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INTRODUCTION

The apoplast has gained recent attention owing to advances in—omics approaches, esp. the
proteomics studies in apoplasts, xylem saps, and intercellular washing fluids (IWF) from diverse
plant species. Apoplastic interactions are integral to plant signaling, growth, defense, physiology,
and reproduction. In addition, the plant apoplast serves as a hub of pathogen effectors and a
great deal of pathogenic proteins and small molecules are cataloged in literature. In spite of its
importance in plant biology, the knowledge about apoplastic lipids and their carriers have been
limited to few seminal studies and sporadic efforts. Here, the attempt is to comprehend the gained
knowledge and remaining gaps in plant apoplastic lipidomes and address means as to how efforts
can unveil the black box of plant apoplastic lipidome. The apoplast is defined as the extracellular
matrix, the plant cell wall and the intercellular spaces where the apoplastic fluid circulates (Agrawal
et al., 2010). In addition, the intercellular fluids and xylem sap samples, for instance represent the
apoplastic system that transports distinct molecules along the plant system (Kehr and Rep, 2007;
Seifert and Blaukopf, 2010). In vascular plants, the apoplastic xylem saps demonstrate considerable
differences in composition from the apoplast used in phloem loading. The complement of all
proteins and metabolites that are exported out of the symplast comprises the plant’s secretome
(or apoplastic proteome and metabolome, respectively). Important roles assigned to apoplastic
proteome is that of conferring basal immunity (Feussner and Polle, 2015) among other important
functions. Plant apoplast proteomics studies conducted in tobacco (Dani et al., 2005; Goulet et al.,
2010), cowpea (Fecht-Christoffers et al., 2003), Arabidopsis (Boudart et al., 2005; Kwon et al.,
2005; Ge et al., 2011; Floerl et al., 2012), canola (Floerl et al., 2008), rice (Zhang et al., 2009),
soybean (Djordjevic et al., 2007), poplar (Pechanova et al., 2010), and Medicago (Soares et al.,
2009) have furthered our knowledge by helping researchers catalog proteins involved in pathogen
interactions, heavy metal accumulation, oxidative stress, pollen germination, cell wall biosynthesis
and regeneration, salinity stress tolerance among other pivotal plant physiological, and defense
responses. Moreover, the plant secretome proteomes have been reviewed elsewhere (Jwa, 2008;
Agrawal et al., 2010; Alexandersson et al., 2013; Krause et al., 2013). In contrast, transcriptomic
(Blomster et al., 2011) and metabolomics (Floerl et al., 2012) studies of apoplasts are rare and
remains to be explored.

Surprisingly, absolutely no information is available yet on the lipidome of the plant apoplast.
Plant lipidome is huge and themajor classes of lipids discovered till date include, but are not limited
to, triacylglycerols (TAGs)—the most abundant class of storage lipids, wax esters, sterols, sterol
esters, acylated sterol glycosides, phytoglycolipids, ceramides, glucosylceramides. For instance
only phospholipids consists of major classes of phospholipids such as phosphatidylcholines
(PC), phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidylserines (PS),
and phosphatidylinositols (PI) are structural phospholipids that have distinct and specific
distributions in the cellular membranes, contributing to their identity (van Meer et al.,
2008). On the other hand, phosphatidic acid (PA), phosphatidylinositolmonophosphate (PIP),
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phosphatidylinositolbisphosphate (PIP2) and
lysophospholipids such as lysophosphatidylcholine (LPC),
lysophosphatidylethanolamine (LPE), and lysophosphatidic acid
(LPA) are produced from structural phospholipids by specific
enzymatic pathways and are minor constituents of the cell
membranes (Meijer and Munnik, 2003). Although information
on the plant lipidome exists in the form of oil-crops and
seed oils, little is known about their apoplastic abundances or
distribution.

Hence, in this review, we look into the apoplast lipids and
their associated biosynthetic machineries, where a lot have
been deciphered in terms of bound proteins, polymers, and
proteins. Apoplast includes the cell-walls which are known
to boast a diverse metabolites, the extracellular spaces where
the “secretomes” are released (including the organ surfaces)
and cuticles which is consisted of lipid and hydrocarbon
polymers impregnated with wax among others. Cell walls
include macromolecular polymeric structures such as lignins,
pectins, cellulose among others. Suberin is an apoplastic
biopolymer that contributes to the control of diffusion of
water and solutes across internal root tissues and in periderms
(Ranathunge et al., 2011). However, I exclude the cell-wall
bound apoplastic constituents to focus on the dynamic aspects of
lipidome.

APOPLASTIC PROTEINS INVOLVED IN
TRANSFER OF LIPIDS

Lipids, are extremely hydrophobic polymer compounds that have
to pass through the apoplastic compartment or eventually to the
highly hydrophilic cell wall for incorporation. Thus, it has been
deciphered that non-specific lipid transfer proteins (nsLTPs) are
secreted into the apoplast, that contain a hydrophobic pocket
which binds long-chain fatty acids (FA) to transfer lipids via
an unknown mechanism (Edstam and Edqvist, 2014). In one
of the pioneering and seminal investigation, in Arabidopsis
thaliana it was observed that a defective in induced resistance
1-1 (dir1-1) mutant exhibited wild-type local resistance to
avirulent and virulent Pseudomonas syringae, failed to develop
systemic acquired resistance (SAR) to virulent pathogens such
as Pseudomonas or Peronospora parasitica (Maldonado et al.,
2002). Thus, DIR1 was shown to encode a putative apoplastic
LTP which interacts with a lipid-derived molecule to promote
long distance signaling during pathogenesis (Maldonado et al.,
2002). Following this work, there have been numerous instances
where LTPs were simply reported or their functional roles
were probed. nsLTPs are localized extracellularly in barley,
carrot, grape, Arabidopsis, tobacco, soybean, Medicago (Liu
et al., 2015), while proteomics studies have indicated their
sub-cellular localizations in apoplastic fluids (Dani et al.,
2005; Djordjevic et al., 2007). Other efforts in this direction,
which have also included similar proteins that are involved
in apoplastic lipid transport or metabolism, are summarized
below.

In Euphorbia lagascae seedlings, E. lagascae lipid transfer
proteins (ElLTP2) function as a apoplastic carrier when lipid

components from the senescent cells of the endosperm (Eklund
and Edqvist, 2003). They observed that ElLTP2 are relocalized
to the growing cotyledons where lipids are used in epidermal
growth and development. In the xylem-sap of tomato, a new
family of small cysteine-rich proteins (XSP10), with structural
similarity to LTPs was reported (Rep et al., 2003). The declined
protein levels of XSP10s in tomato plants infected with a
fungal vascular pathogen possibly indicated its breakdown or
modification by the pathogen (Rep et al., 2003). The ATT1 (for
aberrant induction of type three genes, encodes a CYP86A2), a
cytochrome P450 monooxygenase catalyzing fatty acid oxidation
was reported in the apoplast (Xiao et al., 2004). This protein
was shown to be involved as a major player in biosynthesis
of extracellular lipids and cutin biosynthesis. nsLTPs were also
detected in apple (Malus domestica cv. Elstar) leaves infected
with a cloned isolate of the apple scab Venturia inaequalis
(Gau et al., 2004). When the researchers collected the IWF
from the uninfected leaves, the protein was detected but its
amount declined to a non-detectable level within the 1st week
post-infection. Furthermore, in tobacco leaves subjected to salt
stress, two LTPs were expressed entirely de novo (Dani et al.,
2005). GLIP1, is a secreted lipase with a GDSL-like motif
designated GDSL LIPASE1 is salicylic acid dependent (Oh
et al., 2005). In addition to exhibiting antimicrobial activity,
the glip1 plants were shown to be compromised in local and
systemic resistance to the necrotrophic pathogen Alternaria
brassicicola. Other LTPs were also reported in the xylem apoplast
of Glycine max (Djordjevic et al., 2007). Similarly, HaAP10, an
LTP from Helianthus annuus dry seeds, is apoplastic in dry
seeds and upon imbibition is rapidly internalized and relocalized
to organelles involved in lipid metabolism—acting as a fatty
acid shuttle between the oil body and the glyoxysome during
seed germination (Pagnussat et al., 2012). Phospholipase A2

(PLA2) hydrolyzes phospholipids at the sn-2 position to yield
lysophospholipids and free fatty acids. With leaf maturity and
upon pathogenic challenge the paralog PLA2α is translocated
from ER/Golgi locations to apoplastic space (Jung et al.,
2012). A glycophosphatidylinositol (GPI)-linked lipid transfer
protein (LTPG) accumulates specifically at junctional borders,
i.e., resides both in the apoplastic space between the plasma
membrane, cell wall, and in the intercellular fluids (Ambrose
et al., 2013).

Thus, the nsLTPs, LTPs and associated proteins indicate a
dynamic role of these proteins in lipid biosynthesis, transport,
andmetabolism in the plant apoplast—be it, in the seeds, infested
leaves, or during a diverse stress conditions.

LIPIDS THAT ARE SECRETED INTO
APOPLAST

Suberin is a heteropolymer with polymeric aliphatic and
associated aromatic materials. Long-chain oxygenated fatty acids
are the core constituents of the suberin polyester. In oats
(Avena sativa) the apoplastic (exoplasmic) leaflet, as well as in
rafts, phospholipids did not include digalactosyldiacylglycerol
(DGDG), but showed the presence of acylated sterol glycosides
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FIGURE 1 | Dynamic role of lipid transfer proteins in plant apoplast. The lipid transfer proteins such as LTPs and nsLTPs are possibly the major players in

carrying the diverse lipid classes from the cytosol (symplast) through the cell wall to apoplast. Little information is established as to how the turnover of these proteins,

involvement of other players, and mechanisms of loading/ unloading happen to generate this apoplastic lipidome. Nonetheless, with lack of concrete evidence it is

safe to speculate that these LTPs are major players in apoplastic lipid metabolism. Cataloging of these lipids using mass-spectrometry platforms would be insightful in

understanding the real time kinetics of such transfers across the membranes. nsLTPs, non-specific lipid transfer proteins; LTP, lipid transfer proteins; CW, Cell wall; V,

vacuole; C, cytoplasm; LinA, linoleic acid; LinolA, linolenic acid; PA, phosphatidic acid; PI, phosphatidylinositol; PG, phosphatidylglycerol; PI4P, phosphatidylinositol

4-phosphate.

(Tjellström et al., 2010). Moreover, they observed that this
phospholipid accumulation was observed to be dependent on
the phosphate availability status of the plants. The extracellular
washing fluids (EWFs) obtained from sunflower (Helianthus
annuus) seeds imbibed for 2 h contained diverse phospholipids,
i.e., PA and PI being the major phospholipids (Regente et al.,
2008). In addition, the phytohormone abscisic acid (ABA) and
jasmonic acid (JA) induced changes in phospholipid profiles,
i.e., JA—induced decreased in PI and increased PA, and ABA—
induced increased in PA and PG indicate their contribution
in intercellular communication. Further, important plant lipid
signaling components such as phosphatidylinositol-4-phosphate
(PI4P) were reported in the extracellular medium of tomato cell
suspensions as well as in the apoplastic fluids of tomato plants
(Gonorazky et al., 2012). In addition to a diverse phospholipids,
electron spray ionization—tandem mass spectrometry (ESI-
MS/MS) analysis indicated a markedly different profile from the
phospholipid pattern identified in entire leaflets. Moreover, the
levels of each phospholipid detected in entire leaflets were at
the nanomolar scale, while the levels of the distinct apoplastic
phospholipids were at the picomolar scale. In French bean
(Phaseolus vulgaris) leaf cells, the characteristic oxylipins for
oxidation were not detected in apoplastic fluid over the period
of the apoplastic burst, although linolenic and linoleic acids
were detected in apoplastic fluids before elicitation (Bolwell
et al., 2002). With a handful of lipids and fatty acid metabolites
recorded in the apoplast, it remains to be seen, if these
revelations are biologically relevant or it is just the case of
lack of structured studies into the lipid classes of apoplasts.
In Figure 1, the available knowledge on the LTPs and handful
of lipids for which very little functions are established, are
summarized.

CONCLUSIONS AND FUTURE
PERSPECTIVES

We have just started exploring and understanding the apoplastic
lipidomes at the levels of singular carrier proteins only, i.e., more
specifically the LTPs and their functionalities in pathogenesis
and stress conditions, mostly. Only a handful of lipids have
been localized to the apoplast or roughly assigned any function
in the apoplast. Thus, we have only touched the tip of the ice
berg of the entire plant lipidome which must be dynamic and
diverse. However, with expanding lipidomic studies in model
systems such as Arabidopsis (Degenkolbe et al., 2012; Higashi
et al., 2015), maize (Riedelsheimer et al., 2013), oil crops (Furse
et al., 2013), tobacco (Li et al., 2015) and microbial systems
such as cyanobacteria (Plohnke et al., 2015), and yeast (Ejsing
et al., 2009; Grillitsch et al., 2011), single cell-types such as
oleaginous algae (Li et al., 2014), organellar (Rolland et al.,
2009), and sub-cellular (Horn and Chapman, 2012) domains, our
understanding of the lipidome (Welti et al., 2007) is constantly
gaining newer insights for bioprospecting of lipids in medicine,
biotechnology, food, pharmaceuticals, agriculture, and biofuels.
In addition, the newer technologies available to address plant
lipidome that span from in situ lipidomic visualization/ imaging
(Horn and Chapman, 2014), shotgun lipidomics (Han and
Gross, 2005), hydrophobic interaction liquid chromatography—
ion trap—time of flight- mass spectrometry (HILIC-IT-ToF-MS)
(Okazaki et al., 2013), to ultra-pressure liquid chromatography—
high resolution mass spectrometry (UPLC-HRMS) (Hummel
et al., 2011) and associated development in softwares/ tools for
analyses of lipidomic data sets (Haimi et al., 2006); we are at
exciting times of looking at plant apoplastic lipidomes with a
rejuvenated interest.
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