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The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in

bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids,

which the quality of tea leaves depends on. Drought is the most important environmental

stress affecting the yield and quality of this plant. In this study, the effects of drought

stress on the phenotype, physiological characteristics and major bioactive ingredients

accumulation of C. sinensis leaves were examined, and the results indicated that drought

stress resulted in dehydration and wilt of the leaves, and significant decrease in the total

polyphenols and free amino acids and increase in the total flavonoids. In addition, HPLC

analysis showed that the catechins, caffeine, theanine and some free amino acids in

C. sinensis leaves were significantly reduced in response to drought stress, implying

that drought stress severely decreased the quality of C. sinensis leaves. Furthermore,

differentially expressed genes (DEGs) related to amino acid metabolism and secondary

metabolism were identified and quantified in C. sinensis leaves under drought stress

using high-throughput Illumina RNA-Seq technology, especially the key regulatory genes

of the catechins, caffeine, and theanine biosynthesis pathways. The expression levels

of key regulatory genes were consistent with the results from the HPLC analysis, which

indicate a potential molecular mechanism for the above results. Taken together, these

data provide further insights into the mechanisms underlying the change in the quality of

C. sinensis leaves under environmental stress, which involve changes in the accumulation

of major bioactive ingredients, especially catechins, caffeine, theanine and other free

amino acids.

Keywords: Camellia sinensis, drought stress, quality, secondary metabolite, RNA-Seq, molecular mechanisms

INTRODUCTION

Tea plant [Camellia sinensis (L.) O. Kuntze] is an important perennial, evergreen, woody crop
that is grown worldwide, and its young leaves are processed to prepare a popular non-alcoholic
beverage known as “tea.” C. sinensis plants experienced the effects of various abiotic stresses during
their lifecycle, such as drought stress (Das et al., 2012), temperature stress, salinity stress (Li et al.,
2010), heavy-metal stress (Basak et al., 2001), and soil nutrient deficiency (Upadhyaya and Panda,
2013). Among these stresses, drought stress is an important factor that significantly constrains
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the yield and quality of tea products, and damage caused by
drought has become increasingly frequent and unpredictable
due to global climate changes, especially growing water
scarcity (Zhou et al., 2014). At present, research on the
effects of drought stress in C. sinensis plants is focused
on the mechanisms underlying the stress response, which
includes morphological, physiological, and molecular changes
(Upadhyaya et al., 2013). For example, Zhou et al. (2014)
and Upadhyaya et al. (2013) reported that the amounts of
H2O2, chlorophyll, proline, and MDA and the activities of
enzymes such as SOD, CAT, POX, GR, and PPO changed in C.
sinensis plants under drought stress. In addition, differentially
expressed genes related to the drought response were identified
using suppression subtractive hybridization and cDNA-AFLP
technology (Das et al., 2012; Gupta et al., 2013). Furthermore,
two-dimensional electrophoresis identified proteins that are
differentially expressed in response to drought stress (Lin et al.,
2014). In contrast, there are only few studies have focused on
the effects of drought stress on C. sinensis leaf quality, especially
the changes in its main bioactive ingredients, such as catechins,
caffeine, theanine and other free amino acids.

The production of secondary metabolites in C. sinensis plants
contribute to the rich flavors, clean taste, and nutrient content
of tea, and these metabolites are known to be beneficial to
human health (Li et al., 2015a). Among them, polyphenols
(especially catechins), caffeine, and theanine are the most
important constituents that determine the quality of C. sinensis
leaves, which further determines the quality of tea products
(Liang et al., 1990). Previous studies have shown that a
poor growth environment strongly reduces the quality of C.
sinensis leaves by changing the amounts of polyphenols, caffeine,
and theanine (Ahmed et al., 2014; Zhang et al., 2014). For
example, Zheng et al. (2008) reported that excessive UV-
B irradiation suppressed the accumulation of tea catechins,
and Zhang et al. (2014) demonstrated that the accumulation
of individual catechins, caffeine and free amino acids was
influenced by light intensity and temperature. Similarly, the
amounts of bioactive ingredients in C. sinensis leaves, such
as polyphenols, caffeine and free amino acids, were found
to decrease in response to an extreme acid-rain environment
(Duan et al., 2012). In addition, preliminary experimental
results showed that drought stress affected the accumulation
of polyphenols and individual bioactive ingredients, which
decreased the quality of C. sinensis leaves (Jeyaramraja et al.,
2003; Chen et al., 2010). However, direct and detailed evidence
of these negative impacts is limited. On the other hand, the
molecular mechanisms of major metabolic pathways in C.
sinensis have been a focus of study, and efforts have been made
to identify the key genes involved in several major metabolic
pathways in C. sinensis (Li et al., 2015a). For example, Shi
et al. (2011) elucidated the gene network responsible for the
regulation of the secondary metabolite biosynthetic pathways in
C. sinensis using high-throughput Illumina RNA-Seq technology,
especially the flavonoid biosynthesis pathway (namely, the
catechins biosynthesis pathway in C. sinensis), the caffeine
biosynthesis pathway and the theanine biosynthesis pathway.
Recently, Li et al. (2015a) analyzed the gene expression profiles

related to secondary metabolic pathways in different tissues
at different developmental stages in C. sinensis, which further
revealed how secondary metabolic pathways are regulated during
plant development and growth cycles. However, the molecular
mechanisms underlying the effects of environmental stress
(especially drought stress) on the accumulation of secondary
metabolites in C. sinensis, such as catechins, caffeine, theanine
and other free amino acids, remain unknown.

In the present study, we investigated the effects of drought
stress on the phenotype, physiological characteristics and
major bioactive ingredients accumulation in C. sinensis leaves,
including the total polyphenol, flavonoid and free amino acid
content. In addition, the changes in the levels of catechins,
caffeine, theanine and other amino acids in C. sinensis
leaves were detected by HPLC after treatment with drought
stress. Furthermore, to investigate the molecular mechanisms
of decrease in quality of tea leaves under drought stress,
differentially expressed genes (DEGs) related to amino acid
metabolism and secondary metabolism in C. sinensis plants
in response to drought stress, especially genes associated
with the catechin, caffeine and theanine biosynthesis pathways
were identified analyzed. These data were used to explore
the molecular mechanisms underlying the changes in the
accumulation of the main bioactive ingredients that occur
in response to drought stress and influence leaf quality in
C. sinensis.

MATERIALS AND METHODS

Plant Materials
Two-year-old tea plants [Camellia sinensis (L.) O. Kuntze
cv. “Longjingchangye”] were pre-incubated under normal
conditions (25 ± 1◦C, 12-h light/12-h dark cycle) for 2
weeks in an artificial climate chamber. The drought stress
assays were then carried out using 20% (w/v) polyethylene
glycol (PEG) 6000 with all of the other environmental
conditions remaining constant. The first and second tender
leaves from about 120◦C. sinensis plants were randomly
collected at several time points (0, 2, 12, 24, and 48 h)
under control or stress conditions, and the samples were
immediately frozen in liquid nitrogen and stored at −80◦C
for further analysis. Additionally, following 0, 2, and 5 days
of treatment, C. sinensis leaves were randomly collected,
freeze-dried and ground to a fine powder to analyze the effects
of drought stress on the metabolism of the main chemical
components.

Determination of Chlorophyll,
Malondialdehyde, and Relative Water
Content
During the period of drought stress, treated leaves were randomly
sampled at 0, 2, and 5 days from about 120◦C. sinensis plants
after the application of 20% PEG 6000, and the samples were
used to determine the physiological characteristics. Relative
water content (RWC) was measured to detect the effects of
drought stress on C. sinensis plants according to Upadhyaya et al.
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(2008). The content of chlorophyll and malondialdehyde (MDA)
in the leaves were determined by spectrophotometer method
developed by Knudson et al. (1977) and Dhindsa et al. (1981),
respectively.

Determination of Total Polyphenol,
Flavonoid, and Free Amino Acid Content
The total polyphenols were extracted from the powdered leaf
samples in 70% (v/v) methanol at 70◦C, and the content was
assessed using a UV-5200 spectrophotometer (METASH, China)
at 765 nm according to the Folin-Ciocalteu method described by
Li et al. (2015b). The total flavonoids and free amino acids were
extracted in deionized water at 100◦C, and the flavonoid content
was determined according to the AlCl3 method (Lin and Tang,
2007) and ninhydrin coloration method (Zheng et al., 2015).

Quantification of Catechins and Caffeine
by HPLC
The catechin and caffeine content was determined by high-
performance liquid chromatography (HPLC) according to Chen
et al. (2015) with some modifications. Briefly, 0.2 g of powdered
leaves was extracted with 10mL of 70% (v/v) methanol at 70◦C
for 20min, and the extract was then filtered through a 0.45-
µm Millipore filter before being injected into an Shimadzu LC-
20A HPLC system (Shimadzu, Japan). A 5-µL volume of filtrate
was injected into the HPLC system and analyzed on an Inertsil
ODS-SP C18 analytical column (250 × 4.6 mm i.d., 5 µm
nominal particle size). A solution containing 9% (v/v) methyl
cyanide, 2% (v/v) acetic acid, and 0.02% (m/v) EDTA was used
as mobile phase A, and mobile phase B consisted of 80% (v/v)
methyl cyanide, 2% (v/v) acetic acid and 0.02% (m/v) EDTA.
The samples were eluted at 35◦C at a flow-rate of 1mL/min,
and a continuous eluent gradient was adopted to enhance peak
separation. The absorbance at 278 nm was used to monitor
peak intensities in real-time, and the peaks were identified
by comparing the retention times for the sample to those of
authentic standards. Authentic standards for epigallocatechin
gallate (EGCG, ≥ 95%), epicatechin gallate (ECG, ≥ 98%),
gallocatechin (GC, ≥ 98%), epigallocatechin (EGC, ≥ 95%),
catechin (Cat, ≥ 97%), epicatechin (EC, ≥ 98%), gallocatechin
gallate (GCG,≥ 98%), and caffeine (≥ 95%) were purchased from
Sigmae-Aldrich (St. Louis, MO, USA).

Extraction and Quantitative Analysis of
Theanine and Other Amino Acids
Theanine was extracted from the samples with deionized water
for 45 min in a water bath at 80◦C, and the extract was filtered
through a 0.45-µm Millipore filter before HPLC analysis. The
theanine was then detected using an Shimadzu LC-20A HPLC
system (Shimadzu, Japan) according to the method described by
Tai et al. (2015). In addition, other amino acids were extracted
as described by Wan et al. (2015) with modifications, and 17
common amino acids were identified using an L-8900 automatic
amino acid analyzer (Hitachi, Japan).

RNA Extraction, Library Construction, and
RNA-Seq
Total RNA from C. sinensis leaves was extracted using RNAiso
Plus (TaKaRa, Japan). The integrity and quality of RNA
was measured using a 2100 Bioanalyzer RNA Nano chip
device (Agilent, Santa Clara, CA, USA) and a NanoDrop
ND-1000 spectrophotometer (NanoDrop, Wilmington, DE).
Equal amounts of RNA from three biological replicates were
pooled prior to cDNA preparation. The cDNA libraries were

constructed and sequenced using an Illumina HiSeq
TM

2000
located at the Beijing Genomics Institute (BGI, Shenzhen,
China; http://www.genomics.cn/index). The data were analyzed
according to the method described by Ren et al. (2014). Briefly,
clean reads were obtained by removing adaptor sequences, reads
in which the percentage of unknown nucleotides (N) was greater
than 5% and low quality reads (The rate of reads which quality
value ≤10 is more than 20%). The clean reads were then
assembled into Unigenes using the Trinity software (Grabherr
et al., 2011). Finally, blastx alignment (e < 0.00001) between
Unigenes and protein databases like NR, Swiss-Prot, KEGG and
COG were performed, and the best aligning results are used to
decide sequence direction of Unigenes.

Identification of DEGs Related to Amino
Acid Metabolism and Secondary
Metabolism
Unigene expression was calculated using the FPKM method,
and the differentially expressed genes (DEGs) were identified
according to stringent criteria: a P < 0.05, an FDR ≤ 0.001 and
a |log2Ratio| ≥ 1.0. The DEGs were then subjected to KEGG
Ontology (KO) enrichment analysis based on a hypergeometric
test. In addition, DEGs related to the metabolism of major amino
acids (e.g., theanine, glutamate, and alanine) and secondary
metabolites (e.g., catechins, flavone, and caffeine metabolism)
were identified from KEGG annotation, and a hierarchical
clustering analysis was then carried out using Cluster 3.0
software. To investigate the molecular mechanisms of drought
stress affecting the accumulation of main bioactive ingredients,
DEGs related to three major metabolic pathways in C. sinensis,
flavonoids, caffeine and theanine biosynthesis pathway, were
selected for more detailed analyses.

Quantitative Real-Time PCR (qRT-PCR)
Analysis of the Selected DEGs
qRT-PCR was used to confirm the accuracy of the differential
expression of DEGs via RNA-Seq. Total RNA was isolated from
the leaf samples and treated with DNase I to remove any genomic
DNA contamination. The single-stranded cDNAs used for real-
time PCR analysis were synthesized using a PrimeScriptTM

RT Reagent Kit with gDNA Eraser (TaKaRa, Dalian, China).
qRT-PCR was carried out using SYBR Premix Ex TaqTM II
(TaKaRa, Dalian, China) on an Eppendorf Real-Time PCR
System (Mastercycler R© ep realplex, Germany) according to the
manufacturer’s protocol, and the amplification was conducted
as described by Ren et al. (2014). The C. sinensis β-actin gene
(Csβ-actin, GenBank: HQ420251.1) was amplified as an internal
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FIGURE 1 | Effects of drought stress on the phenotype and physiological characteristics of C. sinensis leaves. The leaves begun to wilt at 2 days under

drought stress, the wilting degree of leaves deepened and exhibited scorch in leaf tips at 5 days (A). The RWC and chlorophyll content in C. sinensis leaves decreased

rapidly (B,C) and the content of MDA increased significantly (D) at 2 and 5 days after treated with drought stress.

reference standard, and the relative expression levels were
calculated using the 2−11CT method (Livak and Schmittgen,
2001). Three biological and three technical replicates were
performed for each sample, and the primers used for qRT-PCR
are listed in Supplementary S1.

Statistical Analyses
Each experiment was repeated at least three times, and all data
are expressed as the means ± standard deviations (SD). Group
differences were tested using one-way ANOVA and Duncan’s
test, and significant differences among various treatment groups
are represented by different letters (P < 0.05). The data were
analyzed using SPSS 20 software.

RESULTS

Changes in Total Polyphenol, Flavonoid,
and Free Amino Acid Content
The phenotypic changes of C. sinensis leaves in response to
drought stress were recorded at 0, 2, and 5 days. The leaves
of C. sinensis plants had begun to wilt after 2 days of drought
stress, and, the wilting degree of leaves deepened and the leaf
tips exhibited scorch at 5 days (Figure 1A). In addition, the
analysis of physiological characteristics showed that the RWC
and chlorophyll content in C. sinensis leaves decreased rapidly

(Figures 1B,C) and the content of MDA increased significantly
(Figure 1D) at 2 and 5 days after treated with drought stress,
implying drought stress obviously affected the normal growth
of C. sinensis plants, particularly its leaves. Simultaneously, the
total polyphenols, flavonoids and free amino acids in the leaf
samples were measured after drought stress at different time
points (0, 2, and 5 days). As shown in Figure 2, the total
polyphenol content significantly and rapidly decreased after
drought stress at 2 and 5 days compared with the control
plants (0 days). The total free amino acid content showed
similar decreases in response to drought stress. Interestingly,
drought stress significantly increased the content of total
flavonoids.

The Effect of Drought Stress on Catechins
and Caffeine Content
A typical HPLC profile of detected individual catechins
and caffeine shows seven individual catechins and caffeine
(Supplementary S2), and the changes in the individual catechin
components and caffeine in leaf samples after different durations
of drought stress are shown in Supplementary S3. The
concentrations of individual catechins and caffeine among
different time points were compared, as shown in Table 1.
Specifically, the amounts of gallocatechin (GC), epigallocatechin
(EGC), catechin (Cat), and epicatechin (EC) significantly
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TABLE 1 | Drought stress-induced changes in the amount of individual catechins and caffeine (mg·g−1 DW).

Treatment time (d) GC EGC Cat EC EGCG ECG GCG Caffeine

0 3.47± 0.03a 24.8±0.29a 14.18±1.07a 9.74± 0.19a 59.84±1.82a 14.78±0.85a 5.40± 0.05a 26.36±0.03a

2 3.20± 0.02b 23.24±0.82b 9.52±0.08b 8.43± 0.12b 18.94±0.05c 4.07±0.04c 3.81± 0.10c 23.15±0.18b

5 3.02± 0.02c 19.46±0.10c 10.21±0.11b 8.84± 0.08b 36.50±0.44b 10.69±0.11b 4.34± 0.06b 17.85±0.25c

Values are presented as the mean ± SD from three independent experiments, and different letters indicate significant differences at P < 0.05 according to Duncan’s test.

FIGURE 2 | Effects of drought stress on the total polyphenol, flavonoid

and free amino acid content in C. sinensis leaves. Drought stress

significantly decreased the amount of total polyphenols and free amino acids

and increased the total flavonoids. Values are presented as the mean ± SD

from three independent experiments, and different letters indicate significant

differences at P < 0.05 according to Duncan’s test.

and gradually decreased after drought stress compared with
the control (0 days). Unexpectedly, the concentrations of
epigallocatechin gallate (EGCG), gallocatechin gallate (GCG),
and epicatechin gallate (ECG) significantly decreased after 2 days
of drought stress treatment and then increased slightly at 5 days;
however, the overall trends were of decline. In addition, drought
stress rapidly reduced the caffeine accumulation in C. sinensis
leaves.

The Effect of Drought Stress on Theanine
and Other Amino Acid Content
A typical HPLC profile of detected theanine is shown in
Supplementary S4, and the changes in the concentration of
theanine among different time points were compared, as shown
in Supplementary S5. Theanine accumulation significantly
and gradually decreased from 30.168 mg·g−1 (0 days) to
28.017 mg·g−1 (2 days) and 23.989 mg·g−1 (5 days; Table 2).
Simultaneously, the content of 17 common amino acids was
measured. The levels of several amino acids changed to
varying degrees after treatment with drought stress (Table 2).
Specifically, the content of Glu, Gly, Met, Leu, Phe, Arg, and
Lys significantly decreased after drought stress compared with
the control (0 days). In contrast, drought stress treatment
significantly increased Asp, Ser and Pro accumulation, especially

TABLE 2 | Drought stress-induced changes in content of theanine and

other free amino acids (mg·g−1 DW).

Amino acid Treatment time (d)

0 2 5

The 30.168±0.471a 28.017± 0.411b 23.989± 0.411c

Asp 1.238±0.007b 1.224± 0.009b 1.259± 0.006a

Thr 0.627±0.003a 0.618± 0.005b 0.626± 0.002a

Ser 0.684±0.003b 0.690± 0.009ab 0.698± 0.003a

Glu 1.711±0.009a 1.638± 0.019b 1.564± 0.010c

Gly 0.771±0.007a 0.735± 0.006b 0.717± 0.005c

Ala 0.776±0.006a 0.757± 0.006b 0.783± 0.005a

Cys 0.136±0.004a 0.134± 0.002a 0.139± 0.003a

Val 0.763±0.004ab 0.755± 0.004b 0.765± 0.006a

Met 0.162±0.001a 0.153± 0.004b 0.153± 0.003b

Ile 0.597±0.003ab 0.591± 0.003b 0.602± 0.004a

Leu 1.203±0.004a 1.176± 0.006c 1.188± 0.006b

Tyr 0.397±0.007a 0.391± 0.007a 0.395± 0.006a

Phe 0.777±0.001a 0.758± 0.008b 0.743± 0.005c

Lys 0.996±0.007a 0.991± 0.006ab 0.981± 0.005b

His 0.322±0.001a 0.322± 0.002a 0.323± 0.003a

Arg 0.705±0.006a 0.691± 0.006b 0.693± 0.005b

Pro 0.649±0.003c 0.740± 0.005b 0.853± 0.009b

Values are presented as the mean ± SD from three independent experiments, and

different letters indicate significant differences at P < 0.05 according to Duncan’s test.

Pro accumulation; this accumulationmay be closely related to the
drought tolerance of C. sinensis. Cys, Val, Ile, Tyr, His, Thr, and
Ala did not show marked level changes in response to drought
stress.

DEGs Related to Amino Acid Metabolism
and Secondary Metabolism
Based on the KEGG database, 572 and 661 DEGs were annotated
and found to be associated with amino acid metabolism and
secondary metabolism pathways, respectively (Supplementary
S6, S7). As shown in Figure 3A, the total number of DEGs
related to various amino acid metabolic pathways increased
strongly and reached 420 at 24 h under drought stress; thereafter,
it decreased to 384 at 48 h. Interestingly, the number of
DEGs related to the phenylalanine metabolic pathway, a key
regulatory pathway in the metabolism of the main chemical
components in C. sinensis leaves, exhibited most obviously
(Figure 3A). Similar DEGs change pattern were also observed
for the total number of DEGs associated with the metabolic
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FIGURE 3 | KEGG ontology (KO) enrichment analysis of DEGs related to amino acid metabolism and secondary metabolism in C. sinensis leaves

under drought stress. Five hundred and seventy-two and 661 DEGs were annotated and found to be associated with amino acid metabolism (A) and secondary

metabolism (B), respectively, based on the KEGG database.

pathways of various secondary metabolites, particularly the key
regulatory genes of flavonoid and phenylpropanoid biosynthesis
pathways, which affect tea quality by regulating the metabolism
of polyphenols and aromatic substances (Figure 3B). In addition,
the hierarchical clustering analysis showed that strong changes in
DEG expression levels were observed at 24 h of drought stress
(Figure 4), implying that 24 h may be an important time point
in the regulation of genes related to amino acid metabolism
and secondary metabolism; this interpretation is consistent
with the changes observed over time in the total number
of DEGs.

Changes in the Flavonoid Biosynthesis
Pathway in C. sinensisin Response to
Drought Stress
Polyphenols are the most important class of secondary
metabolites in C. sinensis that includes flavan-3-ols (catechins),
flavones, flavonols, isoflavones, flavanones, dihydroflavonols,
and anthocyanidins synthesized by the flavonoid biosynthesis
pathway, which is one of the most characterized secondary
metabolic routes in plant systems (Yang et al., 2015). Here,
the transcriptome analysis identified 103 DEGs involved in the
flavonoid biosynthesis pathway, and the details of these DEGs are
listed in Supplementary S8. As shown in Figure 5A, almost all of
the known genes related to the flavonoid biosynthesis pathway
were detected under drought stress, such as phenylalanine
ammonia lyase (PAL, 23 unigenes), cinnamate 4-hydroxylase
(C4H, 5 unigenes), 4-coumarate CoA ligase (4CL, 8 unigenes),
chalcone synthase (CHS, 7 unigenes), chalcone isomerase
(CHI, 2 unigenes), flavonoid 3′-hydroxylase (F3′H, 2 unigenes),
flavonoid 3′, 5′-hydroxylase (F3′5′H, 10 unigenes), flavanone

FIGURE 4 | Hierarchical clustering analysis of the relative expression

levels of the DEGs related to amino acid metabolism (A) and secondary

metabolism (B) in C. sinensis leaves under drought stress. The FPKM

ratio of unigene expression is represented on a logarithmic scale for each

treatment period (2, 12, 24, or 48 h) and the control (0 h). Red indicates that a

gene was up-regulated at that stage, whereas green indicates down-regulated

expression.

3-hydroxylase (F3H, 8 unigenes), flavonol synthase (FLS, 17
unigenes), flavone synthase (FNS, 1 unigene), dihydroflavonol
4-reductase (DFR, 10 unigenes), leucoanthocyanidin reductase
(LAR, 6 unigenes), anthocyanidin synthase (ANS, 1 unigene),
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and anthocyanidin reductase (ANR, 15 unigene). In addition,
the hierarchical clustering analysis showed that the FLS and
FNS unigenes were continuously up-regulated under drought
stress (Figure 5B), which may have been responsible for the
increases in the total flavonoid content in response to drought
stress (Figure 2). Interestingly, the expression levels of most
unigenes, such as CHS, DFR, LAR, ANS, and ANR, tended
to first decrease and then increase in response to drought
stress; this pattern is consistent with the results of the HPLC
analyses of the ECG, EGCG, and GCG content (Figure 5B and
Table 1).

Changes in the Caffeine Biosynthesis
Pathway in C. sinensis under Drought
Stress
The transcriptome analysis identified 85 DEGs related to caffeine,
including IMP dehydrogenase (IMPDH, 10 unigenes), S-
adenosylmethionine synthase (SAMS, 6 unigenes), theobromine
synthase (MXMT, 2 unigenes), and tea caffeine synthase (TCS,
69 unigenes; Figure 6A); the unigene IDs of these genes are
listed in Supplementary S9. Simultaneously, the hierarchical
clustering analysis showed that most members of the TCS
gene family, such as the TCS1, TCS3, TCS4, TCS5, and TCS6
unigenes, were down-regulated in response to drought stress, but
a few family members, predominantly TCS2 unigenes, were up-
regulated (Figure 6B). In addition, AMP deaminase (AMPD),
N-methylnucleotidase (N-MeNase), and 7-methylxanthosine
synthase (7-NMT) were not among the DEGs associated with
drought stress (Figure 6A).

Changes in the Theanine Biosynthesis
Pathway in C. sinensis under Drought
Stress
Theanine is a unique, non-protein-derived amino acid in the C.
sinensis plant and is important in the production of the distinctive
aroma and umami flavor of tea. As shown in Figure 7A and
Supplementary S10, 70 genes related to theanine biosynthesis and
degradation were differentially expressed under drought stress,
including glutamine synthetase (GS, 33 unigenes), glutamate
synthase (GOGAT, 24 unigenes), glutamate dehydrogenase
(GDH, 2 unigenes), alanine aminotransferase (ALT, 1 unigene),
arginine decarboxylase (ADC, 6 unigenes), theanine synthetase
(TS, 4 unigenes), and theanine hydrolase (ThYD, 1 unigenes).
Except for ThYD and one GS unigene, all of the unigenes
were down-regulated in response to drought stress (Figure 7B),
which is consistent with the observed decrease in theanine
accumulation in response to drought stress.

Quantitative Real-Time PCR (qRT-PCR)
Validation of DEGs From RNA-Seq
To experimentally validate the expression profiles of unigenes
obtained from the Illumina RNA-Seq analysis, 15 DEGs
related to flavonoid (7 DEGs), caffeine (3 DEGs), and
theanine (5 DEGs) biosynthesis were selected for qRT-PCR,
including FLS (Unigene61984_All), FNS (Unigene62380_All),
DFR (CL632.Contig2_All and Unigene68610_All), LAR

(Unigene67547_All), ANS (Unigene93114_All), ANR
(Unigene101679_All), IMPDH (Unigene63589_All),
SAMS (Unigene32368_All), TCS (Unigene22943_All),
GOGAT (Unigene105022_All and Unigene5788_All), ADC
(Unigene38338_All), TS (Unigene10948_All), and ThYD
(Unigene70558_All). The qRT-PCR outcomes in each case
closely corresponded to the transcript levels estimated from
the RNA-Seq output (Figure 8A). In addition, correlation
analysis also showed that the expression tendency of these
genes from qRT-PCR showed significant similarity (R2 = 0.93)
with the Illumina RNA-Seq data (Figure 8B), suggesting the
reproducibility and accuracy of the RNA-Seq results.

DISCUSSION

Drought stress significantly limits the yield and quality of tea
products in tea-growing countries (Cheruiyot et al., 2010).
Therefore, understanding the mechanisms underlying the effects
of drought stress on C. sinensis is important. Although an
increasing number of studies have explored the morphological,
physiological and molecular changes that occur in C. sinensis
plants in response to drought stress (Upadhyaya et al., 2008; Das
et al., 2012; Zhou et al., 2014), but few have investigated the effects
of drought stress on the accumulation of the main bioactive
components in C. sinensis leaves (Jeyaramraja et al., 2003; Chen
et al., 2010). Our investigation shows that dehydration and
wilting of leaves are resulted from drought stress and the normal
growth of C. sinensis plants was seriously affected by drought
stress. Meanwhile, we found that drought stress decreased the
total polyphenol and free amino acid content in C. sinensis leaves,
which is consistent with the findings of Cheruiyot et al. (2007)
and Chen et al. (2010), who reported that drought stress reduced
C. sinensis leaf quality as indicated by a significant decrease in
total polyphenol and free amino acid levels. In addition, the
total flavonoids content significantly increased under drought
stress in the present study, which may be an important reason
that drought stress affected the liquor color of tea (Liang et al.,
1990). Furthermore, HPLC analysis showed that drought stress
significantly reduced the content of catechins, caffeine, theanine
and some free amino acids in C. sinensis leaves. Together, these
results indicate that drought stress reduces the quality of C.
sinensis leaves by affecting the normal growth of C. sinensis plants
and changing the accumulation of major bioactive ingredients,
such as polyphenols (especially catechins), flavonoids, caffeine,
theanine and other free amino acids.

Catechins account for approximately 70% of all polyphenols,
which are the primary astringent substances of tea (Liu et al.,
2015), in C. sinensis. In addition, numerous studies have
indicated that catechins exert multiple effects on human health
and play important antibacterial, antiviral, anti-radiation, and
anti-aging roles (Higdon and Frei, 2003; Ho et al., 2008). Previous
studies showed that catechins are abundant in the young leaves
and buds of C. sinensis plants and include esterified catechins
[such as epicatechin gallate (ECG), epigallocatechin gallate
(EGCG) and gallocatechin gallate (GCG)] and non-esterified
catechins [such as catechin (Cat), epicatechin (EC), gallocatechin
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FIGURE 5 | DEGs involved in flavonoid biosynthesis in C. sinensis leaves under drought stress. (A) The flavonoid biosynthesis pathway. The red numbers in

parentheses following each gene name indicate the number of corresponding DEGs. PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL,

4-coumarate CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′5′H, flavonoid 3′,5′-hydroxylase; F3′H, flavonoid

3′-hydroxylase; FLS, flavonol synthase; FNS, flavone synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; ANR, anthocyanidin reductase; LAR,

leucoanthocyanidin reductase; FGS, flavan-3-ol gallate synthase. (B) Hierarchical clustering analysis of the relative expression levels of the DEGs related to flavonoid

biosynthesis. The FPKM ratio of unigene expression is represented on a logarithmic scale for each treatment period (2, 12, 24, or 48 h) and the control (0 h). Red

indicates that a gene was up-regulated at that stage, whereas green indicates down-regulated expression.

(GC), and epigallocatechin (EGC); (Graham, 1992)]. However,
the accumulation of catechins in C. sinensis is very susceptible to
various environmental stresses, such as high ultraviolet radiation
(Agati and Tattini, 2010), low temperature (Lillo et al., 2008),

and drought stress (Jeyaramraja et al., 2003; Wang et al., 2012).
We also found that the individual catechin content significantly
decreased in response to drought stress, which is similar to the
observations of Bhattacharya et al. (2015). Unexpectedly, the
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FIGURE 6 | DEGs involved in caffeine biosynthesis in C. sinensis leaves under drought stress. (A) The caffeine biosynthesis pathway. The red numbers in

parentheses following each gene name indicate the number of corresponding DEGs. AMPD, AMP deaminase; IMPDH, IMP dehydrogenase; 5′-Nase, 5′-nucleotidase;

SAMS, S-adenosylmethionine synthase; 7-NMT, 7-methylxanthosine synthase; N-MeNase, N-methylnucleotidase; MXMT, theobromine synthase; TCS, tea caffeine

synthase. (B) Hierarchical clustering analysis of the relative expression levels of the DEGs related to caffeine biosynthetic. The FPKM ratio of unigene expression is

represented on a logarithmic scale for each treatment period (2, 12, 24, or 48 h) and the control (0 h). Red indicates that a gene was up-regulated at that stage,

whereas green indicates down-regulated expression.

EGCG, GCG and ECG concentrations inC. sinensis leaves tended
to first decrease and then increase in response to drought stress.

Recently, key genes involved in the regulation of the flavonoid
biosynthesis pathway in C. sinensis have been further recognized
and characterized using RNA-Seq technology, particularly the
key regulatory genes of monomeric catechins biosynthesis (Shi
et al., 2011; Li et al., 2015a). However, few reports are available on
the changes of genes related to catechin biosynthesis in response

to environmental stresses in C. sinensis (Xiong et al., 2013). Our
transcriptome analysis data indicate that almost all known genes
related to flavonoid biosynthesis are differentially expressed
under drought stress. Particularly, the levels of CHS, DFR, LAR,
ANS, and ANR tended to decrease and subsequently increase in
response to drought stress, which is consistent with the changes
of ECG, EGCG, and GCG levels. These findings suggest that
the effects of drought stress on the catechins contents of C.
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FIGURE 7 | DEGs involved in theanine biosynthesis in C. sinensis leaves under drought stress. (A) The theanine biosynthesis pathway. The red numbers in

parentheses following each gene name indicate the number of corresponding DEGs. GS, glutamine synthetase; GOGAT, glutamate synthase; GDH, glutamate

dehydrogenase; ALT, alanine aminotransferase; ADC, arginine decarboxylase; TS, theanine synthetase; ThYD, theanine hydrolase. (B) Hierarchical clustering analysis

of the relative expression levels of the DEGs related to theanine biosynthetic. The FPKM ratio of unigene expression is represented on a logarithmic scale for each

treatment period (2, 12, 24, or 48 h) and the control (0 h). Red indicates that a gene was up-regulated at that stage, whereas green indicates down-regulated

expression.

sinensis leaves depend on the regulation of genes that participate
in flavonoid biosynthesis pathway. In addition, the FLS and FNS
unigenes, which participate in flavonoid biosynthesis, were up-
regulated in response to drought stress. This finding explains the
increases in the total flavonoid content of C. sinensis leaves in
response to drought stress.

Caffeine (1, 3, 7-trimethylxanthine), another important
bioactive ingredient in C. sinensis plants, is a purine alkaloid
that has been widely used as stimulant or ingredient in drugs (Li
et al., 2015a). Caffeine is mainly synthesized in young leaves in
C. sinensis via a typical caffeine biosynthetic pathway including
purine biosynthesis and purine modification steps (Ashihara and

Kubota, 1986). In the present study, IMPDH, SAMS,MXMT, and
TCS genes were identified, and most of these genes were down-
regulated in response to drought stress. This finding is consistent
with the decreases in the caffeine content in C. sinensis leaves
following drought stress. These results reveal that drought stress
inhibits the expression of genes related to caffeine biosynthesis,
such as IMPDH, SAMS, MXMT, and TCS, thereby reducing the
accumulation of caffeine in C. sinensis leaves.

Theanine is generally considered to play crucial roles in
producing the distinctive aroma and umami flavor of tea.
Therefore, theanine content is important in determining the
quality of a tea product (Mu et al., 2015). Previous studies
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FIGURE 8 | Verification of the relative expression levels of DEGs by qRT-PCR. (A) Expression patterns of 15 DEGs related to the flavonoid, caffeine, and

theanine biosynthetic pathways by qRT-PCR (blue bar) and RNA-Seq (red line). (B) Correlation of the expression levels of the 15 DEGs measured by qRT-PCR and

RNA-Seq.
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have shown that theanine biosynthesis begins with glutamine
and pyruvate and includes the downstream GS, GOGAT, GDH,
ALT, ADC, and TS in the buds, leaves and roots of C. sinensis
(Shi et al., 2011; Li et al., 2015a). Our data revealed that the
accumulation of theanine was significantly decreased by drought
stress in C. sinensis leaves and this decrease was accompanied by
decreases in expression levels of GOGAT, GDH, ADC, and TS
and an increase in the expression of ThYD (a key enzyme gene
in the theanine biodegradation pathway). According to these
results, we speculate that the decrease of theanine in response to
drought stress largely depends on changes in the expression levels
of genes related to theanine biosynthesis and biodegradation.
Furthermore, the content of Glu, Gly, Met, Leu, Phe, Arg, and
Lys significantly decreased in response to drought stress, which
results in obvious decrease in the quality ofC. sinensis leaves (Zhu
et al., 2016). Meanwhile, our RNA-Seq analysis identified various
DEGs related to amino acid metabolism suggesting there is a
potential regulatory mechanism for the changes of above amino
acids.

In summary, our results suggest that drought stress
significantly reduced the quality of C. sinensis leaves, as
evidenced by abnormality of the phenotype, physiological
characteristics and changes in the content of major bioactive
ingredients, such as polyphenols, flavonoids, and free amino
acids. In addition, the amounts of catechin, caffeine, theanine
and some other amino acids in C. sinensis leaves significantly

decreased under drought stress, which further confirms the
effects of drought stress on leaf quality. Furthermore, we used
RNA-Seq technology to identify DEGs related to amino acid

metabolism and secondarymetabolism inC. sinensis leaves under
drought stress. Particularly, the key regulatory genes of catechins,
caffeine and theanine biosynthesis pathway were differentially
expressed, which provide insight into the molecular mechanisms
that underlie the events described above. Overall, these data
provide further insight into the mechanisms underlying the
changes in the accumulation of the main bioactive ingredients
that occur in response to drought stress and influence leaf quality
in C. sinensis plants.
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