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Even though resistance (R) genes are among the most studied components of the
plant immunity, there remain still a lot of aspects to be explained about the regulation
of their function. Many gain-of-function mutants of R genes and loss-of-function of
their regulators often demonstrate up-regulated defense responses in combination with
dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants,
phenotypes are a consequence of an ectopic activation of R genes. Based on the
compilation and comparison of published results in this field, we have concluded that
the constitutively activated defense phenotypes recurrently arise by disruption of tight,
constitutive and multilevel negative control of some of R proteins that might involve
also their targeting to the autophagy pathway. This mode of R protein regulation is
supported also by protein–protein interactions listed in available databases, as well as
in silico search for autophagy machinery interacting motifs. The suggested model could
resolve some explanatory discrepancies found in the studies of the immunity responses
of autophagy mutants.
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INTRODUCTION

There are several approaches how to study and classify the plant immunity related events, and
the most widespread is division of the plant immunity into two modes – a pathogen-associated
molecular patterns (PAMPs) triggered immunity (PTI), which is triggered usually by recognition of
structural components of pathogen on the surface of the host cell, and effector triggered immunity
(ETI; Jones and Dangl, 2006). These two defense modes employ basically the same means, but PTI
is more general and mild, while ETI is much stronger and more efficient. ETI is triggered by the
direct or indirect interaction between a specific disease resistance (R) protein and a corresponding
avirulence (Avr) protein of pathogen and is accompanied by a number of changes within the plant –
production of reactive oxygen species (ROS) by an oxidative burst, accumulation of the salicylic
acid (SA), and the transcriptional activation of genes involved in defense response, that lead to
a possible final stage – localized programmed cell death called the hypersensitive response (HR;
Pontier et al., 1998; review in McDowell and Woffenden, 2003; Vlot et al., 2008).

Disease resistance (R) genes are central components of the plant immune response. All R
proteins contain at least some of basic motifs – either Toll/interleukin-1 receptor (TIR) or coiled-
coil (CC) structure on the N terminal part, nucleotide-binding site (NBS), leucine-rich repeat
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(LRR), protein kinase and transmembrane domains (review by
Martin, 1999; Liu et al., 2007). There are 145 putative genes
encoding a product with a TIR domain and 51 with CC domain
predicted in the Arabidopsis thaliana Col-0 genome (Meyers
et al., 2003; Jacob et al., 2013). Majority encode proteins with
TIR, NBS, and LRR domains, making the TNL group; some genes
encode proteins with TIR and NBS domains but no LRR domain
(TN genes) and some encode proteins with a TIR domain only
(TX genes; Meyers et al., 2003; Nandety et al., 2013). Besides CC-
NBS-LRR containing proteins which make CNL group, there are
also four proteins that have NBS motifs similar to CNLs, but lack
a CC motif (Meyers et al., 2003).

There are several important molecules involved in signaling
downstream the successful R-Avr recognition – ENHANCED
DISEASE SENSITIVITY 1 (EDS1), PHYTOALEXIN
DEFICIENT 4 (PAD4), NON-RACE SPECIFIC DISEASE
RESISTANCE 1 (NDR1) and SENESCENCE ASSOCIATED
GENE 101 (SAG101), which are essential for the accomplishment
of HR and for the accumulation of the SA. EDS1, PAD4 and
SAG101 are involved in transferring signals mainly from TNL
proteins, while CNL pathway mostly relies on signaling through
NDR1 (Century et al., 1997; Feys et al., 2001; He and Gan, 2002;
Wagner et al., 2013).

In Arabidopsis mutants in genes coding for R and R-associated
proteins, along with defense related deviations, two other most
frequent phenotypes are a dwarf stature and a spontaneous
HR lesion formation; many times present even simultaneously
(Table 1). Rarely, a lethal phenotype occurs as well, even though
no developmental function for these genes has been found so
far. We could notice that for most of the R genes mutants,
described phenotypes are a consequence of their activation, in
some cases even a gain of function mutations (GOF). Based
on the comparison of different studies of plant immunity, our
hypothesis aims to suggest a model in which the hyper immune
phenotypes arise as a result of disruption of tight, multistep and
constitutive negative control of R proteins that possibly involves
also their inactivation by the autophagy pathway.

OF DWARFS AND LESIONS

It was shown that mutants with over activated R protein
dependent defense response develop mostly two phenotypes –
dwarfism and/or necrotic leaf lesions (reviewed e.g., in Lorrain
et al., 2003 and Janda and Ruelland, 2014). For instance, in plants
overexpressing a CNL gene ACTIVATED DISEASE RESISTANCE
1 (ADR1), a constitutive defense response and a dwarf phenotype
were found (Grant et al., 2003). A TNL protein SUPPRESSOR
OF NPR1 CONSTITUTIVE 1 (SNC1) was found to be
overactive in the bonzai1-1 (bon1-1) mutant which also shows
a constitutive defense response and reduced plant size (Yang
and Hua, 2004). Along with bon1, several other autoimmune
dwarf mutations were found to be suppressed by mutation
of SNC1 locus; namely in BON1-ASSOCIATED PROTEIN
(bap1), BAK1-INTERACTING RECEPTOR-LIKE KINASE 1
(bir1), SUPPRESSOR OF RPS4-RLD 1 (srfr1), CONSTITUTIVE
EXPRESSER OF PATHOGENESIS-RELATED GENE (cpr1) and

MITOGEN-ACTIVATED PROTEIN KINASE 1 (mpk1; review
in Gou and Hua, 2012). Plants overexpressing a TIR-X gene
At2g32140 show also dwarf phenotype and activated expression
of defense-related genes (Kato et al., 2014). This phenotype
was dependent on EDS1, PAD4, and partially dependent on
SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2).

HR-like spontaneous leaf necrotic lesions were found to
be even more frequently associated with the mutations in R
genes and constitutively activated immunity. For instance, a
GOF mutant in TNL RPP4 locus called chilling sensitive 2
(chs2) shows lesions in the low temperature conditions (Huang
et al., 2010). GOF Arabidopsis mutant in the other CHS gene,
chs3-1, which encodes an unconventional disease resistance
(R) protein belonging to the TIR-NB-LRR class with a zinc-
binding LIM domain (Lin-11, Isl-1 and Mec-3 domains) at
the carboxyl terminus, shows arrested growth, chlorosis and
constitutively activated defence responses at 16◦C (Yang et al.,
2010). A mutant in TNL gene ssi4 develops chlorotic lesions
which can be suppressed by high humidity (Shirano et al.,
2002; Zhou et al., 2004). In addition, there are several examples
of mutants with spontaneous lesions induction which are
suppressed by mutations in loci encoding R proteins of CNL
type – ACTIVATED DISEASE RESISTANCE 1 – adr1, adr1-l1
and adr1-l2 suppress LESION SIMULATING DISEASE 1 (lsd1) by
down regulating SA signaling (Bonardi et al., 2011; Roberts et al.,
2013). Likewise, when a putative TNL encoded by LAZARUS 5
(LAZ5) gene is mutated, accelerated cell death 11 (acd11) lesion
phenotype can be suppressed (Palma et al., 2010). It was also
shown, that in the absence of the copine-like proteins BON1 and
BON3 function, several R-like genes of the TNL/TN type were
found to trigger lesion cell death (LCD; Li et al., 2009). Mutation
in SUPPRESSOR OF MKK1 MKK2 2 (summ2) which encodes
putative NB-LRR, suppresses lesions formation and dwarfism of
mutants of MAP kinase pathway mkk1/mkk2 and mpk4 (Kong
et al., 2012).

There are genes coding for other defense related components
that when mutated trigger the same constitutive immunity
activation and dwarf or/and lesion mimic phenotypes –
e.g., CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-
RELATED GENE 1 (CPR1), SUPPRESSOR OF SALICYLIC ACID
INSENSITIVITY OF NPR1-5 2 (SSI2), DEFENSE NO DEATH
1 (DND1), TYPE III PHOSPHATIDYLINOSITOL-4-KINASES
β1β2 (PI4KIIIβ1β2) (Bowling et al., 1994; Yu et al., 1998; Zhang
et al., 2003; Sekine et al., 2004; Gou et al., 2012; Sasek et al., 2014).
As a regular aspect of these mutants’ phenotype deviations, hyper
accumulation of SA was observed.

LETHALITY OF THE HUB

Overactive immunity can disturb plant growth and fitness,
and in an extreme case, this can be deleterious. Unexpectedly,
an embryo lethal phenotype was found for LOF mutation
of a defense related gene RPM1-INTERACTING PROTEIN 4
(RIN4). Being evolutionarily conserved protein in plants, RIN4
is targeted to the plasma membrane by C-terminal acylation,
and is required for the activation of a CNL RESISTANCE TO
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TABLE 1 | List of Arabidopsis mutants related to R proteins hyper activity causing dwarf and lesion mimic phenotypes.

Gene Name Function category Related mutant phenotypes Reference

acd11 accelerated cell death 11 Sphingosine transfer protein Lesions Brodersen et al., 2002

adr1 activated disease resistance 1 CNL Lesions suppression, dwarf oe Grant et al., 2003

adr1-l1 activated disease resistance
1-like 1

CNL Lesions suppression, dwarf oe Collier et al., 2011

adr1-l2 activated disease resistance
1-like 2

CNL Lesions suppression Bonardi et al., 2011

atg5 autophagy related gene 5 Autophagy, ubiquitin ligase Early senescence Thompson et al., 2005

atg6 autophagy related gene
6/Beclin1

Autophagy activation Pollen-lethality Fujiki et al., 2007

atg7 autophagy related gene 7 Autophagy, ubiquitin activating enzyme Defense-related Doelling et al., 2002

atg8 autophagy related gene 8 Ubiquitin-like protein, cargo recruitment / Ketelaar et al., 2004

bak1 brassinosteroid-insensitive
associated 1

Receptor-like protein kinase Semidwarf Li et al., 2002

bap1 bon1-associated protein Calcium-dependent phospholipid-binding / Hua et al., 2001

bir1 bak1-interacting receptor-like
kinase 1

Receptor-like protein kinase Dwarf Gao et al., 2009

bon1 bonzai1 Copine-like, membrane trafficking Dwarf Hua et al., 2001

bon2 bonzai2 Copine-like, membrane trafficking Dwarf Yang et al., 2006

bon3 bonzai3 Copine-like, membrane trafficking Dwarf Yang et al., 2006

chs2 chilling-sensitive 2 TNL Lesions Huang et al., 2010

chs3 chilling-sensitive 3 TNL Lesions Yang et al., 2010

cpr1 constitutive expresser of
pathogenesis-related gene

F-box protein Dwarf Gou et al., 2012

dnd1 defense no death 1 Cyclic nucleotide-gated ion channel Dwarf Yu et al., 1998

eds1 enhanced disease sensitivity 1 R related signaling Lesions suppression Rogers and Ausubel, 1997

exo70A1 exo70A1 Membrane trafficking Dwarf Synek et al., 2006

exo70B1 exo70B1 Membrane trafficking Lesions Kulich et al., 2013

fls2 flagellin-sensitive 2 Receptor-like protein kinase Defense related Gomez-Gomez and Boller,
2000

laz4 lazarus 4 Membrane trafficking Lesion suppression Munch et al., 2015

laz5 lazarus 5 R protein Lesions suppression Palma et al., 2010

lsd1 lesion simulating disease 1 Cell death related Lesions Kliebenstein et al., 1999

mkk1/mkk2 mitogen-activated protein
kinase kinase kinase 1/2

Signaling Dwarf, lesions Qiu et al., 2008

mpk1 mitogen-activated protein
kinase 1

Signaling Dwarf Bartels et al., 2009

mpk4 mitogen-activated protein
kinase 4

Signaling Dwarf, lesions Petersen et al., 2000

ndr1 non-race specific disease
resistance 1

R related signaling Lesions suppression Century et al., 1995

pad4 phytoalexin deficient 4 R related signaling Lesions suppression Jirage et al., 1999

rar1 required for mlo12 resistance 1 R related signaling Lesions suppression Azevedo et al., 2002

rin4 rpm1-interacting protein 4 Immunity related Embryo lethal Mackey et al., 2002

rpm1 resistance to p. syringae pv
maculicola 1

R protein Defense related Debener et al., 1991

rps2 pesistant to p. syringae 2 R protein Defene related Yu et al., 1993

sag101 senescence associated gene
101

R related signaling / Feys et al., 2005

sgt1b suppressor of g-two allele of
skp1

R related signaling Lesions suppression Azevedo et al., 2002

sid2 salicylic acid insensitive 2 SA synthesis Defense related Nawrath and Metraux, 1999

slh1 sensitive to low humidity 1 R protein Lesions Noutoshi et al., 2005

snc1 suppressor of npr1 constitutive 1 R protein Dwarfism suppression Li et al., 2010

srfr1 suppressor of rps4-rld 1 Tetratricopeptide repeat domain containing Dwarf Kim et al., 2010

ssi2 suppressor of SA insensitivity of
npr1-5 2

Stearoyl-ACP desaturase Dwarf, lesions Sekine et al., 2004

(Continued)
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TABLE 1 | Continued

Gene Name Function category Related mutant phenotypes Reference

ssi4 Suppressor of SA insensitivity
of npr1-5 4

R protein Dwarf Shirano et al., 2002

summ2 Suppressor of mkk1 mkk2 2 R protein Dwarfism and lesions suppression Zhang et al., 2012

syp121/syp122 Syntaxin 121/syntaxin 122 Membrane trafficking Dwarf, lesions Zhang et al., 2008

syp23 Syntaxin 23 Membrane trafficking Semi-dwarf Ohtomo et al., 2005

syp31 Syntaxin 31 Membrane trafficking / Chatre et al., 2009

TN2 TIR-NBS 2 R protein Lesions suppression Zhao et al., 2015

TX At2g32140 / R protein Dwarf Kato et al., 2014

PSEUDOMONAS SYRINGAE PV. MACULICOLA 1 (RPM1; Kim
et al., 2005; Takemoto and Jones, 2005). RIN4 is phosphorylated
upon infection with P. syringae expressing either AvrB or
AvrRpm1 (Mackey et al., 2002). RIN4 is also involved in the
activation of another CNL type R protein RESISTANCE TO
P. SYRINGAE 2 (RPS2) by putative Cys protease AvrRpt2
of P. syringae, which causes posttranscriptional cleavage and
disappearance of RIN4 and this is required for full RPS2
activation (Axtell and Staskawicz, 2003; Mackey et al., 2003).
Interestingly, in coimmunoprecipitation experiments, RIN4 was
found to associate with RPM1, RPS2 as well as with pathogen
recognition receptor (PRR) FLAGELLIN-SENSITIVE 2 (FLS2),
creating thus a physical link between PTI and ETI (Qi et al., 2011).
The rin4 null mutation lethality is rescued in a rin4rps2 double
mutant, indicating that RIN4 negatively regulates inappropriate
activation of RPS2 (Mackey et al., 2003). In addition, fragments
of RIN4, including those produced by AvrRpt2, each containing
a nitrate-induced (NOI) domain specific for plants, suppress
PTI, also in the rpm1/rps2/rin4 mutant background, and
activate a cell death response in the wild type (Afzal et al.,
2011).

MEMBRANE TRAFFICKING AND THE R
PROTEINS-DEPENDENT IMMUNITY

Surprisingly, several basic regulators expected to function in
the endomembrane trafficking and membrane fusion events,
such as SNARE and exocyst proteins, might be also connected
to the regulation of activity of R proteins. For instance, the
dwarf and lesion-mimic double mutant of plasma membrane
syntaxins SYP121 and SYP122 constitutively expresses the SA
signaling pathway- as well as other known pathogen-responsive
genes (Zhang et al., 2008). The same study shows that based
on the suppressor mutant analysis of syp121 syp122, PAD4 is
of key importance for the lesion development. Mutant alleles of
signaling mediators of both TNL and CNL-type resistances EDS1,
NDR1, REQUIRED FOR MLO12 RESISTANCE 1 (RAR1) and
SUPPRESSOR OF G-TWO ALLELE OF SKP1 (SGT1b) partially
rescued the lesion-mimic phenotype. Interestingly, the double
mutant was crossed to the autophagy atg7 mutant, however, as
there was no effect of this mutation on the appearance of lesions,
authors concluded that the autophagy does not play a role in this
process (Azevedo et al., 2002; Zhang et al., 2008).

Recently, exo70B1 loss-of-function mutant was found to
develop spontaneous leaf lesions, over-express defense responses
genes and show enhanced resistance to fungal, oomycete and
bacterial pathogens (Kulich et al., 2013; Stegmann et al., 2013).
Unexpectedly, its function is not related to the secretion of
secretory vesicles to the plasma membrane; instead, EXO70B1
positive compartments were found to end in the central vacuole
and to co-localize with autophagosomal marker ATG8f. In a
screen for mutants that suppress exo70B1 phenotype, nine alleles
of TIR-NBS2 (TN2) were identified, suggesting that loss-of-
function of EXO70B1 leads to activation of this TN protein (Zhao
et al., 2015). It was also shown that TN2 interacts with EXO70B1
in yeast and in planta. However, it is not known whether TN2
directly monitors EXO70B1 integrity (as proposed by Zhao et al.,
2015) or whether EXO70B1 is only required for autophagic
transport to the vacuole and subsequent degradation of TN2.
EXO70B1-mediated autophagy-related transport to the vacuole
might be participating in TN2 degradation. Both scenarios would
explain the observed phenotype.

Additionally, recent work confirmed the importance of
membrane trafficking in the plant cell death lesion suppression –
lazarus 4 (laz4) was found to be mutated in one of three
VACUOLAR PROTEIN SORTING 35 (VPS35) genes which code
for a subunit of the retromer complex functioning in endosomal
protein sorting and vacuolar trafficking – esp. of retrograde
retrieval of vacuolar sorting receptors. These results also showed
that the retromer deficiency impairs endosomal sorting of
immune components and targeting of vacuolar cargo (Munch
et al., 2015).

Interestingly, the endosomal compartment may be as well
the site of R-Avr proteins interaction – potato R3A and
Phytophtora infestans effector AVR3a interact and relocalize from
the cytoplasm to endocytotic compartment from where they turn
on HR signaling (Engelhardt et al., 2012).

Even though it was not described for plants so far, we
can expect that the both endosomes and autophagy related
membrane trafficking will provide pathogens an opportunity to
manipulate both for the purposes of more successful infection.
Such an example was recently described for human epithelium-
Salmonella interaction – at early stages of S. typhimurium
infection, autophagy is used to seal endosomal membranes
damaged by Salmonella secretion system during host cell
invasion, but later it is also necessary for the further progression
of Salmonella infection (Kreibich et al., 2015).
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FROM AUTOPHAGY TO IMMUNITY

Autophagy is a bulk degradation by which cell/organism recycles
nutrients, deals with stress, clears off dysfunctional organelles,
aggregates etc. (Levine and Klionsky, 2004). Several types of
autophagy have been reported, including macroautophagy, which
is present in many organisms including fungi, animals and
plants. This process relies on the concerted action of autophagy-
related (ATG) genes encoded proteins to form first phagophore,
to promote phagophore enclosure into autophagosome, and to
deliver autophagosomes to the vacuole or lysosomes to release
the autophagic bodies for eventual breakdown (Li and Vierstra,
2012; Reggiori and Klionsky, 2013).

When Arabidopsis mutants are disrupted in ATG genes
represented by single loci, they grow normally under non-
stress conditions, but are hypersensitive to nitrogen and carbon
starvation (Doelling et al., 2002; Hanaoka et al., 2002; Yoshimoto
et al., 2004; Thompson et al., 2005). However, unlike other non-
plant organisms, Arabidopsis has nine ATG8 and two ATG12
gene isoforms, which makes the study of their role more difficult
and suggests that the autophagic process in plants is more
complicated than in other organisms. Some of its complexity is
reflected in the role of autophagy in plant immunity.

The importance of autophagy in the plant immunity was
first demonstrated in Liu et al. (2005) – it was found that
the autophagy was required to restrict the spread of plant
HR cell death. The activation of hypersensitive cell death via
the R gene RPM1 upon infection with bacteria also led to
cell death beyond the borders of the infection site in plants
silenced for atg6/Beclin1 (Patel and Dinesh-Kumar, 2008). It was
concluded that autophagy prevents unrestricted HR cell death
and that functions as a pro-survival pathway in plant–pathogen
interactions. All of these observations and conclusions were
based on experimenting with older Arabidopsis plants and on
tissues surrounding the actual infection sites, a few days after local
infection.

However, a pro-death function of autophagy during HR cell
death was reported as well (Hofius et al., 2009). Autophagy was
found to be triggered by some, but not all types of R proteins in
the infected tissue and its surroundings. HR cell death triggered
by R proteins RPS4, RPP1 and RPM1 was significantly suppressed
in atg (autophagy) mutants; especially the first two of them which
signal through EDS1 signaling component. In this case, cell death
was monitored in the actual infection site, in the range of hours
after inoculation (Hofius et al., 2009).

Yoshimoto et al. (2009), found no deviations in RPM1-
triggered cell death beyond the initial infection site in younger
atg mutants. However, in older atg mutants such as atg5, they
observed lesions in non-infected tissues 6–9 days after infection.
Interestingly, these effects were suppressed by removal of the
SA and by mutations in SA signaling hub “non-expressor of PR
genes” – NPR1. The authors proposed that autophagy negatively
regulates the cell death by controlling NPR1-dependent SA
signaling. In contrast to younger leaves, older atg mutant leaves
contain higher levels of toxic metabolites, disrupted organelles
and oxidized proteins which contribute to the cell death spread
(Yoshimoto et al., 2009). This could be as well explained as a

combination of effects of different sets of genes involved in the
adult plant resistance and ineffective autophagy (Carviel et al.,
2009). Scientists tried to explain and integrate these conflicting
results obtained from studies on HR lesions of atg mutants. Zhou
et al. (2014) propose that autophagy suppresses SA and ROS
signaling amplification loop that leads to cell death, while in the
resistance to necrotrophic pathogens it promotes JA signaling.
Consistently, a recent hypothesis suggests that SA is not only
an autophagy inducer, but also a cargo for autophagy-related
ER to vacuole membrane transport and catabolism (Kulich and
Zarsky, 2014). Recently, a model was worked out in which the
autophagy is both initiator and executioner of cell death and is
placed downstream of the R protein activation, and supposed to
help the cell to deal with the ER stress provoked by a heavy load
with pathogenesis related proteins (PRs, review in Minina et al.,
2014).

CONCLUSION AND PERSPECTIVES

Here we show that most of the observed defects in Arabidopsis R
protein regulator mutants are a direct or indirect consequence
of non-pathogen related ectopic R protein activation. It thus
seems conceivable that the plant constantly down regulates R
protein function, and when this constitutive negative regulation
is disturbed, the R proteins are activated and spontaneously
signal the non-existent pathogen attack. Based on the example of
rin4 mutant lethality we could speculate, that, similarly to other
organisms, the proper function of the negative control might
be set already in the earliest stages of development. The plant
innate immunity has to be kept as low as possible when it is
not necessary in order to prevent high energy costs of defense,
and yet in the state of alertness which will allow its fast, in
fact instantaneous, activation. We believe that the best way to
achieve this is to keep these components (i.e., in our case R genes)
transcribed and translated on a sufficient basic level, but to keep
their function tightly under negative control which will prevent
undesired overactive autoimmunity. How could be this achieved?
There are many examples of negative controls involved at various
stages of defense that include ubiquitination and proteolysis,
phosphorylation of proteins, as well as redox dependent changes
in protein multimerization and localization (e.g., Trujillo et al.,
2008; Anderson et al., 2011; Vogelmann et al., 2012). We suggest
that one of the mechanisms to achieve this is also targeting of
defense machinery components – here especially R proteins –
to the autophagy pathway for degradation (Figure 1). Once
the R protein is recruited by autophagy machinery into the
autophagosome, it might share the destiny of other autophagic
cargos – transport to the vacuole and degradation. We speculate
that along with proteins the autophagy related degradation
process might destroy also other molecules including signaling
relevant molecules as ROS or SA. After the interaction of R
protein with its counterpart Avr, R protein is protected against
this autophagy-dependent degradation and can interact with
downstream components and trigger ETI. This model may be
valid also for indirect R-Avr interactions; e.g., the proposed R
protein guard function (reviewed e. g. in Spoel and Dong, 2012)
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FIGURE 1 | The plant constitutively negatively regulates R protein
function. The interaction R-Avr serves mainly to release this negative
regulation. The important component of negative regulation is autophagy;
when it is non-efficient, R proteins spontaneously over activate defense
responses.

could be based on the avoidance of this negative regulation after
the recognition of the changed status of the guardee. It should be
stressed that we certainly expect other ways of regulations of R
proteins to exist, such as a switch from inactive to active state of
R protein upon Avr recognition, as well as other ways of negative
regulation.

Based on our hypothesis one would expect that autophagy
mutants should copy the phenotype of exo70B1 mutant, having
at least some R proteins constitutively activated. While some
of the mutants in the autophagy pathway indeed show similar
phenotypic deviations (e.g., early senescence and yellowing,
sensitivity to starvation, as well as SA hyperaccumulation in
atg2 and atg5 mutants; Yoshimoto et al., 2009; Wang et al.,
2011), others seem to display only early senescence phenotype
and cell death phenotypes only after starvation induction (like
atg7 mutant). It also seems that some subunits of autophagy
machinery might be more important for the negative regulation
of the immunity, while others, e.g., ATG7 and ATG9, in the
execution of HR (Hofius et al., 2009; Minina et al., 2014). It should
be, however, noted that autophagy proteins (and EXO70B1) have
been also implicated in diverse cellular processes independently
of their roles in autophagy.

We also expect that, pathogen effectors might have evolved
to manipulate and hijack this negative regulation and worsen
the plant defense – recently, a Phytophtora infestans effector
PexRD54 has been shown to outcompete the autophagy
cargo receptor Joka and enhance virulence of this pathogen.
Interestingly, PexRD54 does this probably through the activation
of selective autophagy. Joka could participate in the removal
of plant or pathogen molecules that negatively affect host
defenses. As authors of the study speculate, PexRD54 would
thus counteract the positive role of Joka2-mediated selective

autophagy in pathogen defense. An alternative, but not exclusive
explanation based on our hypothesis would be that PexRD54 at
the same time stimulates the selective autophagy of R proteins
capable of detecting it and thus promotes pathogen virulence
(Dagdas et al., 2016). Already the report of Engelhardt et al.
(2012) demonstrated the capability of cytoplasmic R protein to
be recruited to endomembranes, but not for degradation, rather
for the purpose of activation. However, this is not exclusive with
our model – the interaction of R3A and Avr3A might release
the negative regulation of R3A and switch on the HR. This
interaction is obviously indirect and requires an intermediate
connected to ARA6/ARA7 marked endosomes. It is possible
that this activation evolved from the mechanisms of negative
regulation. More information on R3A and Avr3A interactors
could help to solve this ambivalent situation.

We found an indirect support for our hypothesis in
the autopagy-related events described for mammalian cells –
it is known from experiments performed on HeLa cells
that endocytosed plasma membrane contributes to ATG12–
ATG5-ATG16L1-positive/ATG8-negative phagophore precursor
vesicles by both clathrin-dependent and -independent routes
(Moreau and Rubinsztein, 2012). The subsequent maturation of
these small phagophore precursors into phagophores (ATG12–
ATG5-ATG16L1-positive/ATG8-positive) is assisted by SNARE-
mediated homotypic fusion that increases their size. Additionally,
Arabidopsis BON1/2/3 belong to copine proteins, a family of
ubiquitous Ca(2+)-dependent, phospholipid-binding proteins
that are known to be involved in animal membrane trafficking
events (Tomsig and Creutz, 2002), and in Dictyostelium localize
to plasma membrane, contractile vacuoles, organelles of the
endolysosomal pathway, and phagosomes (Damer et al., 2005).
Therefore, besides confirmed role of EXO70B1 in autophagy
and regulation of TN2 activity, very probably SNARE and
BON proteins could implement similar role in autophagy-related
membrane targeting and membrane fusion events leading to the
negative control of R proteins.

FIGURE 2 | Interactions of PTI, ETI and ATG related proteins with
SNAREs and exocyst. The RIN4 interacts with PTI receptor FLS2 and
associated proteins, which further interact with BON1, BON2 and BAP.
Additionally, RIN4 and related R-proteins may be in the same complex. R
proteins and autophagy functions are connected by exocyst and SNARE
interactions. (Experimentally confirmed interactions are visualized with lines,
non-confirmed with dashed lines).
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We found further support for this hypothesis in the
connection between assumed autophagy regulating proteins and
R proteins, as well as other key molecules of the both PTI and
ETI immune response, in the web of protein-protein interactions
that are available in Biogrid and PPIN databases (Stark et al.,
2006; Mukhtar et al., 2011; Figure 2; Table 1). The components
of PAMP-sensing complexes interact with RIN4, which further
interacts with R proteins. Mainly through mediating kinase
BAK1, they are connected and interact as well with BON1,
BON2 and BAP. RIN4 interacts with R proteins as well as with
EXO70B1 (Afzal et al., 2013). Besides its capability to interact
with other exocyst and SNARE proteins, EXO70B1, together with
20 other paralogs of Arabidopsis EXO70 exocyst subunits, possess
ATG8 interacting motives, which indicates that the autophagy
machinery and exocyst complex functions are multiply connected
(Cvrčková and Zárský, 2013; Tzfadia and Galili, 2013; Sabol
et al., in preparation). Thus, in the vicinity of plasma membrane,
and depending on membrane trafficking which involves SNARE,
exocyst and autophagy complex proteins, a tight control of R
protein activation allows the immunity to be kept low but in a
constant alert.

Recently, a role for EXO70F3 of Oryza sativa in immunity
against Magnaporthe oryzae was found – OsEXO70F3 appears
to play a crucial role in immunity triggered by Pii, suggesting a
role for this EXO70 paralog as a decoy or helper in Pii/Avr-Pii
interaction (Fujisaki et al., 2015). It may be true that pathogen
effectors target these and other exocyst subunits in order to
suppress defense, however, we don’t consider it to be mutually
exclusive with our hypothesis.

Our model could help to better understand and reconcile
conflicting aspects of autophagy in the plant immunity (Teh
and Hofius, 2014): in the infection sites, R-Avr recognition
prevents R protein targeting to inactivation/destruction pathway
and triggers the ETI, and with the increased distance from
the infection site, declining concentration of Avr protein allows
the autophagy to overtake again a control over R protein.
In atg mutants, the existing constitutive immunity activation
results in spontaneous HR lesions formation; but after the
pathogen attack, in the case of younger leaves, in addition to R
protein deregulation, R is further activated by Avr recognition,
which makes cells more resistant and lesions smaller. Or,
under conditions with additional stresses, as in the case also
of older leaves, because of coincidence between consequences
of ineffective autophagy of atg mutants and Avr-enhanced over
activation of R proteins, less Avr is needed for HR threshold to be
crossed and lesions spread farther.

Our model’s aim is to focus on one aspect only – a possibility
of a negative regulation of some NLRs/innate immunity related
proteins by autophagy in plants. However, there are many
difficulties that will have to be overcome in order to confirm

its validity. Part of difficulties is coming from the complexity
of autophagy machinery and a large number of ATG proteins
that have also been implicated in diverse cellular processes
independently of their roles in autophagy. Autophagy machinery
is also difficult to study separately from other endomembrane
compartments, especially by using pharmacological treatments.
For instance, wortmannin, which is often used for these
purposes, is rather pleiotropic drug – dependent on cell type
and concentration it affects different types of phosphoinositide
kinases, having thus multiple interference with endomembrane
dynamics.

To conclude, plants have mechanisms to downregulate R
proteins function, and when they are attacked by an appropriate
Avr carrying pathogen, the R proteins are stabilized, activating
defense responses. This would also mean that R proteins are
capable of immunity activation without Avr and that the
interaction R-Avr serves mainly to release R proteins negative
regulation. The disturbance of the basic autophagy machinery
has pleiotropic effects on many plant functions including
development and is influenced by growth conditions, abiotic
stresses and senescence, hence it is very difficult to study
effects of atg mutants that would concern specifically defense
responses. We believe that in the near future, R proteins studies
will bring more information on the regulation of their activity
including proteins that target them for the suggested autophagy
destruction.
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