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Poorly grown plants that result from differences in individuals lead to large profit losses

for plant factories that use large electric power sources for cultivation. Thus, identifying

and culling the low-grade plants at an early stage, using so-called seedlings diagnosis

technology, plays an important role in avoiding large losses in plant factories. In this study,

we developed a high-throughput diagnosis system using the measurement of chlorophyll

fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000

lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200

seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD

camera and an automatic transferring machine, and biological indices were extracted.

Using machine learning, plant growth can be predicted with a high degree of accuracy

based on biological indices including leaf size, amount of CF, and circadian rhythms in CF.

Growth prediction was improved by addition of temporal information on CF. The present

data also provide new insights into the relationships between growth and temporal

information regulated by the inherent biological clock.

Keywords: circadian clock, chlorophyll fluorescence, diagnosis system, imaging, lettuce, machine learning

INTRODUCTION

A plant factory using artificial light offers the potential of stably producing vegetables under
constant cultivation year-round, and production can be increased by using vertical multi-
cultivating racks (Kozai et al., 2015). However, this approach is more costly than production
of outdoor-grown vegetables under sunlight, because the initial costs, and running costs of the
equipment are higher. To reduce these costs, reduction of energy costs, development of more
efficient environmental control systems, and more effective cultivation protocols are required.
Thus, these plant factories require precise environmental control (Morimoto et al., 1995; Kozai
et al., 2015). Recently, Li et al. (2016) and Murase et al. (2015) examined the effect of light quality
on plant growth. Moreover, Okamura et al. (2014) investigated the optimal harvesting time for
vaccine-producing transgenic lettuce and Takahashi et al. (2012) assessed the effect of air flow on
production of a vaccine protein against swine edema disease in transgenic lettuce.

Poorly grown plants that do not meet the quality required for sale cause serious losses, reducing
the profit of plant factories (Kozai et al., 2015). Poor growth inevitably occurs due to individual
differences, even when the same varieties and seeds are cultivated. Thus, identifying and culling
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low-grade plants at an early stage, using so-called seedling
diagnosis technology, is an important process for making plant
factories profitable. This technology predicts growth using
biological information from seedlings and disposes of seedlings
that are predicted to grow poorly (Fukuda et al., 2011).

In large-scale plant factories, statistical values for biological
information are stable (Ninness, 2000), because the statistical
population of plants is over 1000 every day. Therefore, the
accuracy of growth predictors has improved as automatic data
acquisition systems and databases to store the biological data
have been constructed. In general, multiple visual inspections
of leaf size, color, and shape of every seedling provide
indices for the assessment of plant growth in commercial
factories.

Recently, imaging of chlorophyll fluorescence (CF) has been
used as a highly efficient means of visually inspecting plants to
assess photosynthetic capacity and degree of stress (Takayama
et al., 2014). CF is due to the emission of red light from
chlorophyll α pigments (Krause and Weis, 1991; Govindjee,
1995) when residual light energy is not used for photosynthetic
reactions. Accurate measurement of CF emission thus allows the
evaluation of photosynthetic functions, both the photosynthetic
photochemical reactions and the status of heat dissipation
processes, without any need for physical contact with the
plant (Maxwell and Johnson, 2000; Takayama and Nishina,
2009). The technique of imaging CF, originally developed by
Omasa et al. (1987) and Daley et al. (1989), has been used
to evaluate the heterogeneous distribution of photosynthetic
activities over a leaf surface and thus to detect photosynthetic
dysfunctions caused by biotic and abiotic stress factors. Recently,
CF imaging has been scaled up to a whole plant (Takayama
et al., 2010), a tree canopy (Nichol et al., 2012), and tomato
crops cultivated in a large-scale greenhouse (Takayama et al.,
2011a,b,c).

CF also exhibits an inherent circadian rhythm, resulting from
the regulation of expression of photosynthesis-associated genes
by the circadian clock with an approximately 24 h period,
and Gould et al. (2009) measured circadian rhythm by the CF
in Arabidopsis thaliana. Clock genes, which generate circadian
rhythms, also regulate growth (Dodd et al., 2005, 2015; Harmer,
2009; Farré and Weise, 2012; Higashi et al., 2014, 2015; Voß
et al., 2015). In a previous study of seedling diagnosis, we verified
the effectiveness of growth prediction based on the circadian
rhythm using a bioluminescent reporter gene assay for transgenic
A. thaliana carrying the CCA1::LUC construct, in which the
promoter of the CCA1 clock gene has been fused to a modified
firefly luciferase (LUC) gene (Fukuda et al., 2011). This study
clarified that growth in biomass is correlated with the amount
of CCA1 clock gene expression that was measured via luciferase
bioluminescence under various light conditions. In addition, we
have investigated features of the circadian rhythm in lettuce
cultivars using a similar luciferase-based bioluminescent assay to
that of AtCCA1::LUC (Ukai et al., 2012; Higashi et al., 2014) and
evaluated the growth rate of lettuce plants when the circadian
rhythm is regulated by conditions of a non-24 h period (Higashi
et al., 2015). We speculated that measurement of circadian
rhythms will lead to improved plant growth prediction.

Hence, CF monitoring has a practical advantage for
simultaneous capture of multiple types of biological information,
improving the accuracy of seedling diagnosis. However, there are
two tasks needed for construction of a seedling diagnosis system:
development of equipment that can measure a time course of CF
for a large number of seedlings simultaneously and assessment of
the effectiveness of growth prediction based on indices related to
the circadian rhythm.

We developed a high-throughput growth prediction
methodology for Lactuca sativa L. seedlings using CF in a
commercial large-scale plant factory, which produces about
5000 lettuce plants every day. The CF of each seedling was
measured 6 times every 4 h at 6 days after sowing to detect the
circadian rhythm. Multiple types of biological information (six
variables including leaf area and the amplitude of the circadian
rhythm) were obtained from CF imaging. Finally, we assessed
the ability of each variable to predict growth and then combined
the variables by machine learning to explore superior indices for
seedling diagnosis.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Experiments were carried out using lettuce seeds (L. sativa L. cv.
Frillice and SB555GL, fixed lines of lettuce cultivars from Snow
Brand Seed Co., Ltd., Sapporo, Japan).

Two rooms were used for cultivation (rooms A and B);
room A was designed for germination and greening of seed
cotyledons, and room B was designed for raising seedlings. Room
A was equipped with a carrier machine for a greening panel, a
white light emitting diode (LED) for greening (LIFELED’S; NEC
Lighting, Ltd., Tokyo, Japan), and our seedling diagnosis system.
Room B was equipped with LED units for raising seedlings (with
blue, white, red, and far-red LEDs, GreenPower LED production
module DR/W/FR 120, Philips, Amsterdam, Netherlands).

In room A, first, each plant was seeded in a greening panel
(60 × 60 cm; Figure 1C) allowing 600 plants to be seeded to
a urethane sponge sheet (each sponge block was 25 × 25mm)
with 5 L tap water and fertilizer (N:P2O5: K2O:CaO:MgO =

10:8:27:0:4 and N:P2O5:K2O:CaO:MgO = 11:0:0:23:0, Otsuka
House No. 1 and 2, respectively; Otsuka Chemical Co., Ltd.,
Osaka, Japan) at pH 6.0 and EC 0.6. Secondly, the greening panel
was laid in the dark at 25◦C for 2 days in a growth chamber
for germination. Thirdly, plants were cultivated 4 days under
white LED light under 15-h light: 9-h dark conditions. Finally,
CF of each seedling was measured 6 times every 4 h at 6 days
after sowing seeds (see next section). After this measurement,
the seedlings were transplanted in a raising panel (60 × 90 cm;
Figure 1D) with 153 plantation holes. These seedlings were then
raised in room B under 15-h light: 9-h dark conditions at 22◦C
for 11 days.

To investigate prediction accuracy, we measured fresh weight
Wi of 153 Frillice plants and 148 SB555GL plants at 17 days
after sowing. We considered the fresh weight of whole plant of
Frillice including the sponge and root, whereas fresh weight of
SB555GL was weight after removing sponge and root. There was
no influence of sponge part: its weight was 0.228± 0.002 g.
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FIGURE 1 | Seedling diagnostics system and individual panels. Shown are photographs of (A) room A, system chart (B), greening panel (C), and raising

panel (D).

Automatic Chlorophyll Fluorescent
Measurement System
In a large-scale plant factory, automation is required for seedling
diagnosis and transplantation of plants. Thus, we developed a
seedling diagnosis system (Figures 1A,B) which can diagnose
over 7200 seedlings every day in such a factory. This seedling
diagnosis system has a carrier robot for greening panels, a
seedling diagnosis apparatus, and a transplanting robot.

The diagnosis apparatus is made up mainly of a dark
box (900mm in width, 900mm in depth, and 1200mm
in height), a highly sensitive charge coupled device (CCD)
camera (Hamamatsu ORCA-Flash4.0; Hamamatsu Photonics
KK, Shizuoka, Japan) in the upper dark box, 8 blue LED
panels [ λp = 470 nm, 150 × 150mm at the base; 4 ISL-
150X150-HBB blue panels (CCS Inc., Kyoto, Japan), and 4
VBL-SL150 blue panels (Valore Corp., Kyoto, Japan)] in the
dark box to excite the chlorophyll of the seedling. In addition,
it included a PC-controlled CCD camera, LED controller,
RFID system (V680-CA5D02-V2; OMRON Corporation, Kyoto,
Japan), digital input/output unit (DIO-6464L-USB; CONTEC
Co., Ltd., Osaka, Japan), and automatic acquisition/analysis
program for leaf area, CF, and circadian rhythms.

In the seedling diagnosis system, at the time of seedling
diagnosis on day 6 after sowing, the greening panel carrier robot
automatically carried a target panel to the dark box. Immediately,
seedlings were illuminated with blue LED light (30µmol m−2

s−1) for 2 s to excite chlorophyll. Then, a CF image, such as in
Figure 2A, was obtained by CCD camera immediately after the
blue LED was turned off. The exposure time of the CCD camera
was set to 2 s and the CF image was captured 14 times sequentially

for 30 s in one measurement. This measurement was repeated 6
times every 4 h.

We also utilized an RFID system to input seedling diagnosis
results, and a digital input/output unit to control opening and
closing of the shutter that the dark box was equipped with. Based
on the results, we were able to transplant only superior seedlings
from the greening panel to the raising panel by a transplant robot
automatically.

Methods of Calculating Leaf Area and
Circadian Rhythms
To calculate leaf area, the grayscale image acquisition CCD
camera captures the distribution of fluorescence intensity
between sponge and seedling simultaneously. Discriminant
analysis is a method to separate the seedling distribution from
intensity distribution mechanically (Phan and Cichocki, 2010).
Using this method, we could automatically obtain the threshold
k∗ that corresponds to the maximum value of the separation
metric f (k) that compares between-class variance and within-
class variance. The separation metric f (k) is described by:

f (k∗) = max
0≤k<L

f (k)

= max
0≤k<L

n1(k) ·
(

µ1
(

k
)

− µ0
)2

+ n2(k) ·
(

µ2(k)− µ0
)2

n1(k) · σ
2
1 (k)+ n2(k) · σ

2
2 (k)

where n1(k), µ1(k), and σ 2
1 (k) are the number of pixels, the

average, and the variance of fluorescence distribution that was
less than k (sponge distribution in Figure 2B), respectively. On
the other hand, n2(k), µ2(k), and σ 2

2 (k) are the number of pixels,
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FIGURE 2 | CF obtained by CCD camera and histogram of fluorescent

intensity in a seedling and sponge image. (A) Grayscale CF image of 600

seedlings (contrast changed). (B) Histogram of fluorescent intensity of sponge

(white bars) and a seedling (red bar). Red triangle indicates the peak of

histogram in a seedling.

the average, and the variance of fluorescence distribution that was
greater than k (seedling distribution in Figure 2B), respectively.
µ0 is the average of the whole distribution, and L is the maximum
number of k (L = 216). If the fluorescence intensity from a pixel
was greater than k∗, this pixel was determined as belonging to the
leaf area, and if not, to the sponge block region. We calculated k∗

in each sponge block region (71× 72 pixels).
Next, to calculate the circadian rhythm of CF, sequential CF

images were captured every 2 s 14 times with a 2 s exposure time
to measure the delay curve of CF (Figure 3A); this imaging was
performed 6 times every 4 h. For a defined leaf area, we obtained
the CF per seedling Cij(κ), where κ means time, imeans seedling
ID, and j means the number of measurement times. The CF
decreased in time immediately after blue LED turn-off, and the
light intensity converged to the constant value C′

ij (Figure 3A).
We defined the amount of CF as Iij(t) normalized by C′

ij as
follows:

Iij(t) =

κ*
∫

0

(

Cij(κ)− C′
ij

C′
ij

)

dκ

where κ = 0 means the time of blue LED turn-off in the dark
box, and the constant value C′

ij occurs at κ = κ∗ .
We obtained Iij(t) for each seedling 6 times (n = 6) every 4 h.

We calculated the amplitude ai and the peak phase ϕi (0 ≤ ϕi <

2π) that corresponds to themaximum value of the determination
coefficient (Halberg et al., 1972) as follows:

yi(t) = ai cos

(

2π
t

T
− ϕi

)

+
1

n

n
∑

j= 1

Iij(t)

Ai = ai/
1

n

n
∑

j= 1

Iij(t)

In our study, when t = 0, the white LED used for greening was
turned on in room A. T is the light period (in this case, 24 h). In
addition, we defined the normalized amplitude Ai as the seedling
diagnosis index.

RESULTS

Correlation between CF and Fresh Weight
Figure 3A shows that the CF decreased over time immediately
after blue LED turn-off and then converged to a constant value
C′

ij of about 30 s. Figures 3B,C show histograms of the fresh
weight of Frillice and SB555GL, respectively. Both distributions
were nearly Gaussian. Figures 3D,E shows the alteration of Iij(t)
during a day from one morning to the next. As the average of
the fresh weight Wi is µw and its standard variation is σw, we
separated plants into four categories based on these values: 1
(µw + σw < Wi), 2 (µw < Wi ≤ µw + σw), 3 (µw − σw <

Wi ≤ µw), and 4 (Wi ≤ µw − σw). From these results, we
found that both cultivars strongly emitted CF at night. Moreover,
CF decreased with higher weight over a threshold (Wi > 7.6 g)
in Frillice; on the other hand, SB555GL did not show such a
tendency (Figures 3F,G). The vertical axis in Figures 3F,Gmean
the average of CF from 10 plants for fresh weight.

Correlation between Indices of Circadian
Rhythms and Fresh Weight
Figures 4A,B,D,E show the relationship between Wi and the
amplitude Ai and peak phase ϕi . Based on these results, we
found that these indices of circadian rhythm did not have any
correlation with Wi ; that is, the correlation coefficient R was
low. In Figures 4B,E, the center value and range of ϕi differed
depending on the cultivar. Hence, we also defined a baseline

ϕi for peak phase ϕi, and obtained phase ϕ
′

i to consider the
environmental synchrony.

ϕ
′

i = ϕi + |ϕi − ϕi|

ϕi for Frillice and SB555GL was 1.70π rad and 1.66π rad,
respectively. Figures 4C,F shows the correlation between phase

ϕ
′

i and Wi, for which a weak correlation was observed in
SB555GL. It seems that growth prediction may be improved by
considering the phase of the circadian rhythm.
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FIGURE 3 | Amount of chlorophyll and relationship between CF and fresh weight. (A) Red line shows convergence value, C′
ij
. (B,C) Histograms of fresh

weight in Frillice (B) and SB555GL (C). (D,E) Alteration of CF Iij (t) over the course of a day in Frillice (D) and SB555GL (E), averaging Iij (t) into four categories (see

Results Section). The white and gray background colors indicate light and dark conditions. (F,G) Relationship between the average value of fresh weight Wi and the

average of CF from each top 10 plants for fresh weight of Frillice (F) and SB555GL (G). All error bars mean standard error.

FIGURE 4 | Correlation between fresh weight and index of circadian rhythms of CF. Frillice: (A–C); SB555GL: (D–F). (A,D) Amplitude Ai , (B,E) peak phase ϕi ,

and (C,F) phase ϕ′i .
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FIGURE 5 | Correlation between indices and fresh weight using machine learning. Frillice (A); SB555GL (B). White background indicates a single index, and

gray background indicates multiple indices. All error bars indicate standard error.

Growth Prediction Using Machine Learning
Neural networks have the inherent capability of learning
unknown nonlinear properties (Chen et al., 1990). Morimoto
and Hashimoto (2009) used neural networks to control
environmental factors in plant factories, and Hendrawan and
Murase (2011) used neural networks to predict water content
of moss using RGB intensity. In our study, we predicted plant
growth using a neural network based on biological information,
including 6 time measurements of leaf area and CF (e.g., at
4, 8, 12, 16, 20, and 24 h), and 4 circadian rhythm features.
These circadian rhythm features are amplitude Ai, peak phase ϕi,
average of CF (< Ii >= 1

n

∑n
j=1 Iij(t)), and the determination

coefficient of curve approximation yi(t) . We created a neural
network containing up to 16 kinds of biological information in an
input layer andWi in an output layer using 70% of all plant data
as training data by a back-propagation method. We used neural
networks 40 times with several types of input data, and estimated
the average correlation coefficient R and standard error. Figure 5
shows the magnitude of the correlation coefficient |R| between
each index andWi . The white background in Figure 5 indicates
a single index; that is, single data points were used for leaf area
at each time, CF at each time, amplitude, peak phase, average
of CF, and determination coefficient. The gray background in
Figure 5 indicates multiple indices: leaf area (2, 3, and 6 points),
CF (2, 3, and 6 points), circadian rhythms (2, 3, and 4 kinds),
and all biological indices. We defined 2 points of leaf area and
CF as meaning data acquired 2 times (at 12 and 24 h) and 3
points of leaf area as meaning data acquired 3 times (at 8, 16,

and 24 h). In addition, we defined 2 kinds of circadian rhythms
by Ai and ϕi, 3 kinds of circadian rhythms by Ai, ϕi, and <

Ii >, and 4 kinds of circadian rhythms by all of them plus
the determination coefficient. We found that growth was better
predicted by multiple indices over a single index.

DISCUSSION

In this study, we found that the fresh weight of Frillice
and SB555GL showed Gaussian distributions based on the
Kolmogorov-Smirnov test. Figures 3D,E shows that Frillice and
SB555GL have circadian rhythms and a peak of CF in the evening
for all plants, supporting the results of Gould et al. (2009). We
have succeeded in developing a seedling diagnostics system that
automatically measures CF and circadian rhythms of each plant
at an early stage simultaneously. Figure 3F shows fresh weight in
Frillice decreases with increase of CF, up to a certain threshold
based on fresh weight. In other words, when this seedling is
under a certain threshold value of CF, its growth is better. This
observation suggests that seedlings that use a lot of light energy
in photochemical reactions, which would decrease the CF, have
higher growth potential.

As can be seen in Figure 4, it would appear that growth
prediction can be improved by considering environmental
synchrony. It is known that the dry weight increase of A. thaliana
in a 24 h light cycle is better than in a 20 or 28 h cycle (Dodd
et al., 2005; Fukuda et al., 2011), suggesting that the relationship
of phase between circadian rhythms and environmental cycles
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strongly affect plant growth. Thus, we introduced the peak

baseline ϕ
′

i to investigate the effect of the relationship of phase
between circadian rhythms and environmental cycles. The peak

baseline ϕ
′

i was slightly better than the original peak phase ϕi for
growth prediction, as shown in Figure 4F. Moreover, the blue
LED light pulses for excitation of chlorophyll would provide no
effect on the circadian rhythms. In our previous work (Ohara
et al., 2015a,b), it was investigated how plant circadian clock
responds to light pulse perturbations. The phase shift of circadian
rhythm became maximally to 0.4 rad/2π (∼9.6 h) by a blue LED
light pulse (80µmol m−2 s−1 for 2 h). Based on this knowledge,
the phase shift by our diagnostic lighting could be estimated as
very small.

As shown in Figure 5, by increasing the number of
measurements, the correlation coefficient R was improved. An
increased number of measurements about leaf area led to
improved prediction of growth in Frillice. In contrast, only
two measurements of leaf area tended to effectively improve
prediction of growth in SB555GL. Therefore, the optimal set
of predictive indices depends on cultivar and/or dataset. In
addition, using indices of circadian rhythms, no significant
difference was observed for combinations of circadian rhythms
and leaf area, or for circadian rhythms and CF. For growth
prediction using all biological indices, it was significantly
different from growth prediction using other indices inferred
by machine learning in Frillice; on the other hand, the growth
prediction using all biological indices was significantly different
from indices other than the 6 time points for CF and the
4 kinds of circadian rhythms in SB555GL. Therefore, it is
necessary to decide whether to acquire information on circadian
rhythm, and we suggest that the research goal may depend
on whether growth prediction can be based on circadian
rhythms.

Fukuda et al. (2011) referred to improvement of plant
productivity under several LED light conditions by selection of
a threshold for an index I using the correlation coefficient R

between production P and index I. In our study, I is the data
output by neural networks, and R is the correlation coefficient
between fresh weightWi and the data output by neural networks.
Therefore, as suggested by Figure 5, improving the value of R
would lead to improvements in productivity; thus, we expect this
seedling diagnosis system will be useful.

In conclusion, we developed a seedling diagnosis system
that automatically identifies and selects plants showing poor
growth based on biological information obtained at an early
stage. We expect that this system will decrease operational cost
in plant factories due to individual differences in plants.
Using this system, we automatically obtained leaf area,
CF, and information on circadian rhythms and suggested
improvements to the prediction of growth by machine
learning. We found that the system predicted plant growth
with a high degree of accuracy; however, the mechanisms
of plant growth have yet to be clearly identified. Future
research will focus on predicting growth with additional

accuracy by the use of environmental information in plant
factory.
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