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Mediterranean pine forests display high resilience after extreme climatic events such as

severe droughts. However, recent dry spells causing growth decline and triggering forest

dieback challenge the capacity of some forests to recover following major disturbances.

To describe how resilient the responses of forests to drought can be, we quantified

growth dynamics in plantations of two pine species (Scots pine, black pine) located

in south-eastern Spain and showing drought-triggered dieback. Radial growth was

characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three

defoliation levels. It was assumed that the higher defoliation the more negative the impact

of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was

characterized 3 years after the last severe drought occurred. Annual growth data and

the number of tracheids produced in different stages of xylem formation were related

to climate data at several time scales. Drought negatively impacted growth of the most

defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the

non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest

duration of the radial-enlargement phase in both species. On average the most defoliated

trees formed 60% of the number of mature tracheids formed by the non-defoliated trees

in both species. Since radial enlargement is the xylogenesis phase most tightly related

to final growth, this explains why the most defoliated trees grew the least due to their

altered xylogenesis phases. Our findings indicate a very limited resilience capacity of

drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects

on xylogenesis of highly defoliated trees which could not recover previous growth rates

and are thus more prone to die.

Keywords: dendroecology, die-off, extreme climate event, forest resilience, Pinus nigra, Pinus sylvestris, xylem,

xylogenesis

INTRODUCTION

Mediterranean forests are able to recover following major disturbances such as droughts by
displaying high resilience (e.g., Lloret et al., 2004). However, climate warming is expected
to magnify drought stress in the Mediterranean Basin by rising air temperatures and
evapotranspiration rates thus amplifying drying trends (Cook et al., 2014). Warmer temperatures,
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when superimposed on episodes of scarce precipitation, result
in severe water deficits intensifying drought impact and
reducing forest growth and productivity (Williams et al., 2013).
Consequently, warmer and drier conditions could lead to growth
decline of drought-prone Mediterranean conifer forests (Sarris
et al., 2007; Sánchez-Salguero et al., 2012a; Galván et al., 2014).
Such reductions in productivity may predispose trees to drought-
induced dieback once growth decline and vigor loss become
irreversible (Camarero et al., 2015). Thus, it is compelling
to determine if Mediterranean forest growth recovers after
successive or severe droughts and if this response may cause a
loss of resilience.

Severe droughts are extreme climatic events and therefore
they constitute rare and unpredictable drivers of forest dynamics
(Gutschick and Bassirirad, 2003). However, to account fully
for droughts effects on forest growth, their extremity must
be documented not only from the climatic perspective but
also from the tree response (Smith, 2011). Dendrochronology
facilitates the assessment of drought impacts on radial growth
by reconstructing tree-ring variables since the unpredictability
of droughts makes their continuous surveillance challenging
(Dobbertin, 2005; Eilmann et al., 2013). Growth decline and
dieback represent long-lasting impacts of severe droughts on
forest productivity (McDowell et al., 2008). Tree-ring width
records usually reflect a growth reduction in response to
prolonged droughts before crown decline symptoms (needle loss
and yellowing) appear (Torelli et al., 1986, 1999; Pedersen, 1998;
Bigler et al., 2006). Frequently, conifers also show a high growth
responsiveness to water availability previous to drought-triggered
needle loss or tree death (Ogle et al., 2000). In addition, summer
drought is also associated with more conspicuous symptoms of
vigor loss as accelerated defoliation (Solberg, 2004). Furthermore,
droughts cause legacy effects on tree growth thus compromising
forest resilience (Anderegg et al., 2015).

Multiple dieback episodes in Mediterranean conifer forests
subjected to long dry spells confirm that pine species are
particularly prone to drought-induced growth decline, needle
loss or defoliation and mortality (Martínez-Vilalta and Piñol,
2002; Sarris et al., 2007, 2011; Sánchez-Salguero et al., 2012a;
Camarero et al., 2015). The vulnerability of some Mediterranean
pines to drought stress can be explained because they are
tall species (compared with co-occurring shrubby or small
conifers such as junipers), display high leaf areas, show isohydric
behavior characterized by a rapid stomatal closure in response
to drought and present a high xylem vulnerability to embolism
(McDowell and Allen, 2015). In fact, some strictly Mediterranean
pine species (e.g., Pinus halepensis) apparently well adapted to
withstand drought stress (Klein et al., 2011) can show dieback
under extremely dry and warm conditions (Camarero et al., 2015;
Dorman et al., 2015). This raises the question on how resilient
will be pine species from different biogeographical origins to
drought-induced dieback.

Here, we compare the post-drought growth responses of two
pine species with Eurosiberian (Scots pine) and Mediterranean
(black pine) distributions to provide a measure of resilience
in similar drought-prone forests. We capitalize on a drought-
induced dieback caused by severe late-20th century droughts

affecting Spain (1994–1995, 1999, 2005) and leading to growth
decline and enhanced defoliation in pine plantations located
in SE Spain (Sánchez-Salguero et al., 2012a,b). We quantify
the post-drought growth responses at inter- (tree-ring width)
and intra-annual (xylem development or xylogenesis) scales in
three defoliation classes since needle loss is a proxy of post-
drought changes in tree vigor (cf. Dobbertin, 2005). Our specific
aims are: (i) to quantify the post-dieback growth trends; (ii)
to characterize xylogenesis; and (iii) to examine climate-growth
associations. We explicitly fulfill these objectives by comparing
three defoliation classes of the two pine species. We hypothesize
that the most defoliated trees will show the lowest growth rates
and the highest sensitivity to water availability, i.e., the lowest
post-drought resilience capacity. It is also expected to detect
this pattern more clearly in Scots pine than black pine since
the former species is more vulnerable to drought-induced xylem
embolism (Martínez-Vilalta et al., 2004).

MATERIALS AND METHODS

Study Area and Tree Species
The study area is located in the Sierra de Filabres, Andalusia,
SE Spain (37◦ 22′ N, 2◦ 50′ W; see Figure S1). This area
was planted with Scots pine (Pinus sylvestris L.) and black
pine (Pinus nigra Arn.) in the 1970s, with most stands of
each species located at approximate elevations of 1850–2000 m
and 1700–1850 m a.s.l., respectively (Sánchez-Salguero et al.,
2012b; Herrero et al., 2013). Both Scots pine and black
pine stands are among the southernmost planted forests of
both species (Figure S1). Therefore, these populations can be
considered marginal from both biogeographical (southernmost
stands) and climatic (xeric limit) points of view, particularly
in the case of Scots pine (Barbéro et al., 1998). The climate
is Mediterranean of semi-arid type since the mean annual
temperature is 13.4◦C and the annual rainfall ranges between 350
and 450 mm. These data are based on a regional climate series
calculated for the period 1970–2008 using daily and monthly
climate data (mean maximum and minimum temperature,
precipitation) obtained from several local stations (see Figure S2
and Table S1). For these stations we also estimated the potential
evapotranspiration (PET) using values of mean temperature and
solar radiation (Hargreaves, 1983). Then, we calculated the daily
water balance as the difference between precipitation and PET.
To characterize drought severity in the study area since the 1970s
we obtained monthly values of the Standardised Precipitation-
Evapotranspiration Index (SPEI) calculated for 3-, 6-, and 12-
month long scales since these are the most important scales for
the study pine species (Pasho et al., 2012). Negative and positive
SPEI values indicate dry and wet conditions, respectively. The
SPEI was calculated for the 0.5◦ grid including the study sites and
it was obtained from the webpage http://sac.csic.es/spei/index.
html. The topography of the study sites is characterized by steep
slopes (>35%). Geological substrates are Paleozoic schist and
quartzites leading to regosols soil types.

The study trees are located in plantations managed through
selective thinning, which involves harvesting the dominated trees
while retaining those within specified size classes for future
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natural seeding. The current density was similar across the study
area, with a mean basal area of 25 m2 ha−1. More details on the
study sites are available in Sánchez-Salguero et al. (2012a,b).

Field Sampling and Tree Selection
A stratified sampling was followed to select trees showing
contrasting defoliation after the severe 2005 drought. Firstly,
a systematic forest inventory was performed to select stands
whose trees shared similar site conditions (soil, topography)
but presented contrasting defoliation degrees (Sánchez-Salguero
et al., 2012b). Secondly, 30 trees were selected for each species
(10 trees per defoliation class) based on their similar size (dbh,
diameter measured at 1.3 m, tree and crown heights) and age
(mean ± SE = 32 ± 3 years; see also Table 1). For each sampled
tree, the proportion of crown cover was estimated to the nearest
5% by comparing every tree with a reference tree with the
maximum amount of foliage at each site (Schomaker et al.,
2007). Finally, the trees were classified in three defoliation classes:
defoliation ≤ 25% of the crown (scarcely or not defoliated trees,
henceforth abbreviated as N trees), 25< defoliation< 75% (trees
with intermediate defoliation level, henceforth abbreviated as I
trees), and defoliation≥ 75% (highly defoliated trees, henceforth
abbreviated as D trees).

Dendrochronological Sampling and
Processing
Dendrochronological sampling was carried out in winter 2008.
Two cores per tree at breast height were collected at 1.3 m
from 30 trees per species by using a Pressler increment borer.
The cores were air dried, stuck onto wood guides with glue,
and sanded using progressively finer grain papers until the
rings were clearly distinct (Fritts, 2001). Then, tree rings were
visually cross-dated and measured with a resolution of 0.01 mm
using a semi-automatic LINTAB device (F. Rinn, Heidelberg,
Germany). Cross-dating was checked using the COFECHA
software (Holmes, 1983).

Since basal-area increment (BAI, cm2 year−1) is assumed to
be a meaningful indicator of tree growth because it removes
variation in growth attributable to increasing circumference and
it is related to the transpiring crown surface (e.g., Linares et al.,
2009), we converted tree-ring widths into BAI. We assumed
a circular shape of stem cross-sections and used the following

formula:

BAI = π(R2t − R2t−1) (1)

where R is the radius of the tree and t is the year of tree ring
formation. Mean series of BAI were obtained for the two species
and the three defoliation classes.

To calculate climate-growth relationship at inter-annual scales
we transformed tree-ring widths into indices following standard
dendrochronological procedures (Fritts, 2001). The individual
tree-ring width series were double-detrended using negative
linear or exponential functions and cubic smoothing splines
with a 50% frequency-response cut-off at 20 years to preserve
high-frequency variability. Observed width values were divided
by fitted values to obtain ring-width indices. Autoregressive
modeling was performed on each detrended ring-width series
to remove part of the first-order autocorrelation. Then, these
indices were averaged using a biweight robust mean to obtain
residual chronologies for each species and defoliation class. All
chronologies were built using the program ARSTAN (Cook and
Krusic, 2005). Finally, we calculated two dendrochronological
statistics (first-order autocorrelation, mean sensitivity) and
compared their mean values between defoliation classes to assess
growth patterns.

Xylogenesis
Tree rings are produced by the cambium which generates
tracheids differentiating through developmental stages
(radial enlargement, wall thickening) until becoming mature
(Mahmood, 1971; Wodzicki, 1971, 2001; Larson, 1994). This
process of xylem development (xylogenesis) was monitored
by sampling wood micro-cores (2 mm in diameter, 1–2 cm
in length) from March until mid-October 2008. Sampling was
done biweekly in spring and monthly from August onwards
in five trees per defoliation class (half of the trees used for
dendrochronological analyses) of the two pine species. Samples
were taken around the stems at 1.3 m using a Trephor increment
puncher (Rossi et al., 2006). The thick dead outer bark was
removed, and sampling positions were arranged along an
ascending semi-helical pattern in the stem (Deslauriers et al.,
2003). The micro-cores were taken about 1 cm apart from each
other to avoid wound reaction. The samples usually contained
the preceding 4–5 tree rings and the developing annual layer
with the cambial zone and adjacent phloem.

TABLE 1 | Main characteristics of the study trees.

Pine species Defoliation class (code) No. trees Defoliation (%) Dbh, diameter at 1.3 m (cm) Height (m) Crown height (m)

Scots pine (Pinus sylvestris) Severe defoliation (D) 10 84.0 ± 1.9c 16.1 ± 0.2 6.2 ± 0.5 1.9 ± 0.7

Intermediate defoliation (I) 10 40.0 ± 2.7b 15.7 ± 1.5 6.5 ± 0.5 2.3 ± 0.6

Scarce or no defoliation (N) 10 11.0 ± 1.9a 16.8 ± 0.9 7.1 ± 0.5 2.5 ± 0.5

Black pine (Pinus nigra) Severe defoliation (D) 10 85.0 ± 3.5c 14.4 ± 1.0 6.7 ± 0.7 1.9 ± 0.6

Intermediate defoliation (I) 10 50.0 ± 3.5b 15.6 ± 0.8 7.2 ± 0.5 2.3 ± 0.8

Scarce or no defoliation (N) 10 12.0 ± 2.0a 16.9 ± 0.5 7.4 ± 0.4 1.8 ± 0.4

Values are means ± SE. Different letters show significant differences (P < 0.05) between defoliation classes within each species according to S-N-K post-hoc tests.
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Micro-cores were placed in Eppendorf tubes containing a
mixed solution of formaldeid, acetic acid and ethanol (5:5:90)
and stored as soon as possible at 5◦C in order to avoid
tissue deterioration. All samples were then processed within
a maximum of 1–2 weeks after sampling. Micro-cores were
sectioned using a sledge microtome (Anglia Scientific AS 2000,
UK) achieving samples 20-µm thick. Sections were mounted on
glass slides, stained with 0.5% water solution of cresyl fast violet,
fixed with Eukitt R© and observed at 100–200x magnification
under a light microscope (Olympus BH2).

Four different xylogenesis phases were identified as follows
(cf. Wodzicki, 1971; Antonova and Stasova, 1993; Wodzicki,
2001; Deslauriers et al., 2003): (1) cambial cells characterized
by small radial diameters, thin walls and bone shape; (2)
radially enlarging tracheids presenting unlignified cell walls and
therefore unstained in blue; (3) wall-thickening and lignified
tracheids with a transition coloration from violet to dark; and
(4) mature cells with lignified cells walls fully stained in blue. We
counted separately earlywood and latewoodmature tracheids and
distinguished them by their thin cell walls and wide lumens and
thick walls but narrow lumens, respectively. The numbers of cells
in each of the four different phases were counted along five radial
rows to obtain a mean value per ring and sampling date.

To relate xylogenesis with microclimatic conditions measured
in situ several climatic variables (air temperature, precipitation,
solar radiation, air relative humidity) were recorded hourly
and then converted to daily values (mean temperature and
radiation, precipitation) using a HOBO microclimate station
(Onset, Pocasset, USA) located in each pine stand (see Figure S4).

Timing of Wood Formation
Tracheid differentiation was considered to have started and to be
complete when at least one horizontal row of cells was detected
in the enlarging phase and cell wall thickening and lignification
were completed, respectively (cf. Gruber et al., 2010). To precisely
define and compare xylogenesis between defoliation classes we
computed the onset and cessation dates and the duration of
three developmental phases (E, radial enlargement; L, cell-wall
thickening and lignification; M, tracheid maturation) using the
package CAVIAR in R (Rathgeber et al., 2011). The onset
and cessation dates were defined when 50% of the radial files
were active (onset) or non-active (cessation) in each xylogenesis
phase. The durations of each phase were calculated as the time
elapsed between the onset and cessation of these phases following
Rathgeber et al. (2011). Xylem formation (X phase) was defined
as the time elapsed between the onset of enlargement and the
end of maturation. Finally, to compare the onset and cessation
dates and the duration of the main phases of xylogenesis we used
the achieved significance level (ASL), which can be interpreted
in the same way as a P significance level since the smaller the
value of ASL, the stronger the evidence against a null hypothesis
considering no difference between dates or phase durations
(Efron and Tibshirani, 1993).

Statistical Analyses
Growth-climate relationships were quantified by calculating
Pearson correlation coefficients between daily climate data (mean

maximum and minimum temperature, total precipitation, water
balance) and ring-width indices. To detect time-dependent
growth responses to climate, daily regional climate data were
either averaged (temperature) or summed (precipitation, water
balance) at 10-day and 15-day long scales following Sánchez-
Salguero et al. (2015).

The associations between climate and xylogenesis
data (number of cambium cells or tracheids in different
developmental stages) were evaluated at 5-, 10-, and 15-day long
time scales since daily dynamics of tracheid radial expansion
have been described in Scots pine (Antonova et al., 1995). In
this analysis we used local climate data recorded in the field
during 2008 (mean temperature, precipitation, radiation, relative
humidity, water balance). We used linear-mixed effects models
to evaluate the effects of defoliation and climate variables on the
(x0.5-transformed) number of different types of tracheids along
time, and checked the predicted values and residuals looking
for signals of heteroscedasticity (Zuur et al., 2009). Defoliation
was regarded as a fixed factor, whereas tree was considered a
random factor. Comparison between mean values of tree features
(defoliation, size variables) or dendrochronological statistics
were based on applying S-N-K post-hoc tests. We fitted linear
mixed-effects models using the nlme library (Pinheiro et al.,
2015). All analyses were done using the R statistical program
version 3.120 (R Development Core Team, 2015).

RESULTS

Post-Drought Growth Patterns
Basal area increment (BAI) dropped in all trees during the dry
years 1994–1995, 1999, and 2005 (Figure 1; see also Figure S3).
These BAI reductions were followed by a relatively rapid recovery
after 1994 and 2005, but not after 1999 in the case of highly
defoliated (D) trees of both pine species (Figure 1). We found
that BAI for the 2000−2008 period was significantly lower (P <

0.05) in the case of D trees (Scots pine, mean ± SE = 2.2 ± 0.4
cm2; black pine, 1.6± 0.3 cm2) as compared with trees presenting
intermediate (I) or low (N) defoliation levels whose mean BAI
values did not differ (means for I-N trees: Scots pine, 4.3 ±

0.7 cm2; black pine, 5.1 ± 0.9 cm2). These differences were not
associated to tree size which did not differ between defoliation
classes (Table 1). Note also that in Scots pine the D and I trees
already grew less than the rest of trees in the 1980s and early
1990s, which was not observed in black pine.

Differences in growth between defoliation classes could be
traced back in time. Only the D trees showed a lower tree-ring
width than the other defoliation classes considering the 1985–
2008 period, and this difference was more evident in black pine
(Table 2). In Scots pine, the non-defoliated N trees showed the
highest first-order autocorrelation in tree-ring width but the
lowest mean sensitivity, whereas in black pine themost defoliated
D trees presented the highest mean sensitivity (Table 2).

Climate-Growth Relationships
We found the highest climate-growth correlations when
considering mean maximum temperatures and precipitation,
which determine water availability during the growing season.
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FIGURE 1 | Recent patterns in basal area increment of the two study pine species according to defoliation intensity (D, severe defoliation, black

symbols; I, intermediate defoliation, gray symbols; N, scarce or no defoliation, empty symbols). Values are means ± SE (standard errors) and the bars show

the annual number of measured trees (right y axis, sample depth) for each defoliation type (same colors are used for growth and sample depth data).

TABLE 2 | Dendrochronological statistics of tree-ring width series for the studied trees and defoliation classes calculated considering the common

1985–2008 period (values are means ± SE).

Species Defoliation class (code) Tree-ring width (mm) First-order autocorrelationa Mean sensitivitya

Scots pine (Pinus sylvestris) Severe defoliation (D) 1.93 ± 0.06a 0.75 ± 0.05a 0.38 ± 0.04b

Intermediate defoliation (I) 2.30 ± 0.12b 0.75 ± 0.08a 0.32 ± 0.03b

Scarce or no defoliation (N) 2.32 ± 0.07b 0.83 ± 0.02b 0.27 ± 0.04a

Black pine (Pinus nigra) Severe defoliation (D) 1.52 ± 0.05a 0.77 ± 0.05 0.36 ± 0.01b

Intermediate defoliation (I) 2.20 ± 0.13b 0.75 ± 0.05 0.31 ± 0.02a

Scarce or no defoliation (N) 2.22 ± 0.14b 0.73 ± 0.05 0.30 ± 0.02a

Statistics refer to raw data excepting mean sensitivity which was calculated considering residual indices. Different letters show significant differences (P<0.05) between defoliation

classes within each species according to S-N-K post-hoc tests.
aThe first-order autocorrelation of raw ring-width data measures how much the ring width in year n is correlated with the width in year n-1; the mean sensitivity of residual tree-ring width

series measures the relative year-to-year variability in width of consecutive tree rings.

Therefore, we present only results for these two climatic variables
(Figure 2). In Scots pine, growth was enhanced by wet January
and mid-June conditions, with the strongest effect for the latter
variable in the case of D trees and at 15-day long intervals
(Figure 2). Warm mid-June conditions were associated to low
growth in Scots pine, regardless its defoliation level, but high
maximum temperatures in early August averaged at 10-day
long intervals benefitted growth. In black pine, too warm
conditions in early to mid-June were negatively associated to
growth of D and I trees, whilst high precipitation values in
January and also from May to July were positively associated
to growth (Figure 2). In the case of D black pine trees, their
growth was most strongly enhanced by June precipitation
summed at 10-day long intervals, but a similar response was
observed in I trees for July rainfall accumulated at 15-day long
intervals.

Xylogenesis and Tree Defoliation
The D trees produced less tracheids than N trees in the
radial enlargement, wall-thickening and lignification, and
maturation phases (Figure 3). For instance, on average the
D trees produced from 12 (black pine) to 15 (Scots pine)

tracheids per tree-ring, whereas the N trees produced 26 (black
pine) to 37 (Scots pine) tracheids. These observations were
confirmed by the linear mixed-effects models which evidence
that defoliation intensity was significantly related to a lower
production of radially-enlarging and mature tracheids in both
tree species (Table 3). In black and Scots pine, warmer and
drier conditions at 15-day long scales were negatively related
to the production of radially enlarging tracheids, whereas
radiation was positively related to their production (Table 3).
However, in Scots pine, the production of cambial cells was
positively associated to higher temperatures. Warmer and drier
summer conditions enhanced the production of lignifying
tracheids.

In both pine species the number of cambial cells of N trees
reached the highest value in May, but peaked 1 month later
in the case of D trees (Figure 3). This means that the onset of
xylem formation started earlier in the N than in the D trees.
In the case of the radial-enlargement phase, the onset occurred
significantly earlier in N than in D trees (Table 4). The peak of
formation of radially-enlarging tracheids occurred from May to
June in Scots pine and aroundmid-June in black pine. This phase
ended before in the D trees than in the other defoliation classes in
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FIGURE 2 | Climate-growth relationships (Pearson correlation coefficients) calculated for the two pine species and considering three defoliation

degrees (N, scarce or no defoliation, empty symbols; I, intermediate defoliation, gray symbols; D, severe defoliation, black symbols). Correlations were

obtained for 10- and 15-day long intervals considering the 1985–2008 period, and they are presented for mean maximum temperatures and total precipitation. The

dashed lines indicate the 0.05 significance levels. The bars show averaged (temperatures) and summed (precipitation) values for each variable.

both pine species (Table 4, Figure 4). Consequently, the D trees
were characterized by presenting the shortest duration of the
radial-enlargement phase, but this difference was only significant
in black pine (D, 128 days vs. N trees, 160 days; Table 4).
The wall-thickening and lignification phase was similar among
defoliation classes showing a maximum activity from June to July
in both pine species. Lastly, maturation proceeded similarly in
the three defoliation classes, albeit latewood formation seemed to
start earlier in the case of Scots pine D trees but we could not
assess if there were significant differences. Overall, the duration
of xylem formation was shorter in D trees than in the other types
of trees.

DISCUSSION

Here we document how drought-induced dieback caused growth
decline and affected xylogenesis in the widely distributed Scots
pine and the Circum-Mediterranean black pine. The duration
of xylem formation was shorter in the defoliated than in the
non-defoliated or moderately defoliated trees in both species
(Table 4), which agrees with the fact that the most defoliated
trees grew less and thus produced less tracheids than the other
types of trees (Figures 1, 3). Defoliated pines form narrow tree
rings as the result of a shorter growing season due to a later
onset of xylogenesis or a premature cessation of cambial activity
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FIGURE 3 | Number of cambium cells and tracheids observed in

different maturation stages (radial enlargement, thickening, maturing)

of P. sylvestris and P. nigra trees grouped in three defoliation classes

(D, severe defoliation; I, intermediate defoliation; N, scarce or no

defoliation). In the lowermost graph the bars correspond to the number of

latewood tracheids. Means are given with standard errors (n = 5 trees for each

defoliation class).

and wood formation as has been observed by others (Bauch
et al., 1979; Eilmann et al., 2011, 2013). Note that the duration of
xylogenesis phases as the radial enlargement of tracheids, which
depends on an adequate turgor pressure of expanding cells (Abe
et al., 2003), drives to a great extent the annual ring width and the
final size of tracheids (Cuny et al., 2014). However, we could only
find a significantly shorter duration of the radial-enlargement
phase in the most defoliated black pine trees as compared with
their less defoliated conspecifics (Table 4).

The long-term climate-growth associations showed a
pronounced sensitivity of growth in defoliated Scots pine
trees to changes in precipitation during the growing season
(Figure 2). This agrees with the fact that Scots pine is more
vulnerable to drought-induced xylem embolism than black
pine (Martínez-Vilalta et al., 2004). This species was also the
most negatively affected by the 1990s and 2000s droughts in
the study area (Sánchez-Salguero et al., 2012a). Such sensitivity
to water availability also agrees with the highest year-to-year
variability in growth presented by the most defoliated Scots

TABLE 4 | Statistical tests (ASL) obtained by comparing the estimated

onset and cessation dates and the duration of the main phases of

tracheid differentiation for P. sylvestris and P. nigra trees of different

defoliation classes (D, severely defoliated; I, intermediate defoliation; N,

scarcely or not defoliated).

Species Event Xylogenesis phase D vs. N D vs. I I vs. N

Scots pine (Pinus

sylvestris)

Onset Radial enlargement 0.012 0.136 0.076

Cell-wall thickening 0.059 0.362 0.081

Cessation Radial enlargement 0.021 0.042 0.047

Cell-wall thickening 0.069 0.188 0.073

Duration Radial enlargement 0.075 0.251 0.212

Cell-wall thickening 0.061 0.080 0.287

Xylem formation 0.026 0.333 0.109

Black pine (Pinus

nigra)

Onset Radial enlargement 0.078 0.091 0.080

Cell-wall thickening 0.084 0.054 0.069

Cessation Radial enlargement 0.019 0.037 0.025

Cell-wall thickening 0.065 0.056 0.077

Duration Radial enlargement 0.032 0.190 0.154

Cell-wall thickening 0.237 0.066 0.187

Xylem formation 0.048 0.190 0.084

Significant (P < 0.05) ASL values, based on 10,000 bootstrapped iterations, appear in

bold characters. Note that the smaller the value of ASL, the stronger the evidence to

support a significant difference.

pine trees (Table 2). From this point of view, Scots pine could
be considered less adapted to global-change-type droughts than
black pine. However, climate-xylogenesis associations did not
indicate greater drought sensitivity in Scots pine as compared
with black pine (Table 3). Scots pine responds to drought by a
fast reduction of transpiration through a rapid stomatal closure
(Irvine et al., 1998), but this response varies between trees as a
function of their stress level (Hölttä et al., 2012). Such isohydric
behavior combined with needle shedding could compensate the
alterations in source-sink relationships within the tree (Iqbal
et al., 2012). However, growth data indicate that growth decline
is irreversible in this species, and also in black pine, for very high
defoliation levels and after three severe droughts as those which
occurred in 1994–1995, 1999, and 2005 (Figure 1). Overall, our
findings suggest that defoliated trees regulated their water status
after the severe 1990s and 2000s droughts by needle shedding so
as to keep a stable ratio between conductive area and transpiring
area. The most defoliated trees presented the lowest growth
rates prior to the droughts but we do not know if they were
those transpiring most actively and therefore losing more water
through their stomata. Whatever the cause, such low-growth
trees were the most prone to drought-induced alterations in
their hydraulic system, defoliation, changes in xylogenesis, and
reduced growth after the drought. Drought-induced severe
defoliation possibly portends tree death in the most affected
trees.

The association between defoliation and a reduced growth rate
was observed for all the assessed xylogenesis phases in black pine,
and for the radially-enlarging and mature tracheids in Scots pine
(Figure 3, Table 3). This is consistent with the finding that the
most defoliated black pine trees were characterized by presenting
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FIGURE 4 | Estimated onset and cessation dates and durations (±SD) of the main phases of xylogenesis (E, radial enlargement; L, lignification and

cell-wall thickening; M, mature tracheids; X, xylem formation) in Scots pine (P. sylvestris) and black pine (P. nigra) trees of different defoliation classes

(D, severe defoliation; I, intermediate defoliation; N, scarce or no defoliation). Onset and cessation dates of selected xylogenesis phases are represented by

diamond-crossed-by-a-line marks whose left (right) end of the line represents the minimum (maximum), the left (right) end of the diamond the first (third) quartile and

the middle of the diamond corresponds to the median.

the shortest duration of the radial-enlargement phase, a stage
which is tightly related to the growth rate of trees (Horacek et al.,
1999). A reduced number of enlarging cells was also found when
imposing water deficit on black spruce (Picea mariana) saplings
under controlled conditions (Balducci et al., 2013). Notably,
the ratio between the numbers of total mature tracheids in the
non-defoliated as compared with the most defoliated trees was
similar between the two species (ca. 2.5). This could indicate that
drought-triggered defoliation caused a similar growth reduction
in both species despite the aforementioned differences regarding
xylogenesis.

It is also remarkable that observational (Torelli et al., 1986)
and empirical (Balducci et al., 2016) studies did not detect clear
modifications of transversal tracheid dimensions in silver fir
(Abies alba) trees showing dieback or in black spruce saplings
experiencing imposed water deficit, respectively. However, the
stem wood of defoliated silver fir trees showed a higher
susceptibility to decay implying different lignifications processes
(Shortle and Ostropsky, 1983). In fact, silver fir trees showing
dieback produced narrow rings due to a premature end of
wood formation characterized by an earlier differentiation of
the latewood cell walls as compared with non-declining trees
(Torelli et al., 1999). We could not find significant differences
between defoliation classes regarding the cell-wall thickening and
lignification phase, despite there was a trend toward an earlier
cessation of this phase in the most defoliated trees, particularly

in the case of black pine. These results suggest that xylogenesis
is more sensitive or plastic to water shortage and defoliation
than wood anatomy. However, both responses are not mutually
exclusive. Dry conditions can stop cambial activity, shorten the
growing period, and also induce the formation of tracheids with
wider conduits and thinner cell walls as has been described in
Scots pine adult trees (Eilmann et al., 2011).

The plasticity of xylogenesis in response to seasonal or
punctual water shortage has been profusely documented in
empirical and observational studies. In a warming and drought
experiment considering black spruce saplings, water shortage
reduced the rates of cell production (Balducci et al., 2016), as
previously observed in experiments with Aleppo pine saplings
(De Luis et al., 2011). Field studies also reported plastic responses
of cambial activity to seasonal water availability (e.g., bimodal
behavior) in either Mediterranean species as Aleppo pine (De
Luis et al., 2007; Camarero et al., 2010) or Eurosiberian species
as Scots pine growing at xeric sites in the Alps (Gruber et al.,
2010; Eilmann et al., 2011; Oberhuber et al., 2011). In a
rainfall exclusion experiment applied to Scots pine, the radial-
enlargement phase was shortened in trees subjected to drier
conditions compared with control trees although this difference
was not significant and depended on tree size (Fernández-De-
Uña et al., 2013). Overall, these studies indicate that cambial
activity is greatly reduced by drought but can rapidly resume once
water availability increases (Eilmann et al., 2011, 2013).
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Plastic xylogenesis could represent a strategy to respond to
changes in water availability and the reduction of photosynthetic
area through leaf shedding. In a Scots pine forest located at
a xeric site in the Swiss Alps and subjected to a drought
trees with medium to high defoliation grew less and showed a
shorter growth period than non-defoliated trees (Eilmann et al.,
2013), which fully agrees with our findings. When irrigation
occurred in this site all trees responded positively and rapidly
showing enhanced radial growth and stopping needle shedding,
irrespective of their defoliation degree, which is in accordance
with previous studies (Dobbertin, 2005). The reduction of the
production rates of tracheids in different xylogenesis phases of
the most defoliated trees, particularly when cells are radially
enlarging, was not compensated by longer durations of these
phases as was suggested in a drought experiment (Balducci et al.,
2016). Following this line of reasoning, it has been suggested
that drought and subsequent defoliation characterizing dieback
episodes could lead to the depletion of carbon stores (Galiano
et al., 2011). However, other authors indicate that water shortage
is a more relevant and direct constrain of growth than a reduced
availability of non-structural carbohydrates (Sala et al., 2012). In
fact, defoliation caused by insects such as the pine processionary
moth (Thaumetopoea pityocampa), which particularly affects
black pine, reduce radial growth but not the concentrations of
non-structural carbohydrates (Palacio et al., 2012; Puri et al.,
2015). Seasonal changes in sugar concentration within the
cambial zone have been linked to xylogenesis and peak when
most radial growth is finished, i.e., during the wall-thickening
and lignifications phase (Simard et al., 2013). Nonetheless, this
does not mean that cambial activity of trees is directly limited
by the availability of carbohydrates because drought can lead
to the use of soluble sugars for osmoregulation but also reduce
cell turgor, expansion, and lignification as well as related cambial
dynamics (Deslauriers et al., 2014).

We found the reported differences in xylogenesis in the
most defoliated trees 3 years after the severe 2005 drought
induced dieback and triggered needle loss (Sánchez-Salguero
et al., 2012b). This implies that once crown defoliation reaches
a threshold (in this case above 75%) the ability of trees to
recover growth could be compromised in some pine species or at
xeric sites if water availability improves. Globally, legacy effects
of droughts cause lags of 2–4 years for the recovery of forest
growth (Anderegg et al., 2015). We show that defoliation could
lengthen these recovery periods and compromise the resilience of
forests experiencing drought-induced dieback. Lastly, we extract
a practical lesson of this study. Xylogenesis studies are highly
time consuming. Nevertheless, to reach more general and robust
conclusions we suggest sampling 10 trees per defoliation class in
further studies. Sampling could be done weekly during the most
active growing period (for instance fromApril to July in our case)
and biweekly the rest of the year.

To conclude, drought negatively impacted growth and crown
cover in Scots pine and black pine. In the most defoliated trees,
the duration of xylem formation and the radial-enlargement
phase shortened leading to low growth rates and the formation
of narrow rings. In Scots pine, the onset of xylem formation
was retarded in the most defoliated trees as compared to non-
defoliated trees. Despite the widely reported plastic responses
of cambial activity to changing water availability, we found a
very limited resilience capacity of Scots and black pines after
drought in severely (≥75%) defoliated trees. Moreover, droughts
produce legacy effects on xylogenesis of these severely defoliated
trees which show irreversible growth decline and are prone
to die.
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