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Chloramphenicol (CAP) is an inhibitor of protein synthesis, which is frequently used
to decouple photodamage and protein synthesis dependent repair of Photosystem
II during the process of photoinhibition. It has been reported earlier that CAP is
able to mediate superoxide production by transferring electrons from the acceptor
side of Photosystem I to oxygen. Here we investigated the interaction of CAP with
Photosystem II electron transport processes by oxygen uptake and variable chlorophyll
fluorescence measurements. Our data show that CAP can accept electrons at the
acceptor side of Photosystem II, most likely from Pheophytin, and deliver them to
molecular oxygen leading to superoxide production. In addition, the presence of CAP
enhances photodamage of Photosystem II electron transport in isolated membrane
particles, which effect is reversible by superoxide dismutase. It is concluded that CAP
acts as electron acceptor in Photosystem II and mediates its superoxide dependent
photodamage. This effect has potential implications for the application of CAP in
photoinhibitory studies in intact systems.
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INTRODUCTION

Photosynthesis is a process in which green plants, algae and cyanobacteria utilize energy from
sunlight to manufacture carbohydrates from carbon dioxide and water. This process is the ultimate
source of energy for all plants to drive their metabolic processes. Too much light reaching the
photosynthetic apparatus can cause photodamage and ultimately can lead to the death of a cell.
This stress situation is known as photoinhibition (Arntzen et al., 1984; Aro et al., 1993; Vass
and Aro, 2008). The major damage of the photosynthetic apparatus under high light conditions
is impairment of electron transport in the Photosystem II (PSII) complex, as well as damage of
the D1 reaction center subunit (Ohad et al., 1984; Prasil et al., 1992). Important mediators of
photodamage in plant cells are the various reactive oxygen species (ROS), such as singlet excited
oxygen, free radicals (superoxide and hydroxyl ions) and peroxides, which are produced mainly
in the chloroplasts and mitochondria (Apel and Hirt, 2004). The activity of the photodamaged
PSII complex can be restored via the so called PSII repair cycle in which de novo synthesis of the
damaged D1 subunits plays a key role (Aro et al., 1993; Baena-Gonzalez and Aro, 2002; Komenda
et al., 2007; Nixon et al., 2010).
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Light stress to PSII becomes a problem for photosynthetic
capacity when the rate of photodamage exceeds the capacity
of repair processes. Therefore, it is important to monitor
separately the rates of photodamage and of the protein synthesis
dependent repair. Decoupling of photodamage and repair can
be achieved by protein synthesis inhibitors, such as lincomycin
or chloramphenicol (CAP), which inhibit translation elongation
in chloroplasts (Mulo et al., 2003; Chow et al., 2005; Tikkanen
et al., 2014) or in cyanobacterial cells (Constant et al., 1997;
Nishiyama et al., 2001, 2005; Sicora et al., 2003; Takahashi and
Murata, 2005; Takahashi et al., 2009). While there are no reports
concerning the participation of lincomycin in photosynthetic
electron transport, CAP has been reported to accept electrons
from the acceptor side of Photosystem I and to transfer
them to molecular oxygen leading to superoxide production
(Okada et al., 1991). Superoxide radicals have high reactivity,
therefore, it is expected that locally generated superoxide will
induce damaging effects in the vicinity of its production. This
finding has been considered as a source of potential artifact
by several research groups, who used lincomycin instead of
CAP in photoinhibition studies (Tyystjarvi and Aro, 1996;
Constant et al., 1997; Tyystjarvi et al., 2002; Chow et al.,
2005; Campbell and Tyystjärvi, 2012; Miyata et al., 2012;
Tikkanen et al., 2014). However, other groups kept using
CAP in measurements of PSII photodamage (Nishiyama et al.,
2001, 2005; Takahashi and Murata, 2005; Takahashi et al.,
2009).

In the present work we investigated whether CAP has the
capacity to interact directly with PSII electron transport in
isolated membrane particles. Our data show that CAP acts as an
electron acceptor to PSII and mediates superoxide production,
which enhances photodamage of PSII.

MATERIALS AND METHODS

PSII Membrane Preparation
Photosystem II membrane particles were isolated from fresh
spinach leaves as described earlier (Vass et al., 1987) and
suspended in buffers containing 40 mM MES-NaOH (pH 6.5),
15 mM MgCl2, 15mM CaCl2 and 1 M betaine, respectively. PSII
membranes were stored in−80◦C for further use.

Light Induced Oxygen Uptake
Measurements
O2 uptake rates in PSII particles were measured by using
a Hansatech DW2 O2 electrode at 4◦C under illumination
with 500 µmole m−2s−1 light intensity. The total duration of
illumination was 1 min. DCMU, which blocks electron transport
at the QB site of PSII was also added at a concentration of 10 µM
when indicated. In order to confirm superoxide formation the
rate of oxygen uptake was also measured in the presence of 20
units/mg superoxide dismutase (SOD) that converts O−2 partly
back to O2, as well as after addition of 1000 units of bovine serum
catalase that converts H2O2, which is produced by SOD from
O−2 , to H2O and O2. One mililiter aliquot of PSII membrane

particles at 5 µg Chl mL−1 concentration was used in each
measurement.

Photoinhibitory Treatment
The PSII particles were resuspended at 5 µg Chl mL−1 in
40 mL volume and illuminated with 500 µmole m−2s−1 light
intensity in the presence and absence of CAP (200 µg/mL).
The temperature during illumination was maintained at 4◦C.
The samples were also illuminated in the presence of SOD
(20 units mg−1). For monitoring PSII activity the rate of
O2 evolution was measured at the indicated time points.
Photosynthetic activity of irradiated PSII membranes was also
assessed by measuring the so called OJIP transient of variable
Chl fluorescence during application of a 2 s saturating pulse
(Strasser et al., 1995) by using an FL-3000 fluorometer (PSI).
Fv/Fm was obtained by calculating (Fm-Fo)/Fm, where Fo and Fm
represent the minimum fluorescence in dark adapted sample, and
the maximal fluorescence yield under continuous saturating light,
respectively.

RESULTS AND DISCUSSION

CAP Acts as Electron Acceptor in PSII
Chloramphenicol has been reported earlier to take up electrons
at the acceptor side of PSI (Okada et al., 1991). In order to
check if similar phenomenon occurs in PSII, or not, the so

FIGURE 1 | The effect of CAP on PSII activity in PSII membrane
particles as quantified by fast chlorophyll fluorescence rise.
Photosynthetic activity of spinach PSII membranes was assessed by
measuring OJIP transients of chlorophyll fluorescence. The experiments were
performed in the absence (closed symbols) and presence of chloramphenicol
(open symbols) without further addition (circles) or in the presence of 10 µM
DCMU (triangles). The curves are shown after normalization to the same Fo
values.
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called OJIP Chl fluorescence transient was measured in the
absence and presence of CAP. As shown in Figure 1 the
maximal fluorescence level (Fm) was decreased in the presence
of CAP (open circles), which is consistent with the presence of
an electron acceptor that prevents complete reduction of the
QA primary quinone electron acceptor. In order to verify if
CAP takes up electrons before or after the QB binding site we
used DCMU, which inhibits electron transport from Q−A to QB
by preventing PQ binding to the QB site. Interestingly CAP
induced decrease of the Fm level also in the presence of DCMU
(Figure 1, open triangles), which indicates that CAP takes up
electrons from PSII before the DCMU block, i.e., either directly
from Q−A or from Phe−. Considering the very negative redox
potential of CAP, Em(CAP/CAP−) = −543 mV (Kapoor and
Varshney, 1997), the efficiency of electron transfer from Q−A
(Em(QA/Q−A ) = −120 to −140 mV, Shibamoto et al., 2009) to
CAP should be very low. On the other hand the redox potential
of Phe [Em(Phe/Pheo−) = −505 to −535 mV (Shibamoto et al.,
2009; Allakhverdiev et al., 2010)] allows energetically efficient
interaction with Phe−. Therefore, although the lifetime of Phe−
is very short (ca. 200 ps) it is a possible candidate to act as
an electron donor for the reduction of CAP. This finding is in
agreement with previous suggestions that Phe− can act as direct
electron donor to O2 and can support superoxide production
(Pospísil, 2012).

CAP Induces Superoxide Production in
Isolated PSII Particles
It has been reported previously (Okada et al., 1991) that CAP
mediates superoxide production in thylakoids by transferring
electrons from the PSI acceptor side to oxygen. Since we have
shown that CAP functions not only as PSI electron acceptor, but
takes up electrons also from PSII it has a potential to produce
superoxide in PSII complexes as, well.

In contrast to molecular oxygen superoxide does not produce
amperometric signal in Clark-type oxygen electrodes. Therefore,
conversion of O2 to O−2 leads to oxygen consumption, which can
be easily followed by oxygen uptake measurements. In order to
investigate CAP mediated superoxide production we measured
O2 uptake under various conditions. The data in Figure 2A show
that CAP enhances light induced O2 uptake in PSII particles.
This effect is partly reversible by SOD, which converts 1 O−2
molecule to 1/2O2 and 1/2H2O2. Addition of catalase together
with SOD almost completely eliminated the O2 uptake, which is
consistent with the conversion of 1/2 H2O2 to 1/2 H2O + 1/2 O2.
These data demonstrate that CAP can indeed mediate superoxide
production in PSII. DCMU had only a minor inhibitory effect
on the O2 uptake, which is consistent with the idea that CAP
transfers electrons to oxygen from a PSII acceptor located before
the QB site.

CAP Enhances Photodamage of PSII in
Isolated Membrane Particles
In order to check if CAP mediated superoxide production has any
influence on the rate of photodamage PSII membrane particles
were exposed to high light treatment in the absence and presence

FIGURE 2 | The effect of CAP on superoxide production and
photodamage in PSII. (A) CAP mediated oxygen uptake. PSII membrane
particles were illuminated, with 500 µmole m−2s−1 light intensity, in the
chamber of a Clark-type electrode. The rate of O2 uptake was recorded in the
presence and absence of CAP without further addition, in the presence of
superoxide dismutase (SOD), and SOD + catalase. Similar series of
experiments were also performed in the presence of the electron transport
inhibitor DCMU. (B) CAP mediated photodamage. PSII membrane particles
were exposed to illumination with 500 µmole m−2s−1 light intensity without
addition, in the presence of CAP and CAP + SOD, and the activity of PSII was
monitored by measuring variable Chl fluorescence (Fv/Fm).

of CAP. According to the data shown in Figure 2B, light induced
loss of PSII activity, as assessed by variable Chl fluorescence
measurements, occurred faster in the presence than in the
absence of CAP. Interestingly, the CAP induced enhancement
of PSII photodamage was almost completely reversed when
SOD was added together with CAP during the photoinhibitory
treatment (Figure 2B). These data demonstrate that CAP induces
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enhanced PSII photodamage via production of superoxide in
BBY particles.

CONCLUSION

Our data show that CAP accepts electrons from the PSII
complex at a site located before the QB quinone electron
acceptor, most likely from Phe−. This process leads to
superoxide production, which induces enhanced photodamage
of PSII in isolated membrane particles. This side effect
of CAP has potentially important implications regarding its
application as protein synthesis inhibitor in photoinhibitory
studies. Besides blocking the repair cycle of PSII CAP
may accelerate the rate of photodamage also in intact
systems leading to artifacts concerning the mechanism of
photoinhibition. The in vivo effects of CAP are currently

under investigation and will be presented in a forthcoming
publication.
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