
fpls-07-00295 March 8, 2016 Time: 17:51 # 1

MINI REVIEW
published: 10 March 2016

doi: 10.3389/fpls.2016.00295

Edited by:
Julian Eaton-Rye,

University of Otago, New Zealand

Reviewed by:
Shigeru Itoh,

Nagoya University, Japan
Kinga Klodawska,

Jagiellonian University, Poland

*Correspondence:
Zoltan Gombos

gombos.zoltan@gmail.com

Specialty section:
This article was submitted to

Plant Cell Biology,
a section of the journal

Frontiers in Plant Science

Received: 21 October 2015
Accepted: 24 February 2016

Published: 10 March 2016

Citation:
Zakar T, Laczko-Dobos H, Toth TN
and Gombos Z (2016) Carotenoids

Assist in Cyanobacterial Photosystem
II Assembly and Function.

Front. Plant Sci. 7:295.
doi: 10.3389/fpls.2016.00295

Carotenoids Assist in Cyanobacterial
Photosystem II Assembly and
Function
Tomas Zakar, Hajnalka Laczko-Dobos, Tunde N. Toth and Zoltan Gombos*

Laboratory of Plant Lipid Function and Structure, Institute of Plant Biology, Biological Research Centre, Hungarian Academy
of Sciences, Szeged, Hungary

Carotenoids (carotenes and xanthophylls) are ubiquitous constituents of living
organisms. They are protective agents against oxidative stresses and serve
as modulators of membrane microviscosity. As antioxidants they can protect
photosynthetic organisms from free radicals like reactive oxygen species that originate
from water splitting, the first step of photosynthesis. We summarize the structural
and functional roles of carotenoids in connection with cyanobacterial Photosystem II.
Although carotenoids are hydrophobic molecules, their complexes with proteins also
allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange
carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing
their overexcitation through phycobilisomes (PBS). Recently it has been observed that
carotenoids are not only required for the proper functioning, but also for the structural
stability of PBSs.
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ROLES OF CAROTENOIDS IN MODULATING
PHOTOSYNTHETIC AND CYTOPLASMIC MEMBRANES OF
CYANOBACTERIA

Carotenoids as Protective Agents
Carotenoids are a group of pigments that play multiple structural and functional roles. They
are molecules with conjugated double bonds, which allow them to participate in photosynthetic
functions (Gruszecki and Strzalka, 2005). In cyanobacteria the most abundant carotenoids are
carotenes (e.g., β-carotene) and various types of xanthophylls (synechoxanthin, canthaxanthin,
caloxanthin, echinenone, myxoxanthophyll, nostoxanthin, zeaxanthin), which are oxygenated
derivates of the carotenes (Takaichi and Mochimaru, 2007; Domonkos et al., 2013; Kusama et al.,
2015; Toth et al., 2015).

Carotene and xanthophyll molecules are indispensable components of both cytoplasmic and
thylakoidal membranes of cyanobacteria. However, β-carotene is the only carotenoid, which
was localized in PSII by X-ray crystallography (Loll et al., 2005; Umena et al., 2011). As an
extremly hydrophobic molecule, β-carotene forms complexes with proteins, thereby functioning as
a bridge between various proteins involved in photosynthetic processes. In thylakoid membranes
a protective role of β-carotene was demonstrated as a scavenger of singlet oxygen (Packer et al.,
1981).

Abbreviations: CP43, chlorophyll-protein complex 43; CP47, chlorophyll-protein complex 47; FRP, fluorescence recovery
protein; NPQ, non-photochemical quenching; OCP, photoactive orange carotenoid protein; PBS, phycobilisome; PSI and
PSII, Photosystem I and II; RC47, reaction center 47; ROS, reactive oxygen species; Synechocystis, Synechocystis sp. PCC6803.
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In contrast to β-carotene, xanthophylls have not been
localized unambiguously. Their presence in the photosystems
is expected, and has been demonstrated by various biophysical
and biochemical methods (Van der Weij-de Wit et al., 2007;
Domonkos et al., 2009). Nevertheless the binding of xanthophylls
to membrane proteins has not yet been demonstrated. In the
membranes they are positioned in a way that their hydrophilic
part faces the aqueous phase.

Free carotenes and xanthophylls occupy the hydrophobic
region of membrane bilayers. Accordingly, it was predicted
that xanthophylls rigidify membranes, whereas β-carotene and
echinenon have a neutral or fluidizing effect (Gruszecki and
Strzalka, 2005).

Although the scavenging character of xanthophylls is stronger
than that of β-carotene (Steiger et al., 1999; Domonkos et al.,
2013), neither their localization nor their exact scavenging
role has been elucidated yet. Xanthophylls are found mainly
in cytoplasmic membranes (Masamoto and Furukawa, 1997;
Masamoto et al., 1999). A recent review has summarized
the protective mechanism of carotenoids and other putative
protective functions against ROS, which are produced by PSII of
photosynthesis that mediates light-driven oxidation of water and
the release of molecular oxygen (Derks et al., 2015).

Carotenes and Xanthophylls Affect
Membrane Viscosity
Due to their influence on membrane properties, the xanthopylls
are also important in the adaptation to various temperature
conditions. Low growth temperatures induce enhanced synthesis
of xanthophylls and, consequently, the xanthophyll content
of thylakoid membranes is increased to compensate for
elevated lipid desaturation. Instead of increasing membrane
microviscosity, enhanced xanthophyll content alters membrane
dynamics by allowing a tighter arrangement of fatty acyl moieties.
The observed discrepancy could be explained by an apparent
increase of very rigid, myxoxanthophyll-related lipids in the
thylakoid membranes (Varkonyi et al., 2002).

Presence of Enzymes of Carotenoid
Biosynthesis in Cytoplasmic Membrane
More recent research has shown that cytoplasmic membranes
contain some biosynthetic enzymes specific for the biosynthesis
of echinenone and β-carotene. The CrtQ (zeta-carotene
desaturase) and CrtO (beta-carotene ketolase) enzymes involved
in carotenoid synthesis are localized in cytoplasmic membranes
(Zhang et al., 2015). This would mean that echinenone and
precursors of β-carotene are more abundant in cytoplasmic
membranes than in thylakoids. Cytoplasmic membranes contain
higher amounts of carotenoids than thylakoid membranes, which
results in a more pronounced modulation of their membrane
fluidity.

Despite the relatively low carotenoid content of the
thylakoid membrane, these compounds are indispensable
for photosynthetic processes. They not only affect the membrane
structure, but also influence the oligomerization of proteins,
thereby modulating photosynthetic functions.

THE EFFECT OF CAROTENOIDS ON THE
ARCHITECTURE AND VARIOUS
FUNCTIONS OF PHOTOSYSTEM II
COMPLEXES

Structure
X-ray crystallography revealed that in thylakoid membranes
the main carotene (β-carotene) localizes in the photosynthetic
reaction centers (Loll et al., 2005; Umena et al., 2011). These
results revealed that a PSII complex contains 11 β-carotene
molecules. Xanthophylls could not be localized unambiguously.
The importance of carotenoids in maintaining the stability and
functioning of PSII was demonstrated in a carotenoid-deficient
mutant strain (Sozer et al., 2010).

The completely carotenoid deficient 1crtH/B or 1crtB
mutants of Synechocystis sp. PCC 6803 (hereafter Synechocystis)
are devoid of active PSII reaction centers. These strains do not
show oxygen-evolving activity (Sozer et al., 2010; Toth et al.,
2015). The cells have reduced translation for a number of genes
encoding PSII proteins and hence do not assemble active PSII
complexes. They are capable of synthesizing only a limited
amount of CP47, which is crucial for the formation of dimeric
PSII complexes, but CP43 synthesis is almost completely blocked.
The lack of these protein subunits prevents the formation of
functional PSII complexes. This is the reason why we think that
carotenoids are indispensable components of PSII.

Complete loss of carotenoids prevents the proper assembly of
PSII (Figure 1), and such cells contain almost exclusively CP43-
less oligomers. They show reduced PSII fluorescence, which
originates from PSII components that are unable to integrate
into a fully functional complex. In the carotenoid-less mutant
1crtB we observed the accumulation of fluorescence-emitting
spots with long lifetime close to the cell walls (Toth et al.,
2015, Supplementary Figures). This could indicate that PSII
biogenesis is blocked and incomplete adducts remain localized
at the thylakoid-organizing complexes. This is in good agreement
with an earlier observation of dysfunctional thylakoid membrane
systems in a carotenoid-deficient mutant (Nickelsen et al., 2011).
The PSII structure of Thermosynechococcus elongatus, deduced
from X-ray crystallographic data (Guskov et al., 2009) shows
the presence of various protein subunits and cofactors, such as
carotenoids, in the dimeric form of reaction centers (Figure 1A).
The structure of the imagined carotenoid-less PSII is presented
in Figure 1B. However, the reaction center in 1crtB cells
contains almost exclusively CP43-less oligomers. Radioactive
labeling demonstrated limited synthesis of inner PSII antennae,
CP47 and, particularly, CP43. The lack of CP43 resulted in the
formation of the RC47 pre-assembly complex (Komenda et al.,
2012), demonstrating that carotenoid deficiency results in low
levels of partially assembled reaction center complexes. These
cells show reduced fluorescence originating from the remaining
chlorophyll-protein complexes that are unable to integrate into a
complex (Sozer et al., 2010; Toth et al., 2015).

Carotenoids, together with chlorophylls, are also necessary
for the translation and stabilization of photosynthetic reaction
center apoproteins in the green alga Chlamydomonas reinhardtii,
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FIGURE 1 | Structure of the PSII complex deduced from X-ray crystallographic data (PDB files: 3BZ1 and 3BZ2). The PSII supercomplex in wild type (A)
and assumed PSII structure in carotenoid-deficient (B) Thermosynechococcus elongatus.

however, they do not regulate the transcription of reaction center
apoproteins (Herrin et al., 1992).

Our recent results suggest some structural function of
xanthophylls in stabilizing PSII, as well as its dimeric complexes
in Synechocystis (Toth et al., 2015). Carotenoids are essential
mediators of interactions between PSII monomers, highlighting
the role of neutral lipids, which can regulate the equilibrium
between dimerization and dissociation (Guskov et al., 2009).

Accordingly, carotenoids are indispensable constituents of
the photosynthetic apparatus, being essential not only for
antioxidative protection but also for the productive synthesis and
accumulation of photosynthetic proteins and, especially, those of
the PSII antenna subunits.

Function
Carotenoids, due to their light harvesting (Stamatakis et al.,
2014) and photoprotective capacity (Schafer et al., 2005;
Sozer et al., 2010), are indispensable for the function of the
photosynthetic apparatus, and particularly in that of PSII. Under
low light conditions carotenoids can provide more efficient light
absorption (Koyama et al., 1996; Bode et al., 2009). By contrast,
when cyanobacteria are exposed to high light, excess energy
needs to be reduced to avoid photoinhibition damage to the
photosystems (Powles, 1984; Aro et al., 1993, 2005). Carotenoids
can exert protection by dissipating excess energy as heat, a
phenomenon called NPQ, or by scavenging ROS.

The activity of light-damaged PSII is efficiently restored by a
repair system, therefore photoinhibition occurs only when the
rate of inactivation exceeds that of repair. In order to understand
the mechanism by which carotenoids protect the cells under
light stress it would be necessary to study the two processes of
photoinhibition, photodamage and repair, separately (Nishiyama
and Murata, 2014).

Photosystem II complexes are very sensitive not only to
strong light but also to a wide range of abiotic stress effects,
such as low and high temperatures, UV-B exposure, drought,
and high concentration of salts (Takahashi and Murata, 2008).
These stress factors ultimately lead to oxidative stress. Recently

it has been shown that 1sigCDE, a group 2 σ factor mutant
of Synechocystis, is more sensitive to oxidative stress, but also
more resistant to the photoinhibition of PSII. In this mutant
an up-regulation of photoprotective carotenoids was observed,
but it has been suggested that the resistance to light damage of
PSII and the overall tolerance to oxidative stress are distinct in
cyanobacteria, and their mechanisms are different (Hakkila et al.,
2014).

In order to study the specific role of different carotenoids
in cyanobacteria a wide range of carotenoid-deficient mutants
were generated. Studies with various xanthophyll mutants
of Synechococcus sp. PCC 7002 indicate that xanthophylls
contribute to protection against photo-oxidative stress (Zhu
et al., 2010). Similarly Synechocystis mutants lacking almost all
xanthophylls (1crtRO) were sensitized to photodamage only
under high light conditions (Schafer et al., 2005), whereas
under normal illumination charge separation in PSII seemed
unaffected (Toth et al., 2015). Recently it has been shown that
zeaxanthin and echinenon protect the repair part of the PSII
recovery cycle from photoinhibition by decreasing the level of
singlet oxygen that inhibits protein synthesis (Kusama et al.,
2015).

The removal of all β-carotene and xanthophylls from
Synechocystis (1crtH/B and 1crtB mutants) causes more
severe effects. These strains are extremely light sensitive
and they can grow only in the dark under light-activated
heterotrophic conditions, without detectable oxygen evolution
(Sozer et al., 2010). Time-resolved fluorescence (streak camera)
measurements of these mutant cells also indicate inactive PSII
(Toth et al., 2015).

In PSII reaction centers there are at least two redox active
β-carotenes (Telfer et al., 2003). Recently it has been shown
that one of the two so-called redox active carotenoids, CarD2,
plays a role in photoprotection. Site-directed mutations around
the binding pocket of CarD2 in Synechocystis cells revealed
the importance of β-carotenes in the initiation of secondary
electron transfer processes, which occurs when water oxidation
is inhibited (Shinopoulos et al., 2014).
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In addition to the role of carotenoids as constituents of
membrane-embedded PSII, they also have crucial functions in
the formation of protein complexes, the so-called photoactive
orange carotenoid proteins. A recent study has elucidated the
dual role of carotenoids in OCP, namely the protection of
photosystems by quenching excess energy, and also the capacity
of quenching singlet oxygen formed during the light reactions
(Sedoud et al., 2014). Using an OCP-deficient mutant it has
been shown that OCP-related thermal dissipation protects the
repair of PSII during photoinhibition (Kusama et al., 2015).
Although it is clear that carotenoids are the principal actors
in energy dissipation, the mechanism of this process is poorly
understood. Staleva et al. (2015) pointed out a new function
of carotenoids associated with proteins. They have shown that
Synechocystis HliD, a Hlips (high light-inducible proteins) family
protein, binds chlorophyll a and β-carotene with a 3:1 ratio.
The photoprotective role of this carotenoid-binding protein
was demonstrated by femtosecond spectroscopy, showing that
energy dissipation is achieved via direct energy transfer from a
chlorophyll a Qy state to the β-carotene S1 state (Staleva et al.,
2015).

Currently global changes in the environment can generate a
multitude of stress factors, such as high or low temperatures,
high light or UV-B radiation, etc. This underlines the importance
of the evolutionary role of carotenoids and the mechanisms by
which they can contribute to the survival of various organisms
under extreme conditions.

HOW DO CAROTENOIDS AFFECT THE
STRUCTURE AND PROCESSES OF
PHYCOBILISOMES OF
CYANOBACTERIAL PHOTOSYSTEM II
COMPLEXES?

Structure
Cyanobacteria have special light-harvesting complexes, PBSs,
which can absorb light in a wide spectral range. In addition

to PBS, carotenoids can function as accessory pigments to
widen the range of absorption. PBSs are comprised of rods
attached to a core complex that is directly linked to PSII.
In Synechocystis the rods contain phycocyanin, which can
harvest long wavelength light and transfer its energy to the
allophycocynin core, which then transduces it directly to the PSII
reaction center (Maccoll and Guard-Friar, 1986). In the reaction
center the main pigment is chlorophyll a, whereas in the PBS
the chromophore is phycocyanobilin or some other, structurally
related pigment.

In the PBS structure the presence of β-carotene or
xanthophylls has not yet been demonstrated. Surprisingly,
in carotenoid-less 1crtB cells a large amount of unconnected
phycocyanin units has been observed (Toth et al., 2015). Density
gradient centrifugation revealed that most of the assembled
core complexes had shorter rods than those of the wild type.
In this mutant PSI is in monomeric form, only a negligible
amount of PSII is formed, and CP43 is mostly detached from
PSII. Schematic structures of the photosynthetic complexes, as
well as images of the sucrose density gradient-separated PBS
components of wild-type Synechocystis and its carotenoid-less
1crtB mutant are shown in Figure 2.

It seems that carotenoids are required for the assembly or
maintenance of the complete PBS structure (Toth et al., 2015),
suggesting a direct or indirect effect of carotenoids on the
structure and functions of this complex (Toth et al., 2015).

Light-Harvesting Process
Cyanobacterial carotenoid-proteins play an important role in
photoprotection (Kerfeld et al., 2003; Kerfeld, 2004). One of
these, the water-soluble OCP, has been structurally characterized
and has recently emerged as a key player in cyanobacterial
photoprotection (Sedoud et al., 2014). OCP was first described by
David Krogmann more than 25 years ago (Holt and Krogmann,
1981). Highly conserved homologs of the gene encoding the
34 kDa OCP are present in most of the known cyanobacterial
genomes.

The carotenoid composition of the OCP isolated from wild-
type cells is as follows: 60% echinenone, 30% keto-carotenoid

FIGURE 2 | The structures of PBS and the photosynthetic reaction centers in wild-type Synechocystis and its 1crtB carotenoid-less mutant.
Schematic figure showing the assembled supercomplexes and the positions of their constituents following separation by stepwise sucrose density gradient
centrifugation. (A): Fully assembled functional supercomplexes of wild-type cells with entire PBS, dimeric PSII and trimerized PSI. (B): Monomeric PSI and partially
assembled PBS of the 1crtB mutant. In these cells only a negligible amount of PSII is formed.
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3′-hydroxyechinenone, and 10% zeaxanthin (Sedoud et al., 2014).
The energy collected by the PBS is rapidly transferred from rods
to the core, and subsequently to membrane-embedded reaction
centers of PSII or PSI.

Photoactive orange carotenoid protein is a photoactive
protein. Illumination of OCP by strong blue-green light induces
changes in its carotenoid, converting the inactive orange dark
form (OCPo) into an active red form (OCPr). In OCPo,
3′-hydroxyechinenone is in all-trans configuration. In OCPr, it
is also in all-trans configuration, but its apparent conjugation
length increases, resulting in a less distorted, more planar
structure. Fourier transform infrared spectra showed that these
changes in the carotenoid induce conformational changes in
the protein, leading to a less rigid helical structure and a
compaction of the β-sheet. These changes in OCP are essential
for the induction of the photoprotective mechanism. Only
OCPr is capable of binding to the PBSs, inducing fluorescence
quenching and the photoprotective mechanism (Wilson et al.,
2012).

In contrast to photosynthetic eukaryotes, photoprotection
in cyanobacteria is not induced by transthylakoid 1pH or
excitation pressure on PSII. Instead, intense blue–green light
(400–550 nm) induces quenching of PSII fluorescence that
is reversible in minutes, even in the presence of translation
inhibitors (El Bissati et al., 2000). Fluorescence spectra and
the study of NPQ mechanism in PBS- and PSII-mutants of
Synechocystis indicate that this mechanism involves a specific
decrease in the fluorescence emission of PBSs, as well as
a decrease of energy transfer from PBS to the reaction
centers (Scott et al., 2006; Wilson et al., 2006). The site
of the quenching appears to be the core of the PBS (Scott
et al., 2006; Wilson et al., 2006; Rakhimberdieva et al.,
2007).

The action spectrum of PBS fluorescence quenching resembles
the absorption spectrum of cyanobacterial carotenoids. In
the absence of OCP, strong white or blue–green light-
induced NPQ was completely inhibited in Synechocystis. As a
consequence, OCP-deficient cells are more sensitive to light
stress. Moreover, the action spectrum of cyanobacterial NPQ
(Rakhimberdieva et al., 2004) exactly matches the absorption
spectrum of the carotenoid, 3′-hydroxyechinenone (Polivka
et al., 2005) in the OCP. OCP is now known to be
specifically involved in the PBS -associated NPQ and not
in the other mechanisms affecting the levels of fluorescence,
such as state transitions or D1 damage (Wilson et al.,
2006; Zhang et al., 2014). Electron microscopic studies using
immunogold labeling revealed that the majority of OCP
is localized in the inter-thylakoidal cytoplasmic region, on
the PBS side of the membrane (Wilson et al., 2006). The
interaction between the OCP and the PBSs and thylakoids
was corroborated by the presence of OCP in the PBS-
associated membrane fraction (Wilson et al., 2006, 2007).
In Synechocystis, OCP is constitutively expressed, and it is
present even in mutants that lack PBSs (Wilson et al.,
2007). Stress conditions (high light, salt stress, iron starvation)
increase levels of the OCP transcript and proteins (Hihara
et al., 2001; Kanesaki et al., 2002; Fulda et al., 2006; Wilson

et al., 2007). All known OCP-like genes of cyanobacteria are
transcriptionally active and the NPQ mechanism is inducible
by blue light. This suggests that the OCP-based photoprotective
mechanism is widespread in cyanobacteria (Boulay et al.,
2008).

Fluorescence recovery protein is known to be involved in
photoprotection and restoration of full light-harvesting capacity.
FRP is needed for the recovery of full antenna capacity when light
intensity decreases (Boulay et al., 2010). FRP interacts with the
activated OCP and accelerates its deactivation and detachment
from the PBS (Boulay et al., 2010; Gwizdala et al., 2011), although
the details of these processes have not yet been elucidated (Zhang
et al., 2014).

Carotenoid containing OCP molecules have an essential role
in cyanobacterial photoprotection by binding to the PBS.

CONCLUSION

Carotenoids are important for multiple PSII functions, as they
are not only required for its activity but also participate in
the light-harvesting process. They act as pigments, which can
increase the spectral range, and can also protect against over-
excitation and oxidative side products. It has been shown
that β-carotene is essential for the assembly of PSII and
the PSI trimer, whereas xanthophylls can stabilize them. The
influence of OCP on the light-harvesting capacity of PBS
and the requirement of carotenoids for the proper assembly
and function of this complex highlight important additional
roles of not only β-carotene, but also of the xanthophylls
in cyanobacterial photosynthesis. Further studies are required
to elucidate the exact mechanisms by which carotenoids
influence the structure and function of PSII and the PBS, and
how they contribute to the protection of the photosynthetic
processes.
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