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Gričar J, Prislan P, Gil-Pelegrín E,
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Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris
L.) was intra-annually monitored to examine plastic responses of the xylem phenology
according to altitude in one of the southernmost areas of their distribution range, i.e.,
in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at
1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech
forest in this region. Microcores containing phloem, cambium and xylem were collected
biweekly from twenty-four trees from the beginning of March to the end of November
to assess the different phases of wood formation. The samples were prepared for
light microscopy to observe the following phenological phases: onset and end of cell
production, onset and end of secondary wall formation in xylem cells and onset of cell
maturation. The temporal dynamics of wood formation widely differed among years,
altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied
between the first week of May and the third week of June. Cambial activity then slowed
down and stopped in summer, resulting in a length of growing season of 48–75 days.
In contrast, the growing season for P. sylvestris started earlier and cambium remained
active in autumn, leading to a period of activity varying from 139-170 days. The intra-
annual wood-formation pattern is site and species-specific. Comparison with other
studies shows a clear latitudinal trend in the duration of wood formation, positive for
Fagus sylvatica and negative for P. sylvestris.

Keywords: xylogenesis, European beech, Scots pine, microcore, cambial activity, Moncayo Natural Park

INTRODUCTION

A forest community can prosper only on sites where the environmental conditions are within
the niche volumes of each species (Reed and Clark, 1978). The distribution of different species
is limited by a combination and interaction of biotic and abiotic factors (Mcinerny and Etienne,
2012); outside such conditions, the species cannot survive (Kearney, 2006).
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The widespread forest species European beech (Fagus
sylvatica) and Scots pine (Pinus sylvestris) have both high
ecological relevance and economic values. European beech
forests are spread all over central Europe, from central Poland,
the south of Scandinavia and British Isles to the southernmost
locations in the mountain ranges of Greece, Italy and Spain (Jalas
and Suominen, 1973). Scots pine forests are distributed from the
Alps to northeast Europe, covering all Scandinavia and Russia
beyond 55◦ northern latitude (Jalas and Suominen, 1976). In
the Mediterranean region are isolated patches of both species,
climatically constrained by the warmer and drier conditions
compared to the greater part of Europe. In these areas, extreme
climatic events, such as summer droughts, heat waves or late
frosts, restrict forest expansion on the edge of the distribution
limit, leaving some populations isolated in mountain shelters.

Climate not only affects forest distribution but also tree
growth. The study of cambial activity and tree-ring formation
provides valuable information for understanding how trees
respond to different climatic conditions (de Luis et al., 2011a;
Gričar et al., 2014). In temperate ecosystems, climatic variability
leads to an annual periodicity of cambial activity, with winter
dormancy and an active period during the growing season.

Monitoring wood formation at the edge of a species’
distribution is therefore especially relevant, since these trees are
most sensitive to limiting climatic factors and respond most
distinctively to any change (Fritts, 1972; Gruber et al., 2010;
González-González et al., 2014). Knowing how these species grow
may help to predict the distribution of tree species in the context
of the expected climate change scenarios (de Luis et al., 2011a).
In particular, more extreme climatic conditions are expected
to affect tree-species’ distribution (Richter et al., 2012; Eilmann
et al., 2014).

Although the wood-formation patterns of Fagus sylvatica
and Pinus sylvestris have been studied on different sites in
Europe, studies along the western – southern distribution
limits are still missing. Rossi et al. (2013) and Cuny et al.
(2015), in comprehensive studies, compiled data on cambium
phenology and wood-formation dynamics for several conifer
species, including P. sylvestris, growing in different biomes.
In Austria, P. sylvestris trees growing at xeric and dry-mesic
sites were studied by Gruber et al. (2010), Oberhuber et al.
(2011) and Swidrak et al. (2014). Similar studies were performed
by Rathgeber et al. (2011a) and Cuny et al. (2012, 2014) in
France, as well as by Seo et al. (2011) and Jyske et al. (2014)
in Finland. These studies highlighted the plasticity of tree-ring
formation of P. sylvestris in response to contrasting climatic
conditions. Different key phenological dates showed distinct
variability among study sites and years. It was shown that trees
at northern sites initiate tree-ring formation later than trees at
southern sites.

Compared to P. sylvestris, there is less information available
on F. sylvatica. Cambial productivity of this species has been
monitored at different sites and during several growth seasons
in Slovenia by Čufar et al. (2008b) and Prislan et al. (2013)
and also in Romania (Semeniuc et al., 2014). In addition, other
studies have been performed for one growing season in the
Netherlands (van der Werf et al., 2007), France (Michelot et al.,

2012), Czech Republic (Vavrčík et al., 2013), and in north
Germany (Schmitt et al., 2000). Previous studies indicated the
importance of photoperiod and leaf phenology for the onset of
xylem production, and the influence of climatic conditions in
June, which was proved to be the most important month for wood
formation (Čufar et al., 2014). Studies performed during several
years showed that year-to-year variations in tree-ring formation
can be explained by climatic conditions or environmental factors,
although in some cases the relationship between variation in
xylogenesis and weather conditions can be very complex (Prislan
et al., 2013).

In order to better understand the growth adaptations and
limitations of F. sylvatica and P. sylvestris at one of the
Mediterranean edges of their distribution, we studied the
dynamics of xylem-growth formation at one of the southernmost
sites of the two species during three years. Cambium phenology
(onset and cessation of cambial cell production) and the timing
of xylem formation was compared between the two species
and sites to evaluate the adaptation strategies under different
environmental conditions. The duration of the xylogenesis was
compared with data from other studies of the same two species
performed all over Europe.

METHODOLOGY

Study Site
The study was carried out in the Moncayo Natural Park, a
mountain area in the northeast of the Iberian Peninsula in the
province of Zaragoza (41◦ 48′ 31′′ N, 1◦ 49′ 10′′ W). This natural
park is considered as a biodiversity hotspot; the contrasting
climate conditions along the altitudinal gradient of the mountain
allow growth of various vegetation types, from Mediterranean to
Eurosiberian species (Martinez del Castillo et al., 2015). This site
is one of the southernmost forest stands in Europe for F. sylvatica
and P. sylvestris. The mean annual temperature and average
annual precipitation for the last 37 years were 11◦ and 710 mm,
respectively [according to the Spain02 database (Herrera et al.,
2012)].

Two pure stands of different altitudes were selected for each
species, corresponding to the lower and higher altitudinal limits
of F. sylvatica forest on this mountain. The low elevation site
was located at 1180 m a.s.l. and the high elevation site at
1560 m a.s.l.

Sample Preparation
The sampling of tissues for xylem-formation monitoring was
performed biweekly from mid-March until late November from
2011 to 2013. At each sampling date, six trees were randomly
selected per species and site in a sampling plot of around
50 m × 50 m. The selected trees were similar, healthy and
dominant, with a stem diameter at breast height of 40–55 cm
and an age of around 80 years for P. sylvestris and 35–
50 cm and 120 years for F. sylvatica. From each tree, two
microcores containing phloem, cambium and the last formed
xylem growth ring were collected at breast height with a Trephor
tool (Rossi et al., 2006a). The sample had a diameter of 2 mm
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and was up to 15 mm long. The sampling followed a helical
arrangement around the stem to avoid wound effects from
previous samplings, with sampling locations separated by at
least 10 cm. After sampling, the microcores were immediately
transferred in Eppendorf microtubes filled with formaldehyde-
ethanol-acetic acid (FAA) fixative solution for one week and later
stored in 70% ethanol.

The microcores were processed following the protocol
described by Rossi et al. (2006a). The microcores were first
dehydrated in a graded series of ethanol (70, 80, 90, and
100%) and infiltrated with D-limonene and paraffin using a
Tissue Processor Leica TP1020. After infiltration, samples were
embedded in paraffin blocks. Transverse sections of 8–10 µm
thickness, depending on the species, were cut with a Leica RM
2245 rotary microtome. The sections were afterward stained with
safranin and astra blue (Gričar et al., 2007; van der Werf et al.,
2007; Prislan et al., 2013), mounted in Euparal and examined with
a Nikon Eclipse E800 light microscope equipped with polarized
light mode.

Xylem Phenology Measurements and
Data Processing
For F. sylvatica, the width of the cell layers in the cambium was
measured with the NIS Elements BR3 image analysis system.
Moreover, the width of growth-ring increments and also the
width of tissues containing xylem cells in various differentiation
phases were measured, i.e., post-cambial growth (enlarging cells),
cells undergoing secondary wall thickening and mature cells. For
P. sylvestris, the cambial cells were counted as well as the xylem
cells in the three different aforementioned phases.

Cambial activity was identified and interpreted within the
context of the multi-seriate concept, that the vascular cambium
comprises both the cambial initial cells and xylem and phloem
mother cells (Plomion et al., 2001). Thin-walled cambial cells
were identified based on their small radial dimensions compared
to xylem and phloem cells in the enlarging phase (post-cambial
growth), with larger radial dimensions. The polarized mode of the
light microscope enabled the discrimination between enlarging
cells and secondary wall-thickening cells as described in Rossi
et al. (2006b).

The number of cells and the width of tissues in each phase
varied between and within trees due to the variation of the tree-
ring width around the tree circumference. The number of cells
in the previous xylem ring was therefore counted for P. sylvestris
to normalize the measurements according to Rossi et al. (2003).
In the case of F. sylvatica, the normalization formula was adapted
using width measurements instead of cell number, as described in
Prislan et al. (2013).

Extreme values were filtered and xylem-formation dynamics
was analyzed with the Gompertz function (Rossi et al., 2003).
Cambium phenology and timing of xylem formation were
assessed using R package CAVIAR (Rathgeber et al., 2011a,b).
We defined: beginning and end of the enlarging phase (bE,
cE), beginning and end of the thickening phase (bW, cW) and
beginning of cell maturation phase (bM). All the dates were
computed with a dedicated function using logistic regressions.

Differences in the different xylogenesis phases were determined
applying repeated measurements ANOVA analysis (de Luis et al.,
2011a; Prislan et al., 2013). The effects of fixed factors such as
species and sites and the effect of time were evaluated. The total
duration of the xylogenesis period was calculated by subtracting
the beginning of the enlarging phase from the cessation of the
thickening phase. Mean xylogenesis duration was calculated to
compare the results with other studies.

RESULTS

Wood Formation
In all years, locations and species, the cambium was still
dormant on the first sampling date in the last week of March.
Despite site and annual variations in weather conditions, the
different xylogenesis phases followed a common pattern during
the growing season. The cell enlarging and cell-wall thickening
curves follow a characteristic bell shape, while the cell maturation
curve follows a sigmoid shape (Figure 1).

Overall, the onset of cell enlargement in P. sylvestris occurred
between the last week of March and the first week of April,
followed by the onset of the wall-thickening phase around
2 months later. The beginning of cell maturation occurred
around the summer solstice, before the enlarging of cell ends
in early September. Over more than 2 months, the currently
forming tree-ring contained cells in different developmental
stages. Completely mature xylem growth rings were observed in
the first half of November.

Xylem-formation dynamics patterns differed between
F. sylvatica and P. sylvestris. In F. sylvatica the onset of enlarging
and wall-thickening phases occurred in the second half of May
and in June, respectively. The beginning of the maturation
process occurred from the last week of June to mid-July, followed
by an immediate ending of the enlarging phase. Finally, the
xylogenesis ended around mid-August.

Phenology of Xylem Formation
The critical dates for the xylogenesis of P. sylvestris and
F. sylvatica were summarized on three levels, shown in Figure 2.
Dates significantly differed between the two species (ANOVA bE,
cE, bW, cW: p < 0.001; bM: p = 0.005). The cell enlargement
started first in P. sylvestris, around 31 March (DOY 90) and
50 days later, around 20 May (DOY 140) in F. sylvatica. Cessation
of cell enlargement was observed between 9 July and 6 August
(DOY 190-218) for F. sylvatica and in P. sylvestris between
10 August and 1 October (DOY 222-274). Cell-wall thickening
and lignification began up to ca. one month earlier and ended
around three months later in P. sylvestris than in F. sylvatica. The
first mature cells were observed around 25 June (DOY 176) in
P. sylvestris and around 7 July (DOY 188) in F. sylvatica.

The beginning of the enlargement phase was highly variable
and significantly different among the years for both species at
both high and low elevations (ANOVA species∗site: p < 0.001).
In F. sylvatica, it began between 7 May and 20 June (DOY
127–171), with noticeable differences within years (Figure 2).
In P. sylvestris, cell enlargement began between 23 March and
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FIGURE 1 | Seasonal dynamics of xylogenesis phases in 2011, 2012, and 2013. Amount (number for Pinus sylvestris and width of tissue for Fagus sylvatica
expressed in micrometers) of enlarging cells, cells undergoing secondary wall formation and lignification, as well as mature cells in the currently formed growth rings
on Moncayo low and high elevation sites. The lines represent the median and the blurred area the range between the 90th and 10th percentiles.

17 April (DOY 82–107). Although the variability was lower in
the latter species, in 2011 there was a delay in the beginning
of cell enlargement. Focusing on the elevation differences, cell
enlargement started earlier at lower elevation in the P. sylvestris
than in F. sylvatica. The end of this phase highly varied among
years, whereby higher variability was observed between the years
then among the sites for each species (ANOVA site: p= 0.31).

The onset of the secondary wall formation was highly variable
(Figure 2); in all cases the cell-wall thickening phase started
earlier in 2011 and later in 2013, followed by the same temporal
pattern (within-subjects ANOVA time∗species∗site: p = 0.561)
(Figure 2). The first mature cells (5%) were formed earliest in
P. sylvestris at low elevation in 2012 (around June 4, DOY 155),
and in 2011 (around 11 June, DOY 162) for F. sylvatica.

Duration of the Growing Season
The total duration of the xylogenesis of F. sylvatica was
significantly shorter than in P. sylvestris (ANOVA species:

p < 0.001) (Figure 3). The cell production period during the
three study years took 48–75 days for F. sylvatica, in contrast
to P. sylvestris, with a growing period lasting from 140 to
170 days. Trees growing at low elevation had a longer growing
period in the case of P. sylvestris, whereas the growing period of
F. sylvatica, in contrast, was shorter at low elevation than at high
elevation.

The mean duration of the xylogenesis was compared with
other studies all over Europe (Table 1 and Figure 4). In
P. sylvestris, the duration of xylogenesis was shorter at high
latitude and longer at low latitude, with a range of 49 days in
Finland (Seo et al., 2011) to 217 days in Spain. In contrast, wood
formation process in F. sylvatica was longer at high latitudes,
over 163 days in the Netherlands (van der Werf et al., 2007) and
only 67 days in Spain. In both species, the average duration of
the xylem formation follows a linear pattern along the latitudinal
range; however, whether it is directly or inversely proportional to
the latitude depends on the species (Figure 5).
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FIGURE 2 | Beginning and cessation of the cell enlargement (bE, cE) and cell-wall thickening phase (bW, cW) and beginning of maturation (bM)
grouped by (A) sites, species and years, (B) sites and species and (C) species. The central lines indicate the median value, vertical hinges indicate the first
and third quartiles, error bars indicate the 95% confidence interval of the median and dots indicate values beyond the 95% confidence interval threshold.

FIGURE 3 | Xylogenesis duration grouped by (A) sites, species and years, (B) sites and species and (C) species. The box chart legend is as in Figure 2.

DISCUSSION

Dynamics of Xylogenesis
Tree growth is largely affected by different climatic conditions,
which become more limiting in adverse climatic conditions, such
as in a Continental Mediterranean climate (Camarero et al., 2010;
de Luis et al., 2011a; Pasho et al., 2012). Different tree species

are differently affected by climate: e.g., evergreen or deciduous
species, or early-successional or late-successional species. In this
context, previous studies suggest that evergreen species adapt
better to Mediterranean environmental and climatic conditions
than deciduous species (Blumler, 1991), while early-successional
species adopt riskier life strategies (Körner and Basler, 2010),
making them more adaptive but also more vulnerable to the
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TABLE 1 | Mean xylogenesis duration values of Fagus sylvatica and Pinus sylvestris from various wood-formation studies in Europe.

Species Country m a.s.l. Long. Lat. Mean xylogenesis duration (days) Reference

Fa
gu

s
sy

lv
at

ic
a

Spain 1560 −1.82 41.79 80 This study

Spain 1180 −1.81 41.80 67 This study

Slovenia 400 14.66 46.00 113 Čufar et al., 2008a

Slovenia 400 14.66 46.00 153 Prislan et al., 2013

Slovenia 1200 14.80 46.26 122 Prislan et al., 2013

Romania 850 25.55 47.48 122 Semeniuc et al., 2014

France 120 2.66 48.41 115 Michelot et al., 2012

Czech Republic 630 16.70 49.46 116 Vavrčík et al., 2013

Netherlands 50 5.71 51.98 163 van der Werf et al., 2007

P
in

us
sy

lv
es

tr
is

Spain 1560 −1.82 41.79 215 This study

Spain 1180 −1.81 41.80 217 This study

Austria 750 10.84 47.23 137 Gruber et al., 2010

Austria 750 10.84 47.23 160 Gruber et al., 2010

Austria 750 10.84 47.23 170 Oberhuber et al., 2011

Austria 750 10.84 47.23 172 Swidrak et al., 2014

France 643 7.15 48.48 189 Cuny et al., 2012, 2014

France 270 6.32 48.74 199 Rathgeber et al., 2011a

Finland 60 25.00 60.20 91 Jyske et al., 2014

Finland 120 25.60 61.20 79 Jyske et al., 2014

Finland 181 24.30 61.90 73 Jyske et al., 2014

Finland 110 27.30 62.40 63 Jyske et al., 2014

Finland 140 26.40 66.20 64 Jyske et al., 2014

Finland 140 26.70 66.30 63 Seo et al., 2011

Finland 390 29.40 67.50 54 Jyske et al., 2014

Finland 300 27.40 68.30 49 Seo et al., 2011

highly variable Mediterranean climate. These differences may
trigger a different phenology of xylem formation. Our results
suggest that F. sylvatica and P. sylvestris respond differently
to local Mediterranean conditions. Accordingly, the phenology
of xylem formation was significantly different between the two
species, the period of all P. sylvestris developmental phases being
significantly longer.

Our results demonstrate that Mediterranean climate has less
impact on P. sylvestris than on F. sylvatica, despite this early-
successional condition. The Pinus genus has been established
as very plastic and capable of adapting its growth to changing
climatic conditions (Camarero et al., 2010; de Luis et al., 2011a;
Novak et al., 2013; Vieira et al., 2014) and the bimodal growth
pattern as an adaptation to Mediterranean climate has been
frequently described (Camarero et al., 2010; Campelo et al., 2015).
Specifically, P. sylvestris has recently been determined as a plastic
species in the Mediterranean area (Sánchez-Salguero et al., 2015).

Several studies performed on F. sylvatica under Mediterranean
conditions have highlighted the growth limitation due to summer
high temperatures and drought (Robson et al., 2013; Rasztovits
et al., 2014; Chen et al., 2015; Rozas et al., 2015). In addition to
climatic constrictions, F. sylvatica trees are more limited during
the year in terms of plasticity because, with the activation of a leaf
senescence mechanism, trees inexorably enter a dormant period.
Despite this, our results reveal differences in the altitudinal
gradient in agreement with the results shown in Prislan et al.
(2013): who found similar patterns but different timing in two
F. sylvatica forests with different climatic regimes.

The most striking result of the present study is the great
differences in growth patterns among the years, highlighting a
plastic response of radial growth in F. sylvatica, similarly as in
P. sylvestris.

Occurrence of Xylem Phenology
High variability in xylem phenology between years and sites
demonstrates high plasticity of the species. The timing of
different developmental phases significantly varied between the
two species. Even though the variability of the critical dates was
high among years and sites, the most remarkable disparity was
found between the two tree species.

Xylogenesis, starting with cambial division and cell
enlargement, is triggered by an increase in air temperature
in spring. Several studies have demonstrated this positive
relationship (Rossi et al., 2008; Prislan et al., 2011; Vieira
et al., 2014), which has also been supported by stem heating
experiments (Gričar et al., 2007; Begum et al., 2010). Under the
same climatic conditions, we showed a difference in the onset of
xylogenesis between the two species of over 50 days, especially in
2013, when the difference was about 72 days at both elevations.
These differences suggest that climatic conditions for the onset
of xylogenesis are species-specific. Moreover, the same weather
conditions resulted in a completely different response of the tree
species in terms of the temporal dynamics of xylogenesis, as can
clearly be seen in 2011, when F. sylvatica started earlier than in
the other two study years, while P. sylvestris showed the latest
onset of growth in the same year.
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FIGURE 4 | Xylogenesis duration of Fagus sylvatica and Pinus
sylvestris in Europe.

The end of the cell-wall thickening phase seems to be
a key date, since it defines the end of xylogenesis. Overall,
the thickening phase in P. sylvestris continued until mid-
November, whereas in F. sylvatica it ceased in mid-August,
i.e., about three months earlier. Mild temperatures during early
autumn may result in an extension of the growing period
for P. sylvestris but not for F. sylvatica, since by that time
leaf senescence has also already started. Cessation of cell-wall
thickening was first observed in the lower part of the mountain
in both species, as was similarly reported by Moser et al.
(2009) and Oladi et al. (2011). This indicates that the end of
xylogenesis is possibly influenced by temperature as well as
the length of the photoperiod, as proposed by Plomion et al.
(2001).

A common pattern is an evident delay in all developmental
phases in 2013, except the beginning of wood formation in
P. sylvestris. This may be explained by the late frost that occurred
in 2013, after the onset of cell enlargement in P. sylvestris.
This event presumably affected the temporal dynamics of wood
formation in both species, although with different magnitudes.
Menzel et al. (2015) showed that spring late frost events cause
considerable damage in F. sylvatica. Nonetheless, a more detailed
study of the climatic-growth relationship would be needed to
confirm this hypothesis.

FIGURE 5 | Xylogenesis duration variations by latitude. The black lines
represent linear regressions: (P. sylvestris) y = −6.25x + 470.14, P < 0.001;
(F. sylvatica) y = 7.28x −222.56, P = 0.010.

Growing-Season Length under
Mediterranean Conditions
Although both species are growing at their southern distribution
limit and, consequently, their radial growth is somewhat
constrained, the duration of the growing period of the two species
significantly varied. The duration of xylogenesis highlights the
differences between the species; it was two months for F. sylvatica
and more than five months for P. sylvestris. Because of the early
start and late end, P. sylvestris on Moncayo showed the longest
xylogenesis duration in this species recorded in the various
studies to date. Moreover, the shortest xylogenesis duration for
F. sylvatica was also captured on this mountain.

Cambial resumption in P. sylvestris occurred earlier than on
numerous Central European sites (Gruber et al., 2010; Oberhuber
et al., 2011; Cuny et al., 2012, 2014; Swidrak et al., 2014),
which could be explained by the warmer spring in Moncayo.
These results are also in accordance with observations of Rossi
et al. (2013) on various sites and Jyske et al. (2014) in Finland.
On the other hand, the end of xylogenesis occurred later at
Moncayo and resulted in a longer duration of xylogenesis than
in other places in central and northern Europe. An extension
of the growing season has also been described for other pine
species, such as P. halepensis (de Luis et al., 2011b) or P. pinaster

Frontiers in Plant Science | www.frontiersin.org 7 March 2016 | Volume 7 | Article 370

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00370 March 21, 2016 Time: 18:36 # 8

Martinez del Castillo et al. Living on the Edge

(Vieira et al., 2014). The extension of xylogenesis could be
caused by the Mediterranean mild temperatures, despite water
restrictions. However, in F. sylvatica, the results showed the
opposite response, the beginning was later than in colder
locations in Europe, such as in France (Michelot et al., 2012),
Slovenia (Čufar et al., 2008b; Prislan et al., 2013), Romania
(Semeniuc et al., 2014), Czech Republic (Vavrčík et al., 2013) and
the Netherlands (van der Werf et al., 2007). This indicates that
warmer and drier conditions at Moncayo negatively affect the
duration of xylogenesis in F. sylvatica.

CONCLUSION

It appears that the temporal dynamics of xylogenesis is
considerably different in F. sylvatica than in P. sylvestris growing
at the edge of their southern spatial distribution. This shows that
intra-annual radial growth patterns in the studied species are
differently affected by the Mediterranean conditions. The annual
variation of the critical xylogenesis dates indicates a high species-
specific plasticity for adapting to changing climatic conditions.
As a result, the period of xylogenesis in F. sylvatica was around
2 months, while for P. sylvestris it was more than 5 months. Our
findings are in accordance with our hypothesis of contrasting
growth strategies and adaptations of the two species at the edge
of their spatial distribution.

Furthermore, we compared our observations with those of
other authors working on the same two species in different
climatic environments, especially along a latitudinal range.
A clear north–south trend was found in the xylogenesis
duration over the distribution range of both species. P. sylvestris
showed a positive xylogenesis duration trend on southern
locations. F. sylvatica, in contrast, showed a shorter xylogenesis
duration in the south of Europe than that shown in northern
locations. These findings demonstrate that a deciduous and late-
successional species such as F. sylvatica is negatively affected
by Mediterranean climatic conditions, resulting in a shorter
xylogenesis, whereas in the evergreen and early-successional
P. sylvestris, xylogenesis is shown to be longer in Mediterranean
environments.
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