution and
consequently decreases in production and defect in the products
can be seen (Ozturk et al., 2010). When boron is present at high
concentrations in the soil or ground water, plant growth, and
reproduction can be affected by boron toxicity (Roessner et al.,
2006). So boron toxicity has been recognized as an important
problem limiting crop production. Following long-term exposure
to high B concentrations, overall vegetative plant growth is
retarded and this leads to either a reduction in or a complete lack
of seed set (Roessner et al., 2006).

Application of boron fertilizer in soil and boron foliar
application appear worthwhile in the field. Both of the methods
increased the boron concentration in various parts of the plant

(Asad et al., 2003). There are no data on boron concentration in
style and how much boron pollen tube could absorb from style
so far. However, based on the previous study mentioned above,
the concentration of boron in style increases if the plant grows
under high boron. Whether the boron concentrations used in the
present study is similar to the in vivo values need further research.

Our in vitro test illustrated that 0.2% boron inhibited Malus
domestica pollen germination and arrested pollen tube growth.
Based on this, if boron foliar application or boron in the soil at
high concentrations leads to similar boron concentration in style,
it will be harmful to pollen tube growth.

In brief, our investigation of the effects of boron toxicity
on Malus domestica pollen tubes provides an extensive
understanding of the role of boron in the polarized tip growth of
pollen tubes. We found that boron toxicity decreases [Ca2+]c,
inducing the disappearance of the [Ca2+]c gradient and altering
actin filament organization. The distorted actin filament may
disturb transport of the wall precursor to the pollen tube wall,
resulting in defects in cell wall construction and variations in
pollen tube tip growth. This research provides new insights into
the boron function in pollen tube growth and valuable evidence
for the previous proposal that boron may lead to a mechanical
cascade of signals from the wall to the cytoplasm through the cell
wall-plasma membrane-cytoskeleton continuum.
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