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Plants are fascinating and complex organisms. A comprehensive understanding of

the organization, function and evolution of plant genes is essential to disentangle

important biological processes and to advance crop engineering and breeding strategies.

The ultimate aim in deciphering complex biological processes is the discovery of

causal genes and regulatory mechanisms controlling these processes. The recent

surge of omics data has opened the door to a system-wide understanding of the

flow of biological information underlying complex traits. However, dealing with the

corresponding large data sets represents a challenging endeavor that calls for the

development of powerful bioinformaticsmethods. A popular approach is the construction

and analysis of gene networks. Such networks are often used for genome-wide

representation of the complex functional organization of biological systems. Network

based on similarity in gene expression are called (gene) co-expression networks. One

of the major application of gene co-expression networks is the functional annotation of

unknown genes. Constructing co-expression networks is generally straightforward. In

contrast, the resulting network of connected genes can become very complex, which

limits its biological interpretation. Several strategies can be employed to enhance the

interpretation of the networks. A strategy in coherence with the biological question

addressed needs to be established to infer reliable networks. Additional benefits can

be gained from network-based strategies using prior knowledge and data integration

to further enhance the elucidation of gene regulatory relationships. As a result,

biological networks provide many more applications beyond the simple visualization of

co-expressed genes. In this study we review the different approaches for co-expression

network inference in plants. We analyse integrative genomics strategies used in

recent studies that successfully identified candidate genes taking advantage of gene

co-expression networks. Additionally, we discuss promising bioinformatics approaches

that predict networks for specific purposes.
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INTRODUCTION

In plants, the age of systems biology has accelerated the investigation of complex molecular
mechanisms underlying intricate developmental and physiological processes. Since plants are
anchored to their environment, they cannot escape from stresses by simply moving away. Instead,
plants have developed a wide range of mechanisms to cope with environmental fluctuations. This
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plasticity generally involves changes at the level of DNA,
RNA, protein and metabolites, resulting in complex phenotypes
governed by multiple genes. Advanced genetic and molecular
tools have led to tremendous progress in revealing the genetic
architecture but also the regulatory mechanisms of complex traits
(Mochida and Shinozaki, 2011). The development of molecular
profiling techniques nowadays enables the high-throughput and
affordable acquisition of large omics data sets, such as for
transcriptomics, proteomics and metabolomics.

While substantial efforts are being made to generate
large omics data sets, there is a growing need to develop
platforms to integrate these data and derive models describing
biological interactions in plants. In this context, networks have
rapidly become an attractive approach to manage, display and
contextualize these large data sets in order to obtain a system
level and molecular understanding of biological key processes
(Barabási and Oltvai, 2004; Usadel et al., 2009; Costa et al., 2015;
Silva et al., 2016).

Biological networks are generally classified by the nature of
the compounds and interactions involved. These networks can
be derived from various molecular data resulting in, e.g., gene
expression networks (correlation or co-expression networks),
protein-protein interaction (PPI) networks, metabolic networks
and signaling networks. Graphically, networks are represented as
an ensemble of components (nodes or vertices) and interactions
depicted by links (edges) connecting pairs of nodes. Such
interaction maps provide an attractive framework to study the
organizational structure of complex systems and have found
many applications in plants (Jiménez-Gómez, 2014).

The fast development of transcriptomic technologies, as
compared to other analytical platforms, has supported a range
of studies on genetic and environmental perturbations at the
transcriptome level in many organisms. Co-expression networks
have grown in popularity in the last years as they enable
the integration of large transcriptional data sets (Li et al.,
2015; Liseron-Monfils and Ware, 2015). Co-expression network
analysis allows the simultaneous identification, clustering and
exploration of thousands of genes with similar expression
patterns across multiple conditions (co-expressed genes). The
main procedure for co-expression network inference is explained
in Box 1 and illustrated in Figure 1. Briefly, a similarity score
(i.e., correlation coefficient) is calculated from the pairwise
comparison of the gene expression patterns for each possible pair
of genes. Above a certain threshold, genes and gene pairs form a
list of nodes and corresponding edges from which the network
is constructed. As a rule, the guilt-by-association principle is
applied stating that genes sharing the same function or that are
involved in the same regulatory pathway will tend to present
similar expression profiles and hence form clusters or modules in
the network (Wolfe et al., 2005). Thus, within the same module,
genes of known function can be used to predict the function of
co-expressed unknown genes (Rhee and Mutwil, 2014).

The two main applications for co-expression network analysis
are to find novel genes involved in the biological process under
investigation and to suggest the biological process a gene is
involved in. Intuitively, reliable networks are needed to infer
meaningful gene function predictions. Such networks heavily

depend on a combination of decisions taken throughout the
network inference process. From the quality, type and availability
of the input data, the correlation coefficient and inference
algorithm used, to the prior knowledge, the experimental and
computational resources, any negligence can result in unreliable
networks and subsequent misleading biological interpretations.

Caveats and opportunities of co-expression network analyses
have been discussed previously (Usadel et al., 2009). When
handling large data sets, co-expression networks can become
very complex which limits their biological interpretation (Usadel
et al., 2009). In addition, in contrast to regulatory networks, and
because of their static representation, co-expression networks
do not provide per se information on the nature of the
regulatory relationship of connected genes (Stuart et al., 2003).
Careful application of network analysis tools and strategies
is thus important to maximize the information extraction,
to disentangle reliable network connections and to infer true
biological meaning.

In this review, we aim to provide an overview of the
different strategies to employ during or after the co-expression
network construction with the common aim of exploiting
the full predictive potential of co-expression networks. The
application of these strategies is illustrated by examples of recent
studies. Particular attention is given to available and promising
bioinformatics tools. Finally, we will speculate on network
aspects worth developing in the near future to strengthen their
inference power for a comprehensive understanding of the
regulation of important biological processes.

DATA AVAILABILITY FOR CO-EXPRESSION
NETWORK ANALYSIS

In the post-genomic era, the reduction of costs for large
scale and high-throughput measurement technologies, such as
for transcriptomics, has to the extensive collection of gene
expression profiles capturing changes in gene expression during
development, between different treatments or tissues, etc.

In addition, the sequenced genomes of model plants (e.g.,
Arabidopsis, medicago, and poplar) and economically important
crops (e.g., tomato, potato, tobacco, rice, and soybean) strongly
improve our understanding of transcriptional dynamics.

The compendia of generated data led to the development
of publicly available gene expression databases (Table 1). These
databases still largely contain microarray data and many of them
are related to the model plant Arabidopsis. In recent years, RNA-
sequencing, using next-generation high-throughput sequencing
technologies (RNA-seq) has proven to be a powerful tool for
whole transcriptome profiling with enhanced sensitivity for the
discovery of new transcripts and enhanced specificity such as
for the examination of allele-specific expression. The power
of these sequencing technologies has enabled co-expression
network analysis in species without a sequenced genome and, as
a result, has opened the way for new applications (see Section
Comparative Co-expression Network Analysis). RNA-seq based
co-expression network construction is still in its infancy (Iancu
et al., 2012; Ballouz et al., 2015) but the foreseen predominance
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BOX 1 | Network Inference

Constructing a network of genes from expression data generally consists of the following steps: first a measure of similarity or relatedness is calculated for each of the

possible gene pairs. The resulting list of gene pairs is then filtered using a threshold value for the similarity score. The remaining gene pairs form a list of edges from

which the network is constructed (Figure 1). As an optional next step, modules of highly related genes can be extracted from the network using gene prioritization

approaches.

Similarity Score

Gene expression values are usually log2 transformed before calculating the similarity score in order to scale the values to the same dynamic range.

Several measures are used to determine a similarity score between gene pairs, each with its specific strengths and weaknesses. Simple Pearson or Spearman

correlation is often used and performs well compared to more sophisticated methods, both in terms of finding gene relationships and performance on large data

sets (Song et al., 2012; Ballouz et al., 2015). Pearson is the most popular correlation measure, although it assumes a linear correlation, normally distributed

values and is sensitive to outliers. Spearman’s rank correlation is more robust, but also less powerful. Another often used measure that can describe non-

linear relations between genes is called Mutual Information (MI) (Meyer et al., 2008). Song et al. (2012) found that in many situations MI does not perform

better than correlation. They proposed “bi-weight mid-correlation” (bicor) as an attractive alternative correlation measure that is more robust than Pearson

correlation.

Significance Threshold

When the similarity scores between all gene pairs have been determined, a cutoff is applied to select the gene pairs that should be connected in the network. This

can be an arbitrary cutoff, but there are several ways to make a more informed choice. Lee et al. (2004) selected only the top 0.5% most positively and the top

0.5% most negatively correlated pairs. Bassel et al. (2011) chose a cutoff that results in a network following a power-law distribution, using the Weighted Gene Co-

expression Network Analysis (WGCNA) package (Langfelder Langfelder and Horvath, 2008). Butte and Kohane (2000) used random permutations of the expression

data to determine a cutoff for significant interactions. Other approaches calculate a p-value based on the null hypothesis that the correlation between two genes is 0.

Zhang and Horvath (2005) proposed to use soft thresholds instead of hard cutoffs, to produce weighted gene networks and preserve the underlying continuous nature

of the correlation. However, visualizing these networks is challenging since the directly linked neighbors of a node are difficult to identify.

Promising Approaches

Correlation networks do not distinguish between direct and indirect interactions. The ARACNE algorithm (Margolin et al., 2006; Meyer et al., 2008) addresses this by

pruning edges based on the analysis of gene triplets. If genes A, B, and C are fully connected in the network and the edge between A and C has the lowest weight,

this edge could actually be an indirect interaction of A and C through B.

Correlation networks have undirected edges, since no causality can be inferred from two connected genes, although work has been published to address this (Opgen-

Rhein and Strimmer, 2007). Regression methods are well-suited to find directed edges, since they try to find the set of genes that best predict the expression of

a given target gene. However, because regression methods are generally computational demanding, the set of possible predictor genes is often limited to known

transcription factors (Vignes et al., 2011; Marbach et al., 2012). In addition, Bayesian networks also allow the inclusion of prior knowledge, but their application is even

more computationally challenging and not feasible for large sets of genes (Tamada et al., 2003; Imoto et al., 2004; Werhli and Husmeier, 2008).

of next generation sequencing tools in the coming years will
certainly enrich existing databases for the benefit of network
studies. Microarrays are still commonly used for transcriptome
analysis because they are relatively cheap and their analysis is
highly standardized. Comprehensive microarray gene expression
sets are available in public repositories such as the Gene
Expression Omnibus (GEO, Edgar et al., 2001), Genevestigator
(Hruz et al., 2008) or Array Express (Parkinson, 2004). Other
tools, such as the online bio-analytical resource for plant biology
(BAR, Winter et al., 2007), provide interactive interfaces for the
exploratory visualization of gene expression variation.

Co-expression networks allow the simultaneous investigation
of multiple gene co-expression patterns across a wide range of
conditions. As a result, publicly available transcriptome data
sets represent valuable resources for such analysis. It has been
reported that nearly one in four studies uses public data to
address a biological problem without generating new raw data
(Rung and Brazma, 2013). The reuse of such data strengthens
the need for reliable expression studies. A correct experimental
design, the proper execution of the wet lab experiments and
thorough annotation of the data are essential prerequisites for
successful subsequent reuse (Brazma, 2003).

Several gene co-expression databases are available to help
researchers in their investigations (reviewed in Brady and
Provart, 2009; Usadel et al., 2009; Table 1). These databases
provide user-friendly interfaces to facilitate access to the data

and most of them also offer integrated data processing tools.
ATTED-II (Obayashi et al., 2007, 2014) allows condition specific
searches for co-expressed genes in several plant species. For
Arabidopsis, CressExpress (Srinivasasainagendra et al., 2008) in
addition allows selection of data sets based on a quality score
to filter out “bad” microarrays. GeneMANIA (Warde-Farley
et al., 2010) uses a large set of functional data of various types
(predicted interactions, correlations, physical interactions and
shared protein domains) to display all predicted interactions for
a query gene list in an interactive network. The probabilistic
functional gene network AraNet (Lee et al., 2015b) provides a
measure to assess the connectivity of the query genes used in
regard to the generated network. Additionally, AraNet integrates
enrichment analysis tools for network components for gene
ontology terms and biochemical pathways (Mapman, BioCyc and
KEGG) (see Section Gene Prioritization). A popular platform
for network inference is Cytoscape (Shannon et al., 2003). This
open source program with its many plugins and apps allows
the integration, visualization and analyses of network data (Saito
et al., 2012).

DATA SELECTION FOR CO-EXPRESSION
NETWORK ANALYSIS

Publicly available gene expression databases can be queried
using two main approaches. These approaches are reported in
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FIGURE 1 | Co-expression network inference pipeline. The biological question addressed drives the strategy for the co-expression network analysis: prior

knowledge can be used to identify guide-genes and co-expression databases can be queried to investigate gene co-expression patterns across multiple conditions.

Similarity in gene expression patterns is calculated using correlation coefficients (Pearson, Spearman...). A user defined threshold (in this example set at 0.8) enables

the selection of genes with high co-expression scores. Significantly co-expressed genes are reported in the binary adjacency matrix as 1. A clustering algorithm is

applied on the adjacency matrix to infer networks of significantly co-expressed genes. In the resulting network, significantly co-expressed genes are depicted as

numbered nodes (vertices) linked by edges (links). The length of the edges is relative to the expression similarity of the connected genes, with a short edge

corresponding to a high co-expression value. A “path” corresponds to the number of edges connecting two nodes (the shortest path from node 9 to 4 is 4 edges).

Hubs are identified as highly connected nodes (node 1) and group of connected genes form modules (nodes 1–7). Network properties can be described by different

parameters such as:

•The connectivity of a network corresponds to the total number of links in the network.

•The node degree corresponds to the number of connections of a node with other nodes in the network (node 4 has a node degree of 3).

•The betweenness of a node corresponds to the sum of the shortest paths connecting all pair of nodes in the network, passing through that specific node. The

betweenness of node 8 corresponds to the sum of the shortest path the connecting node 10–9, 3–9, 4–9 etc...).

the literature as “non-targeted” (or “global”) and “targeted” (or
“guided-gene”) approaches (Aoki et al., 2007). The use of one
or the other approach is largely determined by the biological
question addressed and the available knowledge.

The non-targeted approach provides a global overview
of co-expression patterns of multiple genes across many
conditions. This approach is also termed knowledge-independent
or condition-independent, as no a priori information is used to
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TABLE 1 | Overview of available resources for co-expression network analysis.

Resources Description Target species Link References

Data availability and

data selection for

co-expression network

analysis

Search Engine for Gene Expression

BAR—eFP

browser

Interactive visualization of gene

expression

Arabidopsis http://bar.utoronto.ca/ Winter et al., 2007

GEO Public functional genomics data

repository

Several species http://www.ncbi.nlm.nih.

gov/geo/

Edgar et al., 2001

Genevestigator Database for curated gene

expression data

Several species http://www.plexdb.org/plex.

php?database=Arabidopsis

Hruz et al., 2008

Phytozome Comparative platform for plant

genomics

Several species http://phytozome.jgi.doe.

gov/pz/portal.html

Goodstein et al., 2012

ArrayExpress Database for large functional

genomics

Several species http://www.ebi.ac.uk/

arrayexpress/

Brazma, 2003

Web-Interfaces for Co-Expression Analysis

ATTED-II Gene co-expression database Several species http://atted.jp/ Obayashi et al., 2007,

2014

Cressexpress Co-expression analysis for

Arabidopsis

Arabidopsis http://cressexpress.org/ Srinivasasainagendra

et al., 2008

GeneMANIA Interactive network displaying

various functional associations

Arabidopsis http://www.genemania.org/ Warde-Farley et al., 2010

AraNet Probabilistic functional gene

network of Arabidopsis

Arabidopsis http://www.functionalnet.

org/aranet/search.html

Lee et al., 2010

CORNET Co-expression analysis on

predefined or user defined

experiments

Arabidopsis https://bioinformatics.psb.

ugent.be/cornet/

De Bodt et al., 2010

PLANEX Plant gene co-expression

database

Several species http://planex.

plantbioinformatics.org/

Yim et al., 2012

Oryza

Express

Gene expression database for

Rice

Rice http://bioinf.mind.meiji.ac.

jp/OryzaExpress/

Hamada et al., 2011

RiceFriend Gene expression database for

Rice

Rice http://ricefrend.dna.affrc.go.

jp/

Sato et al., 2013

Network Visualization Tools

Cytoscape Visualization and analysis of

co-expression networks

http://cytoscape.org/ Shannon et al., 2003

GraphViz Visualization and analysis of

co-expression networks

http://www.graphviz.org/ Gansner and North, 2000

Gene prioritization Gene Ontology and Enrichment Analysis

Blast2GO Identify and visualize enriched

GO terms in ranked lists of genes

https://www.blast2go.com/ Conesa et al., 2005

biNGO http://apps.cytoscape.org/

apps/bingo

Maere et al., 2005

Biochemical Pathways

KEGG

(pathways)

Collection of manually drawn

pathways

Several species http://www.genome.jp/

kegg/

Kanehisa and Goto, 2000

BioCyc Pathway and genome database Several species http://biocyc.org/ Caspi et al., 2014

Mapman Display large data sets on

diagram of metabolic maps

Several species http://mapman.gabipd.org/ Thimm et al., 2004

Transcription Factors Identification

plantTFDB Plant transcription factor

database

Several species http://planttfdb.cbi.pku.edu.

cn/

Jin et al., 2014

CIS-Regulatory Elements Enrichment

PLACE Database of motifs found in

cis-acting regulatory elements

Arabidopsis https://sogo.dna.affrc.go.jp/

cgi-bin/sogo.cgi?lang=en&

pj=640&action=page&

page=newplace

Higo et al., 1999

(Continued)
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TABLE 1 | Continued

Resources Description Target species Link References

AGRIS and

AtregNet

Information resource of

Arabidopsis promoter

sequences, Transcription factor

and targets

Arabidopsis http://arabidopsis.med.

ohio-state.edu/

Palaniswamy et al., 2006

Text Mining

PubTator Web-based tool for accelerating

manual literature curation

http://www.ncbi.nlm.nih.

gov/CBBresearch/Lu/

Demo/PubTator/index.cgi?

user=User171748688

Wei et al., 2012

EVEX Large scale text mining resource http://www.evexdb.org Hakala et al., 2015

Phenotypic Information

TAIR The Arabidopsis Information

Resource for mutant phenotype

information

Arabidopsis http://www.arabidopsis.org/ Lamesch et al., 2012

Comparative

co-expression network

analysis

ComplEX Explore and compare

sub-networks of three species

Arabidopsis,

poplar and rice

http://complex.plantgenie.

org/

Netotea et al., 2014

CoExpNetViz Comparative co-expression

analysis for bait genes

Several species http://bioinformatics.psb.

ugent.be/webtools/coexpr/

index.php

Tzfadia et al., 2015

PLAZA Database to explore gene

families and genomic homology

Several species http://bioinformatics.psb.

ugent.be/plaza/

Proost et al., 2015

construct the network. As an example, Mao et al. (2009) built an
Arabidopsis gene co-expression network using gene expression
data from 1094 non-redundant Affymetrix ATH1 arrays from
the AtGenExpress consortium. This data set represented nine
categories of experimental conditions, such as environmental
stresses, hormonal treatments and developmental stages. The
resulting network consisted of 6206 nodes and 512,936 edges.
These “global” networks are generally used to describe the
overall set of connections predicted to occur between gene
pairs. Separated modules of functionally related genes can be
identified and enable further gene prioritization (see Section
Gene Prioritization).

In these global networks, also designated as condition-
independent, weak interactions or interactions only occurring
under specific conditions are easily missed. This can be
circumvented by specifically selecting data from experiments that
are relevant to the biological question addressed (Saito et al.,
2008; Usadel et al., 2009). The resulting condition-dependent
networks provide insights on specific biological processes (Atias
et al., 2009). Illustratively, by selecting 138 samples from publicly
available gene expression data sets exclusively from mature
imbibed Arabidopsis seeds, Bassel et al. (2011) established a
seed specific network. This SeedNet enabled the identification
of modules associated with seed traits such as germination and
dormancy. Childs et al. (2011) reported the improved predictive
power for gene functional annotation of such condition-
dependent networks. One of the limits of this approach is that
the elucidation of system wide properties, such as intersecting
biological pathways and genes exhibiting pleiotropic effects,
might be overlooked.

An alternative approach allows tomimic condition-dependent
data set selection, while using the full potential of gene expression
data sets. This approach consists of pre-clustering the samples
prior to network construction. In this case, a clustering algorithm
is directly applied to the normalized expression matrix (genes
× conditions) to partition the input samples into a defined
number of groups based on their overall expression similarity.
Co-expression networks are then built from each of the clusters
obtained. Using this technique, Feltus et al. (2013) have shown
that such an unsupervised pre-clustering approach improved
capturing of co-expressed genes and the representation of unique
biological terms in the derived network modules.

When experimental data have elucidated key components of
specific pathways, a guide-gene approach can help to identify
novel members of the same pathway in a more targeted manner
(Itkin et al., 2013). These known genes, also called bait or seed
genes, are used as input genes to build a seeded co-expression
network. For example, Yang et al. (2011) used this approach to
identify new candidate genes involved in cell-wall biosynthesis.
They first established a list of 121 genes known to be involved
in cell-wall biosynthesis and by querying available data sets with
these seed genes, the initial list was extended to 694 potential
candidate genes.

Strategies combining guide-gene queries and condition-
dependent approaches may empower the predictive power of co-
expression networks. For instance, Li et al. (2009) implemented a
pipeline based on QUBIC, a QUalitative BIClustering algorithm,
to select the conditions under which seed genes of the plant
cell-wall biosynthesis pathway in Arabidopsis were found to
be co-expressed among a total set of 351 conditions. These
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conditions were then used to generate networks of co-expressed
gene modules.

GENE PRIORITIZATION

Once a co-expression network is obtained, biological relevant
information can be mined by gene prioritization. This process
consists of integrating diverse data sources to allow the ranking
of the nodes in the network and to identify groups of functionally
related genes, down to important putative regulatory genes.
A panel of databases and tools are available to facilitate the
integration of gene information in the network (Table 1).

In nature, a variety of biological networks have displayed
evidence of scale-free behavior (Barabási andOltvai, 2004; Albert,
2005; Atias et al., 2009). Such networks are characterized by
a distribution of nodes following a power law distribution.
Graphically, this type of network displays a relatively large
number of low-connected nodes and a few nodes with a high
connectivity, the so called “hubs.” Even though, the assumption
of a power law distribution is stated in numerous studies,
statistical analyses have also refuted this approach (Khanin and
Wit, 2006; Lima-Mendez and Van Helden, 2009).

The network topology encodes preliminary evidences for
the understanding of the underpinning biological organization
and reveals biological relevant information on the functional
importance of individual nodes (Atias et al., 2009). Parameters
derived from network local properties such as clustering
coefficient, node degree (number of connected nodes),
betweenness and centrality are commonly used for node ranking
(Pavlopoulos et al., 2011). Nodes with a higher rank, i.e., with a
high degree of connection and a high clustering coefficient, are
identified as major hubs and are also likely associated to essential
genes in the network (Provero, 2002; Carlson et al., 2006). The
phenomenon, describing the link between connectivity and
essentiality is termed the “lethality-centrality rule” (Jeong et al.,
2001). Several studies have associated the non-trivial topological
features of scale free networks to an essential buffering system
for biological networks robustness and environmental responses
(Levy and Siegal, 2008; Fu et al., 2009; Lachowiec et al., 2015).

Groups of highly connected genes in a network tend to
form modules. Extracting modules from the network is thus
a commonly used approach to generate manageable graph
subunits for further study (Aoki et al., 2007; Mao et al., 2009).
For this purpose, several clustering algorithms are available.
These algorithms can be categorized into hierarchical and
non-hierarchical algorithms. Hierarchical clustering algorithms
identify clusters by iteratively assigning nodes to clusters. In a
first step, weights are assigned to the network vertices, using
for instance the calculated correlation coefficient. Clusters are
then built from high weight vertices and progressively expanded
by including neighboring vertices. The number of final clusters
varies, for instance depending on a chosen threshold. A variety of
hierarchical clustering methods are available includingWeighted
Gene Correlation Network Analysis (WGCNA) (Langfelder and
Horvath, 2008),Markov Cluster Algorithm (MCL) (Enright et al.,
2002; Mao et al., 2009), Normalization Engine for Matching

Organizations (NeMo) (Rivera et al., 2010) and Improved
Principal Component Analysis (IPCA) (Li M. et al., 2008;
Fukushima et al., 2012). Mutwil et al. (2010) suggested a novel
Heuristic Cluster Chiseling Algorithm (HCCA). For each node
in the network, this algorithm generates node vicinity networks
by collecting all nodes within n steps away from the seed node.
Non-hierarchical approaches, such as K-mean clustering (Stuart
et al., 2003), identify a certain number of modules given the input
cluster criteria instead.

The performance of the different clustering algorithms can be
assessed by evaluating the functional coherence of the predicted
modules and inform, in return, the user on the best clustering
algorithm to use (Lysenko et al., 2011). MORPH, an algorithm
developed by Tzfadia et al. (2012), combines a guide-gene
approach with data set selection and clustering to enable finding
the best combination of gene expression data and network
clustering to optimally associate candidate genes with a given
target pathway.

Modules are often used as the starting point for more
detailed studies as they considerably reduce the global network
complexity. A panel of tools can be employed to further mine
these modules (Table 1). These tools enable the functional
annotation of nodes and modules and to unravel the nature of
the gene-gene relationships.

Enrichment analysis for the genes within a module is the
most widely used technique to associate modules with particular
functions. Under the “guilt-by-association” rule, these functional
modules provide a powerful framework for the identification of
new genes relevant to biological processes and their functional
annotation in the absence of strong a priori knowledge.
These enrichment analyses mostly rely on annotation databases
(Table 1). The most popular ones are the gene ontology (GO)
database (Ashburner et al., 2000) andmanually curated databases
for metabolite pathways such as the Kyoto Encyclopedia for
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000),
Mapman (Thimm et al., 2004), or BioCyc (Caspi et al., 2014).

Phenotypic data can also be used with the a priori expectation
that clustered genes collaborate to control the same phenotypic
trait. For example, Mutwil et al. (2010) successfully associated
an individual cluster with a specific biological function using
phenotypic data and tissue-dependent expression profiles for
each gene in the cluster. Similarly, Ficklin et al. (2010) used
phenotypic information of rice mutant lines to identify clusters
of genes enriched for mutant phenotypic terms such as “sterile”
or “dwarf.” In another study, Lee et al. (2010) showed that
genes whose disruption is associated with embryonic lethality
and pigmentation were significantly more interlinked in the
AraNet network than expected by chance, corroborating the
aforementioned centrality-essentiality theory.

Other available data can help to unravel the nature of the
links connecting genes in the network. Co-expression networks
are undirected networks as the edges between two genes do not
indicate the direction of the interaction. Additionally, the co-
expression link between two connected genes might also indicate
an indirect interaction. To further unravel the gene regulatory
dynamics in such modules, known gene-gene interactions can
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be displayed on the network and help to identify gene regulatory
relationships (Ulitsky and Shamir, 2009).

One of the common approaches to identify regulatory
relationships is to focus on known transcription factors and their
known targets in the network. As transcription factors regulate
the expression of many genes in the genome, one might also
expect to find them as highly connected nodes in the network
or connected to hub genes. The range of interactions of a
transcription factor is defined by its binding capacity to specific
cis-regulatory elements (motifs) identified in the promoter region
of its target genes. Consequently, the search for suchmotifs in the
nodes located in the vicinity of identified transcription factors can
be a complementary source to functionally annotate genes and
infer potential gene regulatory relationships (Vandepoele et al.,
2009).

In their approach, Ma et al. (2013) used a bottom-up approach
by first creating sub networks of genes based onmotif enrichment
for specific cis-regulatory elements and then identifying co-
expression modules in those sub-networks.

Gene interaction information can also be retrieved from
other data sources. The development and application of genome-
wide methods for detecting protein-protein interactions, such as
yeast two-hybrid (Brückner et al., 2009) or affinity purification
methods coupled to mass spectrometry (Morris et al., 2014)
have increased available interactome data. The InterProScan
(Quevillon et al., 2005) or STRING (Szklarczyk et al., 2014)
databases can be investigated to retrieve known physical
interactions, both structurally resolved and experimentally
validated. Knowledge on genetic interactions enables further
inferring of functional relationships between genes and pathways.
Besides data storage in databases, information on gene function
and interactions can also be found embedded in textual data
(Hakala et al., 2015). Text mining methods applied to literature
resources, such as PubMed articles, help to extract additional
information using manual curation efforts (Szakonyi et al., 2015)
or semi-automated tools such as PubTator (Wei et al., 2012).

Previously mentioned data mining approaches essentially
rely on available knowledge. Ample knowledge is available for
Arabidopsis, but for other less well-studied plant species, the
lack of knowledge regarding gene annotation and interactions
severely limits network analysis using gene prioritization.
Comparing networks from different species can provide an
additional source of knowledge for gene functional annotation
and gene connectivity using gene orthologs information and
network alignment (see Section Comparative Co-Expression
Network Analysis). As an example, Lee et al. (2015a) used
conserved functional gene associations from networks inferred
for Arabidopsis, worm, human and yeast as an additional source
of data for the RiceNet, which was initially limited to rice-specific
data sets.

The availability of these complementary data has opened the
way to integrated approaches for function prediction studies.
Multiple independent lines of evidence provide confidence for
network functional gene associations. Kourmpetis et al. (2011)
employed the Bayesian Markov Random Fields (BMRF) model
to integrate protein sequence information, gene expression and
protein-protein interaction data in their function prediction

approach in Arabidopsis. They demonstrated that the model
for network integration had the best performance when all of
these data sources were used. One of the best examples of
data integration is provided by GeneMANIA. This prediction
server relies on a GaussianMarkov Random Fields-basedmethod
for protein function prediction combining multiple networks
(Warde-Farley et al., 2010).

Together with computational methods, these tools, mobilizing
and integrating prior knowledge and network features, have
contributed to the establishment of diverse strategies to prioritize
candidate genes for further experimentation (Table 2).

CO-EXPRESSION NETWORK
APPLICATIONS

eQTL Based Co-Expression Networks
Advances in “genetical genomics” have greatly benefited the
elucidation of the genetic loci controlling transcription and
the inference of regulatory mechanisms underlying complex
phenotypic traits. The concept of “genetical genomics” was
first introduced by Jansen and Nap in 2001 (Jansen and Nap,
2001), marking a new turn in genetic studies. The basic idea
of this approach is to join classical genetic linkage analysis
(Quantitative trait Loci (QTL) analysis) with gene expression
studies (Keurentjes et al., 2007). The variation in gene expression
is regarded as a quantitative trait for which the genetic basis
(expression QTL, eQTLs) is investigated inmapping populations,
such as recombinant inbred line (RIL) populations. In plants,
“genetical genomics” has proven to be a successful strategy to
dissect complex traits in a number of studies (for reviews see
Joosen et al., 2009; Kliebenstein, 2009; Ligterink et al., 2012).

Detected eQTLs for a specific gene can be classified into “local”
or “distant” eQTLs depending on whether they co-localize with
the physical position of the studied gene or are located elsewhere
in the genome, respectively (Rockman and Kruglyak, 2006).
eQTLs can also be classified as cis- or trans-acting based on the
location of the associated causal polymorphism in the gene under
study or elsewhere in the genome, respectively. Consequently,
distant eQTLs are always trans-acting, while local eQTLs can
be cis-acting, if the associated causal polymorphism resides in
the gene under study, or trans-eQTLs when they are caused by
a closely linked allelic variation in a trans-acting factor. Allele
specific expression analysis can specifically determine whether
a local eQTL is trans or cis-acting (for review see Kliebenstein,
2009).

A common feature of global eQTL studies is the identification
of trans-eQTL hotspots (Keurentjes et al., 2007; West et al.,
2007). These eQTL hotspots correspond to a high number of co-
locating trans-eQTLs in one region of the genome, indicating
a hotspot for transcriptional regulation (Kliebenstein, 2009).
Due to their analogy to high degree nodes in a network, cis-
eQTLs located in these hotspots are sought as candidate master
regulators affecting the expression of genes with a trans-eQTL in
that same region (West et al., 2007). A regulatory relationship can
be inferred by correlating gene expression profiles between the
cis-eQTL candidate regulators and their potential downstream
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TABLE 2 | Examples of strategies used for co-expression network analysis in regard to the respective biological question addressed.

Review Sections Biological question Species Strategy References

Data availability for

co-expression network

analysis

Identify functional modules associated to

germination and dormancy

Arabidopsis Use of a condition dependant approach Bassel et al., 2011

Build a comprehensive and functional

co-expression network

Arabidopsis,

rice

Integration of multiple sources of data in the

network construction to support functional

gene linkage

Lee et al., 2010,

2011

Gene functional annotation Rice Comparison of condition dependant and

condition independent network based

approach.

Childs et al., 2011

Maximize the capture of gene

co-expression relationship

Arabidopsis Pre-clustering of input expression samples to

approximate condition dependant approach

Feltus et al., 2013

Gene prioritization Explore the modular biological

organization

Arabidopsis Arabidopsis gene co-expression network

based on 1000 microarrays. Modules were

extracted using the Markov Clustering

Algorithm (MCL)

Mao et al., 2009

Infer gene regulatory relationships in gene

co-expression modules

Arabidopsis Identify gene expression modules driven by

known cis-regulatory motifs

Ma et al., 2013

Gene functional annotation Arabidopsis Module enrichment for known cis-regulatory

elements

Vandepoele et al.,

2009

Identify co-expression modules Arabidopsis Development of an Heuristic clustering

algorithm

Mutwil et al., 2010

eQTL based

co-expression

networks

Identify causal genes responsible for

glucosinolate variation

Arabidopsis Use co-expression network as non-genetic

(independent) filter to prioritize GWA mapping

candidates

Chan et al., 2011

Identify candidates for shade avoidance Arabidopsis Prioritize genes underlying phenotypic QTL

using co-expression network analysis, eQTL

information and functional classification

Jimenez-Gomez

et al., 2010

Examine natural variation in circadian

clock function

Arabidopsis eQTL mapping using a priori defined phase

groups and comparison with metabolomics

QTLs

Kerwin et al., 2011

Examine transcriptional network response

to biotic interactions

Arabidopsis Perform a network eQTL analysis from a priori

defined gene expression networks

Kliebenstein et al.,

2006

Identify novel abiotic stress genes Arabidopsis Network guided genetic screen: gene ranking

combined to co-expression network analysis

Ransbotyn et al.,

2014

Temporal resolution for

co-expression network

Resolve the chronological regulatory

mechanisms involved in the response to

pathogen infection

Arabidopsis Temporal clustering by combining extensive

time series data and co-expression network

analysis

Windram et al., 2012

Identify key genes regulating the

acquisition of longevity during seed

maturation

Medicago

Arabidopsis

Developmental time course data and cross

species comparison for co-expression network

analysis

Righetti et al., 2015

Spatial resolution for

dynamic co-expression

network

Identify cell-specific molecular

mechanisms

Maize Combine Laser-capture microscopy with

RNA-seq

Zhan et al., 2015

Comparative

co-expression network

analysis

Knowledge transfer between species Maize rice Global co-expression network alignment using

both gene homology and network topology

Ficklin and Feltus,

2011

Identify conserved modules across

species

Several species Co-expressed node vicinity networks (NVNS)

compared across species.

Mutwil et al., 2011

trans regulated genes. An iterative group analysis can be used to
detect significant associations (Breitling et al., 2004; Keurentjes
et al., 2007;Wang et al., 2014). Keurentjes et al. (2007) established
a regulatory network for genes involved in the transition of
flowering based on eQTL data. The GIGANTEA (GI) protein,

known to be involved in the circadian clock controlled flowering
time pathway, was identified as a regulator. Phenotypic QTLs
associated with flowering and the circadian clock were also
identified at the genetic locus of GI. Similarly, Wang et al.
(2014) identified eight regulatory groups and their target genes
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for heading time in rice RILs. One regulatory group centered
on Ghd7, an important regulator in heading time and yield
potential in rice, was identified with a cis-eQTL connected to
nine genes with trans-eQTLs. The network was validated by
inspecting the transcript abundance of downstream-regulated
targets and supported by co-localizing phenotypic QTLs for
yield and heading time. These studies illustrate the usefulness
of eQTL based co-expression analysis to guide the identification
of candidate genes controlling quantitative traits. Other studies
combined eQTL with co-expression analysis to identify regulator
candidates underlying eQTLs (Terpstra et al., 2010; Flassig et al.,
2013).

Interestingly, eQTL studies have also reported noteworthy
properties of eQTLs in regard to their regulatory and
evolutionary significance. cis-eQTLs were found to be highly
inheritable with a larger genetic effect when compared to trans-
eQTLs (Petretto et al., 2006; West et al., 2007; Kloosterman et al.,
2012). cis-eQTLs were also found to be more consistent across
different genetic backgrounds (Cubillos et al., 2012) and more
robust to environmental perturbations (Cubillos et al., 2014),
while genes with trans-eQTLs were more frequently reported as
tissue or organ specific (Drost et al., 2010; Kloosterman et al.,
2012).

QTLs tend to cover large regions of the genome, typically
spanning hundreds of genes, and finding the actual gene that
causes the observed trait variation is a formidable task. The
capacity of gene co-expression networks to handle genome-wide
data and filter out genes based on their correlation coefficients
offers an attractive approach to prioritize genes. This strategy was
successfully applied in the identification of EARLY FLOWERING
3 (ELF3), and its implication in shade avoidance response
(Jimenez-Gomez et al., 2010). In this study, a network was
built for each of the 363 candidate genes underlying the main
phenotypic QTL for shade avoidance, connecting each candidate
gene to co-expressed genes across 1.388 (selected) experiments.
The eQTLs available for the investigated RIL population allowed
pruning of the networks to keep only the co-expressed genes
with a cis-eQTL, which is indicative of a regulatory relationship
(Hansen et al., 2008). In a similar approach, Chan et al.
(2011) used co-expression analysis to prioritize candidate genes
resulting from a genome wide association study (GWAS).
Alternatively, co-expression networks can be used prior to
eQTL analysis (Kliebenstein et al., 2006; Kerwin et al., 2011).
Kliebenstein et al. (2006) implemented an a priori network
eQTL approach by calculating the mean expression value of the
genes within each pre-determined network and using this as a
quantitative trait in a subsequent QTL analysis.

One main advantage of eQTL analysis is that regulatory
insights can be gained without prior knowledge. Information
on the nature of the inferred interaction in such an approach,
combined with co-expression network analysis, can substantially
accelerate understanding of molecular regulatory interactions
(Figure 2). However, the link between phenotype and transcript
variation is not always straightforward as changes are also
likely to occur at the protein or metabolite levels. The
additional integration of other omics data available as QTLs
for protein (pQTL) or metabolite (mQTL) variation (Wentzell

et al., 2007; Kerwin et al., 2011) can bridge the gap between
genotype and phenotype, providing an in-depth understanding
of causal mechanisms. As an example, Kerwin et al. (2011)
identified overlapping eQTLs and mQTLs for circadian time
and glucosinolate variation in Arabidopsis. Specifically, AOP2,
a 2-oxoglutarate-dependent dioxygenase, was identified as a
potential regulator. Altered AOP2 function resulted in changes in
expression of clock output genes, suggesting a causal relationship
between changes in clock function and metabolite content.

High-Resolution Co-Expression Networks
Co-expression networks offer a conceptual framework to study
gene interactions. However, their static representation does not
capture all possible gene relationships as these do not operate
simultaneously due to spatial and temporal variation in gene
expression.

Temporal Resolution for Dynamic Co-Expression

Networks
In response to developmental or environmental stimuli, plants
undergo global transcriptional reprogramming. Monitoring
transcriptional changes over time can provide more insight
into the cascade of biological processes involved in the signal
perception, transduction and final response.

Using time series data sets throughout seed development,
Le et al. (2010) identified seed specific transcription factors
active in different compartments and tissues of the seed at
unique moments of seed development, suggesting a chronology
of specific regulatory programs triggering seed development.

Time series experiments are often used to examine the
dynamics of gene expression. Wei et al. (2013) used six time
points during growth of poplar roots in low nitrogen conditions.
GO categories associated with signal transduction were identified
for differentially expressed gene sets in the early time points
of the response (6 and 24 h), while categories associated with
organ morphogenesis were prevalent throughout the later time
points (48 and 96 h). By reducing the time scale to minutes,
Krouk et al. (2010) observed that within 3 min following
nitrate addition in Arabidopsis, functional categories such as
ribosomal proteins were over-represented, suggesting the rapid
activation of key elements of the translation machinery to
synthesize proteins required for nitrogen acquisition. Combining
time series and co-expression network analysis can unveil gene
interactions associated with the dynamics of transcriptional
programs. Global expression patterns can be obtained from
the expression similarity calculated across samples collected at
different time points. This approach is well suited to findmodules
of simultaneous expressed genes and gene interactions but is not
well suited for time lagged regulations since all genes influencing
the expression of downstream target genes are not necessarily
captured within a same time point (experiment). This results
in complex relationships between co-regulated genes, including
co-expression, time shifted and inverted relationships (Zhang et
al., 2005): an activated transcription factor gene first has to be
transcribed and the resulting mRNA translated before it in turn
can activate its downstream targets. The delay further depends
on the dynamics of the regulation, and for instance the presence
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FIGURE 2 | Schematic representation of gene prioritization strategies. Gene sets of different expression values (shades of green) are used for co-expression

network inference. Genes with co-expression values above a user defined threshold (dark green nodes) form nodes and edges in the network. Various additional data

can then be used to enrich and extract biological relevant information from the network. Enrichment analysis tools such as gene ontology terms (pink contour nodes)

can be used to functionally annotate unknown genes (question marked node) clustered in the vicinity. Prior knowledge can also help to highlight known gene-gene

interactions (dotted line) and cis-regulatory motif (purple flags) can suggest local regulatory interactions (arrows) between transcription factors (TF node) and their

target genes (flagged nodes). Gene regulatory relationships can also be extracted from time series data. Algorithms can extract causal regulatory relationships from

shifted gene expression patterns in time series data. Co-localization of trans- and cis-eQTLs (hotspots) can also infer regulatory relationships between genes with a

cis-eQTL (orange contour node) and genes with trans-eQTLs (blue contour node). Additional information can be gained from comparisons with networks of other

species (yellow nodes) by orthology and network alignment (dotted lines).

of network motifs like feed forward or negative feedback loops
(Alon, 2007).

Windram et al. (2012) dissected the infection response of
Arabidopsis to Botrytis cinerea using 48 time points with 2-
h intervals. To capture the chronological establishment of the
associated transcriptional events and to predict their regulation,
the differentially expressed genes were first clustered based on
the similarity of gene expression patterns over time or based on
the timing of differential expression of each gene. Regulatory
predictions were made using a discrete-time causal structure
identification algorithm. The expression means of the clusters
and Botrytis cinerea growth information were used to build a
regulatory network. In this network, a NAC transcription factor
identified in one cluster connected to two downstream clusters
enriched for the NAC binding motif in their promoter sequence,
suggesting a regulatory relationship.

This example shows that causality information of time series
on a fine temporal scale can provide valuable information on
the directionality of gene interactions. Several algorithms have
been proposed to perform time delayed correlation analysis in
time series data (De Smet and Marchal, 2010). For instance,
Lavenus et al. (2015) proposed a time delay correlation algorithm

(TDCor) that includes minimal prior knowledge on the nature
of the genes, with transcription factors categorized as repressor,
activator, regulator or non-regulator, to build a network of
plausible interactions from time series data. Krouk et al. (2010)
used a noise reduction state-space modeling algorithm to build a
dynamic linear model defining the rate of change in expression
between time points t and t + 1. This model was then used
to predict the influence of transcription factors on the genes
they regulated (influential rate). The authors reasoned that the
observed low influential rate of the transcription factors could
be due to the functional redundancy that is often observed in
biological networks and is consistent with a proposed global
buffering system counteracting stresses and evolutionary forces
(Fu et al., 2009). Polanski et al. (2014) suggested a module
identification procedure based on the Wigwams algorithm
capable of mining multiple time series for condition dependent
co-expression across a subset of time series. Using such an
approach, the reconstruction of co-expression networks can be
directed to time specific modules of co-regulated genes.

Together, these studies suggest that new regulatory insights
can be gained from integration of co-expression networks with
data from time series, for the identification of “subtle” gene
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clusters, showing condition dependent regulation. Time series
are valuable for further disentangling of real co-regulatory gene
relationships from co-expression links. For application in more
studies, new challenges have to be addressed such as the judicious
selection of time points (Vashishtha et al., 2015), the development
of performant inference algorithms, the reliable detection of
direct and indirect gene interactions and most importantly the
connection with their real biological meaning (reviewed by Bar-
Joseph et al., 2012). We believe that this approach will offer new
venues for deeper insights into the fine-tuned regulation and
predictive analysis of gene expression behavior in future studies.

Spatial Resolution for Dynamic Co-Expression

Networks
Plants are multicellular organisms whose vegetative and
reproductive organs are composed of complex tissues and cell
types. Cell differentiation is a fundamental process required
to acquire cell identity and consequently ensure the correct
execution of essential structural and biological functions.
Genome-wide transcriptome and gene network analyses have
mostly been conducted on whole plant organs, severely limiting
the identification of more specific regulatory interactions
occurring at the tissue or single cell level. The development
of new highly selective methods has enabled the collection
of expression profiles at unprecedented resolution (Nelson
et al., 2008; Tang et al., 2011; Belmonte et al., 2013) offering
new insights into the various biological levels of transcription
regulation. As an example, laser capture microdissection (LCM)
enables isolation of specific tissues at cell level while fluorescent
activated cell sorting (FACS) allows separation of specific cell
types expressing green fluorescent protein (GFP) under control
of cell specific promoters.

These techniques were used to get insight into single cell
transcriptomic data for well-studied and specialized organs such
as roots or pollen (Aya et al., 2011; Becker et al., 2014; Slane et al.,
2014; Efroni et al., 2015).

A fluorescent cell sorting technique was used to obtain
a high-resolution map of spatiotemporal expression profiles
of Arabidopsis roots (Brady et al., 2007). In this study,
transcriptome analysis of root transverse sections revealed
51 dominant root radial expression patterns among which
17 showed enrichment in a single cell type, whereas 34
expression patterns were found across 2–5 cell types (Brady
et al., 2007). In the same study, the longitudinal root section
expression profiling to analyse different developmental stages in
root cell-type formation, enabled the identification of specific
expression patterns. Transcriptional changes may also occur
in response to environmental shifts. Interestingly, a close link
was observed between development and stress responses at
the cell-type specific level in the Arabidopsis root showing
developmental plasticity (Gifford et al., 2008) while adding a
layer of complexity, i.e., environment specific effects, to an
already intricate system. Together, these results highlight the
spatiotemporal transcriptional complexity down to the cellular
level and suggest cell-specific transcriptional programs.

Integrating tissue- or cell-type specific high-resolution
datasets by co-expression network analysis is a promising

approach for the regulatory dissection of specific biological
functions. Illustratively, Zhan et al. (2015) combined LCM and
RNA-seq to isolate and profile filial and maternal cell types of
maize kernels at 8 days after pollination. From the resulting gene
co-expression network, 18 endosperm-associated co-expression
modules were identified among which 10 were found to be
highly compartment- or cell-type-specific. The comparison of
these spatial co-expression modules with temporally upregulated
gene data sets showed that genes within co-expression modules
are regulated both in time and space. Collectively, these results
support the effectiveness of co-expression networks analysis
to uncover the temporal and spatial organization of specific
differentiation processes.

On-going developments to further improve single-cell RNA-
seq analysis (Buettner et al., 2015) should strongly benefit the
establishment and interpretation of specialized co-expression
networks in the coming years. Furthermore, the advancement
of computational tools able to manage the increasing amount of
data as well as the development of robust and efficient algorithms
to analyse large-scale data will be needed to tackle the increasing
complexity added to gene regulatory networks.

Comparative Co-Expression Network
Analysis
“Nothing in biology makes sense except in the light of evolution”
(Dobzhansky, 1973).

Classic research in evolutionary developmental biology (“evo-
devo”) has focused on comparative analysis with the help
of mutant analysis, heterologous mutant complementation,
comparative gene expression studies and phylogenetic analysis.
These analyses mostly rely on gene and protein sequence
information; however the increasing number of gene expression
data in many different species is opening up new perspectives.
Cross-species comparison of co-expression networks is a
promising approach to understand the interplay between
regulatory function and evolution (Movahedi et al., 2012; Hansen
et al., 2014).

There are several advantages of cross-species network
comparisons. Networks of well-studied plants such as
Arabidopsis can enrich sparse networks, such as for crops,
reducing the need of extensive functional genomic and
phenomic resources. Cross-species comparison can accelerate
the functional annotation of genes and the discovery of gene-
gene interactions, consequently hastening the gene prioritization
process for targeted mutational studies.

There is evidence that networks are shaped by major
evolutionary features, such as by neo- or sub-functionalization
following whole genome duplications (Conant and Wolfe, 2006;
De Smet and Van De Peer, 2012). These adaptive processes may
result in an evolutionary functional gene network partitioning
associated with a rewiring in the gene regulatory circuitry
(Conant andWolfe, 2006). In this context, co-expression network
comparison can be used to identify functionally conserved
network patterns and to study their evolution.

Different methods have been proposed to compare
co-expression networks. Leal et al. (2014) compared gene
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co-expression networks obtained for several plant species in
reponse to different pathogens using a multivariate analysis. Each
network was characterized by eight graph variables which were
then summarized in a principal component analysis. Clustered
networks identified in the principal component analysis plot
suggested similar pathogen specific responses across species.

An obvious method to align networks and to get better insight
into the degree of network conservation is to link orthologous
genes between different species. The effectiveness of such
comparative analysis essentially relies on the consistency of the
orthologous information as well as the quality of the underlying
co-expression networks. Orthologous gene information can be
obtained through various methods (Kuzniar et al., 2008). Simple
approaches use best Blast hits or reciprocal hit blast (RHB) for
closely related species (Yang et al., 2011). More advanced tools
such as the OrthoMCL clustering algorithm (Li et al., 2003) or
OrthoFinder (Emms and Kelly, 2015) enable differentiation of
true orthologous from paralogous genes. Zarrineh et al. (2011)
proposed a cross-species co-clustering approach (COMODO).
Network comparisons can be done at the global scale or focused
on specific genemodules. In a global approach, Ficklin and Feltus
(2011) used an alignment algorithm, IsoRank, that incorporates
both gene homology and network topology to compare networks
in rice and maize. They identified aligned modules enriched for
similar functional terms, suggesting their potential evolutionary
conservation.

In another study, Obertello et al. (2015) used orthologous
information from OrthoMCL and BlastP, to align genes between
Arabidopsis and rice co-expression networks. The authors
observed that integrating rice data in an Arabidopsis network
did not improve the available interaction knowledge, while
Arabidopsis could substantially enrich rice network interactions.
This study illustrates the usability of network comparisons to
promote translational discoveries. It shows that well-known
networks, such as those from model plants like Arabidopsis, can
enrich more sparse networks of crops, such as rice, although Lee
et al. (2011) demonstrated a higher accuracy for a rice network,
RiceNet, derived from data of diverse species (with 15.5% of true
positive linkages) than for a rice network derived solely from
orthology with AraNet, the Arabidopsis network (with 6.5% true
positive linkages).

In a more targeted approach, Yang et al. (2011) investigated
conserved co-expression of cell-wall associated genes between
Arabidopsis and poplar. An initial list of known cell-wall related
genes was used to build a co-expression network with 22 clusters.
The orthologous clusters of co-expressed genes identified in
poplar did not all correlate in gene expression pattern with
the clusters in Arabidopsis (gene expression pattern correlated
for 9 of 22 clusters). Additionally, conserved co-expression
clusters referred to plant essential biological functions, such
as cell-wall formation. More comprehensively, Movahedi et al.
(2011) implemented an expression context conservation score
(ECC) to quantitatively estimate the degree of conservation
of expression similarity between orthologous genes and their
co-expression partners. The overall ECC scores revealed that
for 4.630 orthologs in rice-Arabidopsis gene pairs, 77% had
a conserved expression context. In another study, Netotea

et al. (2014) performed an extensive examination of network
properties, like node degree distribution and gene centrality, to
compare co-expression networks of Arabidopsis, poplar and rice.
They analyzed the degree of conservation of gene co-expression
links and neighborhood (connected genes) among all orthologs
in the three networks and showed that genes with high centrality,
typically hubs, were significantly conserved while local regulatory
motifs were relatively less well conserved across species.

Additionally, they noted that sequence similarity did not
always predict gene regulation conservation. Beyond simple gene
sequence comparison, the integration of co-expression networks
to cross-species data provides a new dimension in evolutionary
studies, revealing conservation and divergence in the regulation
of genes.

At the moment, several integrative platforms are available to
enquire, display and compare co-expression networks. Examples
of these are PLANEX (Yim et al., 2012), ComPLex (Netotea
et al., 2014), CoExpNetViz (Tzfadia et al., 2015), PLAZA (Proost
et al., 2015) and the “NetworkComparer” pipeline on the
PlaNet platform (Mutwil et al., 2011) that integrates genomics,
transcriptomics, phenomics and ontology analyses to compare
seven plant species.

CONCLUSION AND PERSPECTIVES

Co-expression networks are a powerful approach to accelerate
the elucidation of molecular mechanisms underlying important
biological processes. Importantly, network based strategies are
largely determined by the biological question addressed and the
prior knowledge available.

We anticipate that the increase in available experimental
data, driven by new molecular techniques, will enrich existing
databases. In addition, the shift from microarrays to next
generation high-throughput sequencing technologies will
provide further insights into genome scale functional networks
of many species. Together with the increased sensitivity of
high-resolution technologies enabling the acquisition of cell-
specific transcriptome profiles, novel biological insights can be
gained. The extensive accumulation of data will require further
efforts for their storage, accessibility and processing. One of
the common strategies for all co-expression network studies
is the integration of disparate data sources for the biological
interpretation of networks. As a result, the development of
integrative web interfaces such as CressInt (Chen et al., 2015) are
needed to facilitate the integration of available genomics data.
Furthermore, the development of computational tools, such as
machine learning based algorithms, although computationally
intense, will support the optimal integration and exploitation
of prioritization strategies (Radivojac et al., 2013). In such a
scenario, the collaboration of bioinformaticians and biologists is
highly desirable and will become increasingly important.

To fully describe the link between genotype and phenotype
and to understand the underlying gene regulation, coordination
of networks at different molecular levels (gene, protein,
metabolite) is needed (Gaudinier et al., 2015). Additionally,
genetically anchored gene expression profiles (eQTLs) have
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proven to be powerful tools to reveal causal regulatory variants.
The genetical genomics approach provides a multifactorial
design to study the simultaneous effect of gene perturbations.
Kliebenstein (2012) demonstrated that shallow sequencing depth
in transcriptomics experiments enables capturing most of their
genomic information. The result of their study suggested
that 10% of the transcripts would detain more than 80%
of the information present in a variety of transcriptomics
experiments. In another study, Li Y. et al. (2008) introduced
the generalized genetical genomics design to optimally study
genetic by environment interactions. These findings suggest
that there is room for improvement in the design of
transcript sequencing for large-scale factorial analysis in
which the size of the population studied or the number of
conditions to be tested can be increased in a cost-effective
manner.

Co-expression networks are an attractive framework
for gene interaction analysis and offer a diverse range
of applications, from the gene functional annotation to
the comparison of co-expression networks across species.
Improved and enriched co-expression network analyses will
further empower the predictive power of networks and their
translational application by circumventing the need of additional
extensive functional genomic and phenomic resources. This

approach will further contribute to the elucidation of important
biological processes and provide a valuable predictive tool
for contemporary molecular breeding and crop engineering
strategies.

AUTHOR CONTRIBUTIONS

ES wrote the manuscript. HN, HH, and WL participated in the
design and critical reviewing of the manuscript.

FUNDING

This publication was supported by the Dutch Technology
Foundation STW, which is part of the Netherlands Organization
for Scientific Research (NWO), and which is partly funded by the
Ministry of Economic Affairs.

ACKNOWLEDGMENTS

This publication was supported by the Dutch Technology
Foundation STW, which is part of the Netherlands Organization
for Scientific Research (NWO), and which is partly funded by the
Ministry of Economic Affairs.

REFERENCES

Albert, R. (2005). Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957.

doi: 10.1242/jcs.02714

Alon, U. (2007). Network motifs: theory and experimental approaches. Nat. Rev.

Genet. 8, 450–461. doi: 10.1038/nrg2102

Aoki, K., Ogata, Y., and Shibata, D. (2007). Approaches for extracting practical

information from gene co-expression networks in plant biology. Plant Cell

Physiol. 48, 381–390. doi: 10.1093/pcp/pcm013

Ashburner, M., Ball, C. A., Blake, J. A., Bolstein, D., Butler, H., Cherry, J. M., et al.

(2000). Gene ontology: tool for unification of biology. Nat. Genet. 25, 25–29.

doi: 10.1038/75556

Atias, O., Chor, B., and Chamovitz, D. A. (2009). Large-scale analysis of

Arabidopsis transcription reveals a basal co-regulation network. BMC Syst. Biol.

3:86. doi: 10.1186/1752-0509-3-86

Aya, K., Suzuki, G., Suwabe, K., Hobo, T., Takahashi, H., Shiono, K., et al. (2011).

Comprehensive network analysis of anther-expressed genes in rice by the

combination of 33 laser microdissection and 143 spatiotemporal microarrays.

PLoS ONE 6:e26162. doi: 10.1371/journal.pone.0026162

Ballouz, S., Verleyen,W., andGillis, J. (2015). Guidance for RNA-seq co-expression

network construction and analysis: safety in numbers. Bioinformatics 31,

2123–2130. doi: 10.1093/bioinformatics/btv118

Barabási, A. L., and Oltvai, Z. N. (2004). Network biology: understanding the cell’s

functional organization. Nat. Rev. Genet. 5, 101–113. doi: 10.1038/nrg1272

Bar-Joseph, Z., Gitter, A., and Simon, I. (2012). Studying and modelling dynamic

biological processes using time-series gene expression data.Nat. Rev. Genet. 13,

552–564. doi: 10.1038/nrg3244

Bassel, G. W., Lan, H., Glaab, E., Gibbs, D. J., Gerjets, T., Krasnogor, N., et al.

(2011). Genome-wide network model capturing seed germination reveals

coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci.

U.S.A. 108, 9709–9714. doi: 10.1073/pnas.1100958108

Becker, J. D., Takeda, S., Borges, F., Dolan, L., and Feijó, J. A. (2014).

Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical

cell growth signature. BMC Plant Biol. 14:197. doi: 10.1186/s12870-014-0197-3

Belmonte, M. F., Kirkbride, R. C., Stone, S. L., Pelletier, J. M., Bui, A. Q., Yeung,

E. C., et al. (2013). Comprehensive developmental profiles of gene activity in

regions and subregions of the Arabidopsis seed. Proc. Natl. Acad. Sci. U.S.A.

110, E435–E444. doi: 10.1073/pnas.1222061110

Brady, S. M., Orlando, D. A., Lee, J.-Y., Koch, J., Dinneny, J. R., Mace,

D., et al. (2007). A high-resolution root spatiotemporal map reveals

dominant expression patterns. Science 318, 801–806 doi: 10.1126/science.11

46265

Brady, S. M., and Provart, N. J. (2009). Web-queryable large-scale data sets

for hypothesis generation in plant biology. Plant Cell 21, 1034–1051. doi:

10.1105/tpc.109.066050

Brazma, A. (2003). ArrayExpress–a public repository for microarray

gene expression data at the EBI. Nucleic Acids Res. 31, 68–71. doi:

10.1093/nar/gkg091

Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P. (2004). Rank

products: a simple, yet powerful, new method to detect differentially regulated

genes in replicated microarray experiments. FEBS Lett. 573, 83–92. doi:

10.1016/j.febslet.2004.07.055

Brückner, A., Polge, C., Lentze, N., Auerbach, D., and Schlattner, U. (2009). Yeast

two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10, 2763–2788.

doi: 10.3390/ijms10062763

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J.,

et al. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell

RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol.

33, 155–160. doi: 10.1038/nbt.3102

Butte, A. J., and Kohane, I. S. (2000). Mutual information relevance networks:

functional genomic clustering using pairwise entropy measurements. Pac.

Symp. Biocomput. 5, 415–426.

Carlson, M. R., Zhang, B., Fang, Z., Mischel, P. S., Horvath, S., and Nelson, S. F.

(2006). Gene connectivity, function, and sequence conservation: predictions

from modular yeast co-expression networks. BMC Genomics 7:40. doi:

10.1186/1471-2164-7-40

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A.,

et al. (2014). The MetaCyc database of metabolic pathways and enzymes and

the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42,

D459–D471. doi: 10.1093/nar/gkt1103

Chan, E. K., Rowe, H. C., Corwin, J. A., Joseph, B., and Kliebenstein, D. J. (2011).

Combining genome-wide association mapping and transcriptional networks to

Frontiers in Plant Science | www.frontiersin.org 14 April 2016 | Volume 7 | Article 444

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Serin et al. Learning from Co-Expression Networks: Possibilities and Challenges

identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS

Biol. 9:e1001125. doi: 10.1371/journal.pbio.1001125

Chen, X., Ernst, K., Soman, F., Borowczak, M., and Weirauch, M. T. (2015).

CressInt: a user-friendly web resource for genome-scale exploration of

gene regulation in Arabidopsis thaliana. Curr. Plant Biol. 3–4, 48–55. doi:

10.1016/j.cpb.2015.09.001

Childs, K. L., Davidson, R. M., and Buell, C. R. (2011). Gene coexpression network

analysis as a source of functional annotation for rice genes. PLoS ONE 6:e22196.

doi: 10.1371/journal.pone.0022196

Conant, G. C., and Wolfe, K. H. (2006). Functional partitioning of yeast

co-expression networks after genome duplication. PLoS Biol. 4:e109. doi:

10.1371/journal.pbio.0040109

Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and Robles,

M. (2005). Blast2GO: a universal tool for annotation, visualization and

analysis in functional genomics research. Bioinformatics 21, 3674–3676. doi:

10.1093/bioinformatics/bti610

Costa, M. C., Righetti, K., Nijveen, H., Yazdanpanah, F., Ligterink, W., Buitink,

J., et al. (2015). A gene co-expression network predicts functional genes

controlling the re-establishment of desiccation tolerance in germinated

Arabidopsis thaliana seeds. Planta 242, 435–449. doi: 10.1007/s00425-015-

2283-7

Cubillos, F. A., Coustham, V., and Loudet, O. (2012). Lessons from eQTLmapping

studies: non-coding regions and their role behind natural phenotypic variation

in plants. Curr. Opin. Plant Biol. 15, 192–198. doi: 10.1016/j.pbi.2012.01.005

Cubillos, F. A., Stegle, O., Grondin, C., Canut, M., Tisné, S., Gy, I., et al. (2014).

Extensive cis-regulatory variation robust to environmental perturbation in

Arabidopsis. Plant Cell 26, 4298–4310. doi: 10.1105/tpc.114.130310

De Bodt, S., Carvajal, D., Hollunder, J., Van Den Cruyce, J., Movahedi, S., and Inzé,

D. (2010). CORNET: a user-friendly tool for data mining and integration. Plant

Physiol. 152, 1167–1179. doi: 10.1104/pp.109.147215

De Smet, R., and Marchal, K. (2010). Advantages and limitations of

current network inference methods. Nat. Rev. Microbiol. 8, 717–729. doi:

10.1038/nrmicro2419

De Smet, R., and Van De Peer, Y. (2012). Redundancy and rewiring of genetic

networks following genome-wide duplication events. Curr. Opin. Plant Biol.

15, 168–176. doi: 10.1016/j.pbi.2012.01.003

Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of

evolution. Am. Biol. Teach. 35, 125–129. doi: 10.2307/4444260

Drost, D. R., Benedict, C. I., Berg, A., Novaes, E., Novaes, C. R., Yu, Q., et al.

(2010). Diversification in the genetic architecture of gene expression and

transcriptional networks in organ differentiation of Populus. Proc. Natl. Acad.

Sci. U.S.A. 107, 8492–8497. doi: 10.1073/pnas.0914709107

Edgar, R., Domrachev, M., and Lash, A. E. (2001). Gene expression omnibus: NCBI

gene hybridization array data repository. Nucleic Acids Res. 30, 207–210. doi:

10.1093/nar/30.1.207

Efroni, I., Ip, P. L., Nawy, T., Mello, A., and Birnbaum, K. D. (2015). Quantification

of cell identity from single-cell gene expression profiles.Genome Biol. 16, 9. doi:

10.1186/s13059-015-0580-x

Emms, D. M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases

in whole genome comparisons dramatically improves orthogroup inference

accuracy. Genome Biol. 16, 157. doi: 10.1186/s13059-015-0721-2

Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002). An efficient algorithm

for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584.

doi: 10.1093/nar/30.7.1575

Feltus, F. A., Ficklin, S. P., Gibson, S. M., and Smith, M. C. (2013). Maximising

capture of gene co-expression network relationships through pre-clustering of

input expression samples: an Arabidopsis case study. BMC Syst. Biol. 7:44. doi:

10.1186/1752-0509-7-44

Ficklin, S. P., and Feltus, F. A. (2011). Gene coexpression network alignment and

conservation of gene modules between two grass species: maize and rice. Plant

Physiol. 156, 1244–1256. doi: 10.1104/pp.111.173047

Ficklin, S. P., Luo, F., and Feltus, F. A. (2010). The association of multiple

interacting genes with specific phenotypes in rice using gene coexpression

networks. Plant Physiol. 154, 13–24. doi: 10.1104/pp.110.159459

Flassig, R. J., Heise, S., Sundmacher, K., and Klamt, S. (2013). An effective

framework for reconstructing gene regulatory networks from genetical

genomics data. Bioinformatics 29, 246–254. doi: 10.1093/bioinformatics/bts679

Fu, J., Keurentjes, J. J., Bouwmeester, H., America, T., Verstappen, F. W., Ward,

J. L., et al. (2009). System-wide molecular evidence for phenotypic buffering in

Arabidopsis. Nat. Genet. 41, 166–167. doi: 10.1038/ng.308

Fukushima, A., Nishizawa, T., Hayakumo, M., Hikosaka, S., Saito, K., Goto, E.,

et al. (2012). Exploring tomato gene functions based on coexpression modules

using graph clustering and differential coexpression approaches. Plant Physiol.

158, 1487–1502. doi: 10.1104/pp.111.188367

Gansner, E. R., and North, S. C. (2000). An open graph visualization system and

its applications to software engineering. Softw. Pract. Exp. 30, 1203–1233. doi:

10.1002/1097-024X(200009)

Gaudinier, A., Tang, M., and Kliebenstein, D. J. (2015). Transcriptional

networks governing plant metabolism. Curr. Plant Biol. 3–4, 56–64. doi:

10.1016/j.cpb.2015.07.002

Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M., and Birnbaum,

K. D. (2008). Cell-specific nitrogen responses mediate developmental

plasticity. Proc. Natl. Acad. Sci. U.S.A. 105, 803–808. doi: 10.1073/pnas.07095

59105

Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al.

(2012). Phytozome: a comparative platform for green plant genomics. Nucleic

Acids Res. 40, D1178–D1186. doi: 10.1093/nar/gkr944

Hakala, K., Van Landeghem, S., Salakoski, T., Van De Peer, Y., and Ginter, F.

(2015). Application of the EVEX resource to event extraction and network

construction: Shared Task entry and result analysis. BMC Bioinformatics

16(suppl. 16):S3. doi: 10.1186/1471-2105-16-S16-S3

Hamada, K., Hongo, K., Suwabe, K., Shimizu, A., Nagayama, T., Abe, R.,

et al. (2011). OryzaExpress: an integrated database of gene expression

networks and omics annotations in rice. Plant Cell Physiol. 52, 220–229. doi:

10.1093/pcp/pcq195

Hansen, B. G., Halkier, B. A., and Kliebenstein, D. J. (2008). Identifying the

molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci. 13,

72–77. doi: 10.1016/j.tplants.2007.11.008

Hansen, B. O., Vaid, N., Musialak-Lange, M., Janowski, M., and Mutwil,

M. (2014). Elucidating gene function and function evolution through

comparison of co-expression networks of plants. Front. Plant Sci. 5:394. doi:

10.3389/fpls.2014.00394

Higo, K., Ugawa, Y., Iwamoto, M., and Koregana, T. (1999). Plant cis-acting

regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27,

297–300. doi: 10.1093/nar/27.1.297

Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., et al.

(2008). Genevestigator V3: a reference expression database for the meta-

analysis of transcriptomes. Adv. Bioinformatics 2008, 1–5. doi: 10.1155/2008/4

20747

Iancu, O. D., Kawane, S., Bottomly, D., Searles, R., Hitzemann, R., andMcWeeney,

S. (2012). Utilizing RNA-Seq data for de novo coexpression network inference.

Bioinformatics 28, 1592–1597. doi: 10.1093/bioinformatics/bts245

Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., and Miyano, S.

(2004). Combining microarrays and biological knowledge for estimating gene

networks via bayesian networks. J. Bioinform. Comput. Biol. 2, 77–98. doi:

10.1142/S021972000400048X

Itkin, M., Heinig, U., Tzfadia, O., Bhide, A. J., Shinde, B., Carnedas, P. D.,

et al. (2013). Biosynthesis of Antinutritional alkaloids in Solanaceaous

crops is mediated by clustered genes. Science 341, 175–179. doi:

10.1126/science.1240230

Jansen, R. C., and Nap, J.-P. (2001). Genetical genomics: the added value

from segregation. Trends Genet. 11, 388–391. doi: 10.1016/S0168-9525(01)02

310-1

Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001). Lethality and

centrality in protein networks. Nature 441, 41–42. doi: 10.1038/35075138

Jiménez-Gómez, J. M. (2014). Network types and their application in natural

variation studies in plants. Curr. Opin. Plant Biol. 18, 80–86. doi:

10.1016/j.pbi.2014.02.010

Jimenez-Gomez, J. M., Wallace, A. D., and Maloof, J. N. (2010). Network analysis

identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis. PLoS

Genet. 6:e1001100. doi: 10.1371/journal.pgen.1001100

Jin, J., Zhang, H., Kong, L., Gao, G., and Luo, J. (2014). PlantTFDB 3.0: a portal

for the functional and evolutionary study of plant transcription factors. Nucleic

Acids Res. 42, D1182–D1187. doi: 10.1093/nar/gkt1016

Frontiers in Plant Science | www.frontiersin.org 15 April 2016 | Volume 7 | Article 444

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Serin et al. Learning from Co-Expression Networks: Possibilities and Challenges

Joosen, R. V., Ligterink, W., Hilhorst, H. W., and Keurentjes, J. J. (2009).

Advances in genetical genomics of plants. Curr. Genomics 10, 540–549. doi:

10.2174/138920209789503914

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and

genomes. Nucleic Acids Res. 28, 27–30. doi: 10.1093/nar/28.1.27

Kerwin, R. E., Jimenez-Gomez, J. M., Fulop, D., Harmer, S. L., Maloof, J. N., and

Kliebenstein, D. J. (2011). Network quantitative trait loci mapping of circadian

clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis.

Plant Cell 23, 471–485. doi: 10.1105/tpc.110.082065

Keurentjes, J. J., Fu, J., Terpstra, I. R., Garcia, J. M., Van Den Ackerveken, G.,

Snoek, L. B., et al. (2007). Regulatory network construction in Arabidopsis by

using genome-wide gene expression quantitative trait loci. Proc. Natl. Acad. Sci.

U.S.A. 104, 1708–1713. doi: 10.1073/pnas.0610429104

Khanin, R., andWit, E. (2006). How scale-free networks are biological networks. J.

Comput. Biol. 13, 810–818. doi: 10.1089/cmb.2006.13.810

Kliebenstein, D. (2009). Quantitative genomics: analyzing intraspecific variation

using global gene expression polymorphisms or eQTLs. Annu. Rev. Plant Biol.

60, 93–114. doi: 10.1146/annurev.arplant.043008.092114

Kliebenstein, D. J. (2012). Exploring the shallow end; estimating information

content in transcriptomics studies. Front. Plant Sci. 3:213. doi:

10.3389/fpls.2012.00213

Kliebenstein, D. J.,West, M. A., Van Leeuwen, H., Loudet, O., Doerge, R.W., and St

Clair, D. A. (2006). Identification of QTLs controlling gene expression networks

defined a priori. BMC Bioinformatics 7:308. doi: 10.1186/1471-2105-7-308

Kloosterman, B., Anithakumari, A. M., Chibon, P. Y., Oortwijn, M., Van Der

Linden, G. C., Visser, R. G., et al. (2012). Organ specificity and transcriptional

control of metabolic routes revealed by expression QTL profiling of source–

sink tissues in a segregating potato population. BMC Plant Biol. 12:17. doi:

10.1186/1471-2229-12-17

Kourmpetis, Y. A., Van Dijk, A. D., Van Ham, R. C., and Ter Braak, C. J. (2011).

Genome-wide computational function prediction of Arabidopsis proteins

by integration of multiple data sources. Plant Physiol. 155, 271–281. doi:

10.1104/pp.110.162164

Krouk, G., Mirowski, P., Lecun, Y., Shasha, D. E., and Coruzzi, G. M.

(2010). Predictive network modeling of the high-resolution dynamic plant

transcriptome in response to nitrate. Genome Biol. 11:R123. doi: 10.1186/gb-

2010-11-12-r123

Kuzniar, A., Van Ham, R. C., Pongor, S., and Leunissen, J. A. (2008). The quest for

orthologs: finding the corresponding gene across genomes. Trends Genet. 24,

539–551. doi: 10.1016/j.tig.2008.08.009

Lachowiec, J., Queitsch, C., and Kliebenstein, D. J. (2015). Molecular mechanisms

governing differential robustness of development and environmental responses

in plants. Ann. Bot. doi: 10.1093/aob/mcv151. [Epub ahead of print].

Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan,

R., et al. (2012). The Arabidopsis Information Resource (TAIR): improved

gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210. doi:

10.1093/nar/gkr1090

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-

2105-9-559

Lavenus, J., Goh, T., Guyomarc’h, S., Hill, K., Lucas, M., Voss, U., et al. (2015).

Inference of the Arabidopsis lateral root gene regulatory network suggests a

bifurcationmechanism that defines primordia flanking and central zones. Plant

Cell 27, 1368–1388. doi: 10.1105/tpc.114.132993

Le, B. H., Cheng, C., Bui, A. Q., Wagmaister, J. A., Henry, K. F., Pelletier, J., et al.

(2010). Global analysis of gene activity during Arabidopsis seed development

and identification of seed-specific transcription factors. Proc. Natl. Acad. Sci.

U.S.A. 107, 8063–8070. doi: 10.1073/pnas.1003530107

Leal, L. G., López, C., and López-Kleine, L. (2014). Construction and comparison

of gene co-expression networks shows complex plant immune responses. PeerJ

2:e610. doi: 10.7717/peerj.610

Lee, H. K., Hsu, A. K., Sajdak, J., Qin, J., and Pavlidis, P. (2004). Coexpression

analysis of human genes across many microarray data sets. Genome Res. 14,

1085–1094. doi: 10.1101/gr.1910904

Lee, I., Ambaru, B., Thakkar, P., Marcotte, E. M., and Rhee, S. Y. (2010).

Rational association of genes with traits using a genome-scale gene network

for Arabidopsis thaliana. Nat. Biotechnol. 28, 149–156. doi: 10.1038/nbt.1603

Lee, I., Seo, Y.-S., Coltrane, D., Hwang, S., Oh, T., Marcotte, E. M., et al.

(2011). Genetic dissection of the biotic stress response using a genome-scale

gene network for rice. Proc. Natl. Acad. Sci. U.S.A. 108, 18548–18553. doi:

10.1073/pnas.1110384108

Lee, T., Oh, T., Yang, S., Shin, J., Hwang, S., Kim, C. Y., et al. (2015a). RiceNet v2:

an improved network prioritization server for rice genes. Nucleic Acids Res. 43,

W122–W127. doi: 10.1093/nar/gkv253

Lee, T., Yang, S., Kim, E., Ko, Y., Hwang, S., Shin, J., et al. (2015b). AraNet

v2: an improved database of co-functional gene networks for the study of

Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res.

43, D996–D1002. doi: 10.1093/nar/gku1053

Levy, S. F., and Siegal, M. L. (2008). Network hubs buffer environmental

variation in Saccharomyces cerevisiae. PLoS Biol. 6:e264. doi:

10.1371/journal.pbio.0060264

Li, L., Stoeckert, C. J., and Roos, D. S. (2003). OrthoMCL: identification of

ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189. doi:

10.1101/gr.1224503

Li, G., Ma, Q., Tang, H., Paterson, A. H., and Xu, Y. (2009). QUBIC: a qualitative

biclustering algorithm for analyses of gene expression data. Nucleic Acids Res.

37:e101–e101. doi: 10.1093/nar/gkp491

Li, M., Chen, J. E., Wang, J. X., Hu, B., and Chen, G. (2008). Modifying

the DPClus algorithm for identifying protein complexes based on new

topological structures. BMC Bioinformatics 9:398. doi: 10.1186/1471-2105-

9-398

Li, Y., Breitling, R., and Jansen, R. C. (2008). Generalizing genetical genomics:

getting added value from environmental perturbation. Trends Genet. 24,

518–524. doi: 10.1016/j.tig.2008.08.001

Li, Y., Pearl, S. A., and Jackson, S. A. (2015). Gene networks in plant biology:

approaches in reconstruction and analysis. Trends Plant Sci. 20, 664–675. doi:

10.1016/j.tplants.2015.06.013

Ligterink, W., Joosen, R. V. L., and Hilhorst, H. W. M. (2012). Unravelling the

complex trait of seed quality: using natural variation through a combination of

physiology, genetics and -omics technologies. Seed Sci. Res. 22, S45–S52. doi:

10.1017/S0960258511000328

Lima-Mendez, G., and Van Helden, J. (2009). The powerful law of the power

law and other myths in network biology. Mol. Biosyst. 5, 1482–1493. doi:

10.1039/b908681a

Liseron-Monfils, C., and Ware, D. (2015). Revealing gene regulation and

associations through biological networks. Curr. Plant Biol. 3–4, 30–39. doi:

10.1016/j.cpb.2015.11.001

Lysenko, A., Defoin-Platel, M., Hassani-Pak, K., Taubert, J., Hodgman, C.,

Rawlings, C. J., et al. (2011). Assessing the functional coherence of modules

found in multiple-evidence networks from Arabidopsis. BMC Bioinformatics

12:203. doi: 10.1186/1471-2105-12-203

Ma, S., Shah, S., Bohnert, H. J., Snyder, M., and Dinesh-Kumar, S. P.

(2013). Incorporating motif analysis into gene co-expression network reveals

novel modular expression pattern and new signaling pathways. PLoS Genet

9:e1003840. doi: 10.1371/journal.pgen.1003840

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to

assess overrepresentation of gene ontology categories in biological networks.

Bioinformatics 21, 3448–3449. doi: 10.1093/bioinformatics/bti551

Mao, L., Van Hemert, J. L., Dash, S., and Dickerson, J. A. (2009). Arabidopsis gene

co-expression network and its functional modules. BMC Bioinformatics 10:346.

doi: 10.1186/1471-2105-10-346

Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M.,

et al. (2012). Wisdom of crowds for robust gene network inference. Nat. Meth.

9, 796–804. doi: 10.1038/nmeth.2016

Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera,

R. D., et al. (2006). ARACNE: an algorithm for the reconstruction of gene

regulatory networks in amammalian cellular context. BMCBioinformatics 7:S7.

doi: 10.1186/1471-2105-7-S1-S7

Meyer, P. E., Lafitte, F., and Bontempi, G. (2008). minet: AR/Bioconductor package

for inferring large transcriptional networks using mutual information. BMC

Bioinformatics 9:461. doi: 10.1186/1471-2105-9-461

Mochida, K., and Shinozaki, K. (2011). Advances in omics and bioinformatics tools

for systems analyses of plant functions. Plant Cell Physiol. 52, 2017–2038. doi:

10.1093/pcp/pcr153

Frontiers in Plant Science | www.frontiersin.org 16 April 2016 | Volume 7 | Article 444

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Serin et al. Learning from Co-Expression Networks: Possibilities and Challenges

Morris, J. H., Knudsen, G. M., Verschueren, E., Johnson, J. R., Cimermancic, P.,

Greninger, A. L., et al. (2014). Affinity purification-mass spectrometry and

network analysis to understand protein-protein interactions. Nat. Protoc. 9,

2539–2554. doi: 10.1038/nprot.2014.164

Movahedi, S., Van Bel, M., Heyndrickx, K. S., and Vandepoele, K. (2012).

Comparative co-expression analysis in plant biology. Plant Cell Environ. 35,

1787–1798. doi: 10.1111/j.1365-3040.2012.02517.x

Movahedi, S., Van De Peer, Y., and Vandepoele, K. (2011). Comparative network

analysis reveals that tissue specificity and gene function are important factors

influencing the mode of expression evolution in Arabidopsis and rice. Plant

Physiol. 156, 1316–1330. doi: 10.1104/pp.111.177865

Mutwil, M., Klie, S., Tohge, T., Giorgi, F. M., Wilkins, O., Campbell, M. M.,

et al. (2011). PlaNet: combined sequence and expression comparisons across

plant networks derived from seven species. Plant Cell 23, 895–910. doi:

10.1105/tpc.111.083667

Mutwil, M., Usadel, B., Schütte, M., Loraine, A., Ebenhöh, O., and Persson, S.

(2010). Assembly of an interactive correlation network for the Arabidopsis

genome using a novel heuristic clustering algorithm. Plant Physiol. 152, 29–43.

doi: 10.1104/pp.109.145318

Nelson, T., Gandotra, N., and Tausta, S. L. (2008). Plant cell types: reporting

and sampling with new technologies. Curr. Opin. Plant Biol. 11, 567–573. doi:

10.1016/j.pbi.2008.06.006

Netotea, S., Sundell, D., Street, N. R., and Hvidsten, T. R. (2014). ComPlEx:

conservation and divergence of co-expression networks in A. thaliana, Populus

and O. sativa. BMC Genomics 15:106. doi: 10.1186/1471-2164-15-106

Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., et al.

(2007). ATTED-II: a database of co-expressed genes and cis elements for

identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res. 35,

D863–D869. doi: 10.1093/nar/gkl783

Obayashi, T., Okamura, Y., Ito, S., Tadaka, S., Aoki, Y., Shirota, M., et al. (2014).

ATTED-II in 2014: evaluation of gene coexpression in agriculturally important

plants. Plant Cell Physiol. 55, e6. doi: 10.1093/pcp/pct178

Obertello, M., Shrivastava, S., Katari, M. S., and Coruzzi, G. M. (2015). Cross-

species network analysis uncovers conserved nitrogen-regulated network

modules in rice. Plant Physiol. 168, 1830–1843. doi: 10.1104/pp.114.255877

Opgen-Rhein, R., and Strimmer, K. (2007). From correlation to causation

networks: a simple approximate learning algorithm and its application to

high-dimensional plant gene expression data. BMC Syst. Biol. 1:37. doi:

10.1186/1752-0509-1-37

Palaniswamy, S. K., James, S., Sun, H., Lamb, R. S., Davuluri, R. V., and Grotewold,

E. (2006). AGRIS and AtRegNet. A platform to link cis-regulatory elements and

transcription factors into regulatory networks. Plant Physiol 140, 818–829. doi:

10.1104/pp.105.072280

Parkinson, H. (2004). ArrayExpress–a public repository for microarray gene

expression data at the EBI. Nucleic Acids Res. 33, D553–D555. doi:

10.1093/nar/gki056

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida,

S., Aerts, J., et al. (2011). Using graph theory to analyze biological networks.

BioData Min. 4:10. doi: 10.1186/1756-0381-4-10

Petretto, E., Mangion, J., Dickens, N. J., Cook, S. A., Kumaran, M. K., Lu, H., et al.

(2006). Heritability and tissue specificity of expression quantitative trait loci.

PLoS Genet. 2:e172. doi: 10.1371/journal.pgen.0020172

Polanski, K., Rhodes, J., Hill, C., Zhang, P., Jenkins, D. J., Kiddle, S. J., et al. (2014).

Wigwams: identifying gene modules co-regulated across multiple biological

conditions. Bioinformatics 30, 962–970. doi: 10.1093/bioinformatics/b

tt728

Proost, S., Van Bel,M., Vaneechoutte, D., VanDe Peer, Y., Inzé, D.,Mueller-Roeber,

B., et al. (2015). PLAZA 3.0: an access point for plant comparative genomics.

Nucleic Acids Res. 43, D974–D981. doi: 10.1093/nar/gku986

Provero, P. (2002). Gene networks from DNA microarray data: centrality and

lethality. arXiv preprint cond-mat/0207345.

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R.,

et al. (2005). InterProScan: protein domains identifier. Nucleic Acids Res. 33,

W116–W120. doi: 10.1093/nar/gki442

Radivojac, P., Clark, W. T., Oron, T. R., Schnoes, A. M., Wittkop, T., Sokolov,

A., et al. (2013). A large-scale evaluation of computational protein function

prediction. Nat. Methods 10, 221–227. doi: 10.1038/nmeth.2340

Ransbotyn, V., Yeger-Lotem, E., Basha, O., Acuna, T., Verduyn, C., Gordon, M.,

et al. (2014). A combination of gene expression ranking and co-expression

network analysis increases discovery rate in large-scalemutant screens for novel

Arabidopsis thaliana abiotic stress genes. Plant Biotechnol. J. 13, 501–513. doi:

10.1111/pbi.12274

Rhee, S. Y., and Mutwil, M. (2014). Towards revealing the functions of all genes in

plants. Trends Plant Sci. 19, 212–221. doi: 10.1016/j.tplants.2013.10.006

Righetti, K., Vu, J. L., Pelletier, S., Vu, B. L., Glaab, E., Lalanne, D., et al. (2015).

Inference of longevity-related genes from a robust coexpression network of seed

maturation identifies regulators linking seed storability to biotic defense-related

pathways. Plant Cell 27, 2692–2708. doi: 10.1105/tpc.15.00632

Rivera, C. G., Vakil, R., and Bader, J. S. (2010). NeMo: network Module

identification in Cytoscape. BMC Bioinformatics 11(suppl. 1):S61. doi:

10.1186/1471-2105-11-S1-S61

Rockman, M. V., and Kruglyak, L. (2006). Genetics of global gene expression. Nat.

Rev. Genet. 7, 862–872. doi: 10.1038/nrg1964

Rung, J., and Brazma, A. (2013). Reuse of public genome-wide gene expression

data. Nat. Rev. Genet. 14, 89–99. doi: 10.1038/nrg3394

Saito, K., Hirai, M. Y., and Yonekura-Sakakibara, K. (2008). Decoding genes with

coexpression networks andmetabolomics - ‘majority report by precogs’. Trends

Plant Sci. 13, 36–43. doi: 10.1016/j.tplants.2007.10.006

Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., Lotia, S., et al.

(2012). A travel guide to Cytoscape plugins. Nat. Methods 9, 1069–1076. doi:

10.1038/nmeth.2212

Sato, Y., Namiki, N., Takehisa, H., Kamatsuki, K., Minami, H., Ikawa, H., et al.

(2013). RiceFREND: a platform for retrieving coexpressed gene networks in

rice. Nucleic Acids Res. 41, D1214–D1221. doi: 10.1093/nar/gks1122

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,

et al. (2003). Cytoscape: a software environment for integrated models

of biomolecular interaction networks. Genome Res. 13, 2498–2504. doi:

10.1101/gr.1239303

Silva, A. T., Ribone, P. A., Chan, R. L., Ligterink, W., and Hilhorst, H. W. (2016). A

predictive co-expression network identifies novel genes controlling the seed-to-

seedling phase transition inArabidopsis thaliana. Plant Physiol. 170, 2218–2231.

doi: 10.1104/pp.15.01704

Slane, D., Kong, J., Berendzen, K. W., Kilian, J., Henschen, A., Kolb, M., et al.

(2014). Cell type-specific transcriptome analysis in the early Arabidopsis

thaliana embryo. Development 141, 4831–4840. doi: 10.1242/dev.116459

Song, L., Langfelder, P., and Horvath, S. (2012). Comparison of co-expression

measures: mutual information, correlation, and model based indices. BMC

Bioinformatics 13:328. doi: 10.1186/1471-2105-13-328

Srinivasasainagendra, V., Page, G. P., Mehta, T., Coulibaly, I., and Loraine, A.

E. (2008). CressExpress: a tool for large-scale mining of expression data from

Arabidopsis. Plant Physiol. 147, 1004–1016. doi: 10.1104/pp.107.115535

Stuart, J. M., Segal, E., Koller, D., and Kim, S. K. (2003). A gene-coexpression

network for global discovery of conserved genetic modules. Science 302,

249–255. doi: 10.1126/science.1087447

Szakonyi, D., Van Landeghem, S., Baerenfaller, K., Baeyens, L., Blomme,

J., Casanova-Sáez, R., et al. (2015). The KnownLeaf literature curation

system captures knowledge about Arabidopsis leaf growth and development

and facilitates integrated data mining. Curr. Plant Biol. 2, 1–11. doi:

10.1016/j.cpb.2014.12.002

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-

Cepas, J., et al. (2014). STRING v10: protein-protein interaction networks,

integrated over the tree of life. Nucleic Acids Res. 43, D447–D452. doi:

10.1093/nar/gku1003

Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., et al. (2003).

Estimating gene networks from gene expression data by combining Bayesian

network model with promoter element detection. Bioinformatics 19, ii227–

ii236. doi: 10.1093/bioinformatics/btg1082

Tang, F., Lao, K., and Surani, M. A. (2011). Development and applications

of single-cell transcriptome analysis. Nat. Methods 8, S6–S11. doi:

10.1038/nmeth.1557

Terpstra, I. R., Snoek, L. B., Keurentjes, J. J., Peeters, A. J., and Van

Den Ackerveken, G. (2010). Regulatory network identification by genetical

genomics: signaling downstream of the Arabidopsis receptor-like kinase

ERECTA. Plant Physiol. 154, 1067–1078. doi: 10.1104/pp.110.159996

Frontiers in Plant Science | www.frontiersin.org 17 April 2016 | Volume 7 | Article 444

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Serin et al. Learning from Co-Expression Networks: Possibilities and Challenges

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., et al. (2004).

MAPMAN: a user-driven tool to display genomics data sets onto diagrams of

metabolic pathways and other biological processes. Plant J. 37, 914–939. doi:

10.1111/j.1365-313X.2004.02016.x

Tzfadia, O., Amar, D., Bradbury, L. M., Wurtzel, E. T., and Shamir, R. (2012). The

MORPH algorithm: ranking candidate genes for membership in Arabidopsis

and tomato pathways. Plant Cell 24, 4389–4406. doi: 10.1105/tpc.112.104513

Tzfadia, O., Diels, T., De Meyer, S., Vandepoele, K., Aharoni, A., and Van De Peer,

Y. (2015). CoExpNetViz: comparative co-expression networks construction

and visualization tool. Front. Plant Sci. 6:1194. doi: 10.3389/fpls.2015.01194

Ulitsky, I., and Shamir, R. (2009). Identifying functional modules using

expression profiles and confidence-scored protein interactions. Bioinformatics

25, 1158–1164. doi: 10.1093/bioinformatics/btp118

Usadel, B., Obayashi, T., Mutwil, M., Giorgi, F. M., Bassel, G. W., Tanimoto,

M., et al. (2009). Co-expression tools for plant biology: opportunities for

hypothesis generation and caveats. Plant Cell Environ. 32, 1633–1651. doi:

10.1111/j.1365-3040.2009.02040.x

Vandepoele, K., Quimbaya, M., Casneuf, T., De Veylder, L., and Van De

Peer, Y. (2009). Unraveling transcriptional control in Arabidopsis using cis-

regulatory elements and coexpression networks. Plant Physiol. 150, 535–546.

doi: 10.1104/pp.109.136028

Vashishtha, S., Broderick, G., Craddock, T. J., Fletcher, M. A., and Klimas, N.

G. (2015). Inferring broad regulatory biology from time course data: have we

reached an upper bound under constraints typical of in vivo studies? PLoS ONE

10:e0127364. doi: 10.1371/journal.pone.0127364

Vignes, M., Vandel, J., Allouche, D., Ramadan-Alban, N., Cierco-Ayrolles, C.,

Schiex, T., et al. (2011). Gene regulatory network reconstruction using bayesian

networks, the dantzig selector, the lasso and their meta-analysis. PLoS ONE

6:e29165. doi: 10.1371/journal.pone.0029165

Wang, J., Yu, H., Weng, X., Xie, W., Xu, C., Li, X., et al. (2014). An expression

quantitative trait loci-guided co-expression analysis for constructing regulatory

network using a rice recombinant inbred line population. J. Exp. Bot. 65,

1069–1079. doi: 10.1093/jxb/ert464

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao,

P., et al. (2010). The GeneMANIA prediction server: biological network

integration for gene prioritization and predicting gene function. Nucleic Acids

Res. 38, W214–W220. doi: 10.1093/nar/gkq537

Wei, C. H., Harris, B. R., Li, D., Berardini, T. Z., Huala, E., Kao, H. Y., et al.

(2012). Accelerating literature curation with text-mining tools: a case study of

using PubTator to curate genes in PubMed abstracts. Database 2012:bas041.

doi: 10.1093/database/bas041

Wei, H., Yordanov, Y. S., Georgieva, T., Li, X., and Busov, V. (2013). Nitrogen

deprivation promotes Populus root growth through global transcriptome

reprogramming and activation of hierarchical genetic networks. New Phytol.

200, 483–497. doi: 10.1111/nph.12375

Wentzell, A. M., Rowe, H. C., Hansen, B. G., Ticconi, C., Halkier, B. A., and

Kliebenstein, D. J. (2007). Linking metabolic QTLs with network and cis-

eQTLs controlling biosynthetic pathways. PLoS Genet. 3, 1687–1701. doi:

10.1371/journal.pgen.0030162

Werhli, A. V., and Husmeier, D. (2008). Gene regulatory network

reconstruction by bayesian integration of prior knowledge and/or different

experimental conditions. J. Bioinform. Comput. Biol. 6, 543–572. doi:

10.1142/S0219720008003539

West, M. A., Kim, K., Kliebenstein, D. J., Van Leeuwen, H., Michelmore, R.

W., Doerge, R. W., et al. (2007). Global eQTL mapping reveals the complex

genetic architecture of transcript-level variation in Arabidopsis. Genetics 175,

1441–1450. doi: 10.1534/genetics.106.064972

Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., et al.

(2012). Arabidopsis defense against Botrytis cinerea: chronology and regulation

deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24,

3530–3557. doi: 10.1105/tpc.112.102046

Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., and Provart,

N. J. (2007). An “Electronic Fluorescent Pictograph” browser for exploring

and analyzing large-scale biological data sets. PLoS ONE 2:e718. doi:

10.1371/journal.pone.0000718

Wolfe, C. J., Kohane, I. S., and Butte, A. J. (2005). Systematic survey reveals general

applicability of “guilt-by-association” within gene coexpression networks. BMC

Bioinformatics 6:227. doi: 10.1186/1471-2105-6-227

Yang, X., Ye, C. Y., Bisaria, A., Tuskan, G. A., and Kalluri, U. C.

(2011). Identification of candidate genes in Arabidopsis and Populus

cell wall biosynthesis using text-mining, co-expression network

analysis and comparative genomics. Plant Sci. 181, 675–687. doi:

10.1016/j.plantsci.2011.01.020

Yim, W. C., Yu, Y., Song, K., Jang, C. S., and Lee, B.-M. (2012). PLANEX: the plant

co-expression database. BMC Plant Biol. 13:83. doi: 10.1186/1471-2229-13-83

Zarrineh, P., Fierro, A. C., Sánchez-Rodríguez, A., De Moor, B., Engelen, K., and

Marchal, K. (2011). COMODO: an adaptive coclustering strategy to identify

conserved coexpressionmodules between organisms.Nucleic Acids Res. 39, e41.

doi: 10.1093/nar/gkq1275

Zhan, J., Thakare, D., Ma, C., Lloyd, A., Nixon, N. M., Arakaki, A. M., et al.

(2015). RNA sequencing of laser-capture microdissected compartments

of the maize kernel identifies regulatory modules associated with

endosperm cell differentiation. Plant Cell 27, 513–531. doi: 10.1105/tpc.114.

135657

Zhang, B., and Horvath, S. (2005). A general framework for weighted gene co-

expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17. doi:

10.2202/1544-6115.1128
Zhang, Y., Zha, H., and Chu, C. H. (2005). “A time-series biclustering algorithm

for revealing co-regulated genes,” in Information Technology: Coding and

Computing, 2005. itcc 2005. International Conference on Vol. 1, (IEEE), 32–37.

doi: 10.1109/ITCC.2005.46

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Serin, Nijveen, Hilhorst and Ligterink. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 18 April 2016 | Volume 7 | Article 444

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Learning from Co-expression Networks: Possibilities and Challenges
	Introduction
	Box 1 | Network Inference
	Data Availability for Co-expression Network Analysis
	Data Selection for Co-expression Network Analysis
	Gene Prioritization
	Co-Expression Network Applications
	eQTL Based Co-Expression Networks
	High-Resolution Co-Expression Networks
	Temporal Resolution for Dynamic Co-Expression Networks
	Spatial Resolution for Dynamic Co-Expression Networks

	Comparative Co-Expression Network Analysis

	Conclusion and Perspectives
	Author Contributions
	Funding
	Acknowledgments
	References


