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Organic acids, such as citrate and malate, are important contributors for the sensory
traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory
mechanisms of acid accumulation remain to be dissected. To provide transcriptional
architecture and identify candidate genes for citrate accumulation in fruits, we have
selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L.
Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall
and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA),
which corresponds to Stage I (cell division), had similar acidity, but they displayed
differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of
fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three
different algorithms (Pearson correlation, gene coexpression network and surrogate
variable analysis). Our network analysis shows that the acid-correlated genes belong
to three distinct network modules. Several of these candidate fruit acidity genes encode
regulatory proteins involved in transport (such as AHA10), degradation (such as APD2)
and transcription (such as AIL6) and act as hubs in the citrate accumulation gene
networks. Taken together, our integrated systems biology analysis has provided new
insights into the fruit citrate accumulation gene network and led to the identification of
candidate genes likely associated with the fruit acidity control.

Keywords: Citrus, orange, fruit, acidity, citrate, transcriptome, gene networks

INTRODUCTION

Fruit is a specialized organ for flowering plants. Fully ripe fleshy fruits are rich in compounds
important for human nutrition (such as sugars, vitamins, and antioxidants) and sensory traits (such
as organic acids and secondary products responsible for attractive taste and flavor). Among the
major compounds in fruits, sugars and organic acids are considered very important contributors
for the taste trait, with the sugar/acid ratio recognized as the major determinant of fruit sweetness
and ripeness (Albertini et al., 2006; Etienne et al., 2013; Osorio et al., 2013). Because increasing
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sugar contents in some fruits raises a major concern for
human health, manipulating fruit sweetness by altering organic
acid concentrations, either genetically or through management
practice, has increasingly become a priority for improving
fruit quality (Etienne et al., 2013). Therefore, significant efforts
have been targeted towards mechanistic understanding of acid
accumulation in fruits and ultimately breeding or selection for
the fruit varieties with varying acid levels.

To reach the fully ripe stage for human consumption, fruits
across species in general undergo three stages of development:
cell division (characterized by slow fruit growth; Stage I), cell
expansion (rapid fruit growth; Stage II) and fruit ripening
(cessation of fruit growth and peak of active biochemical
reactions for flavor; Stage III). Based on the respiration pattern
and ethylene biosynthesis during the ripening stage, fruits are
in general categorized into two physiological groups, climacteric
fruits including tomato, apple, peach and banana, and non-
climacteric fruits such as such as citrus, strawberry, grape and
pepper (Gapper et al., 2013; Osorio et al., 2013).

Many studies of metabolic profiling during three stages of fruit
development have led to better understanding of organic acids
accumulation (Etienne et al., 2013). First, fruits from different
species have different acid compounds. For example, citrate is
predominant in citrus and strawberry, malate is dominant in
apple, and tomato contains both citrate and malate although
the content of citric acid is slightly higher than malic acid
(Cercos et al., 2006; Zhang et al., 2011; Etienne et al., 2013;
Morgan et al., 2013). Second, it appears that citric acid in
citrus, tomato, strawberry and pepper fruits starts to accumulate
during the transition from Stage I to Stage II and reach the
peak at the late Stage II before it starts to decline during Stage
III (Albertini et al., 2006; Cercos et al., 2006; Osorio et al.,
2011, 2012; Zhang et al., 2011; Etienne et al., 2013). For acid
accumulation, citric acid is intensely transported into the vacuole
which then becomes highly acidified, but at Stage III it is
released from the vacuole and through the tricarboxylic acid
(TCA) cycle converted sequentially into isocitrate, 2-oxoglutarate
and glutamate (Cercos et al., 2006; Nunes-Nesi et al., 2013).
Glutamate is then utilized through at least two pathways.
One is conversion to glutamine for further utilization, and
the other is the GABA (gamma-aminobutirate) shunt which
converts glutamate into GABA and finally succinate (Cercos et al.,
2006).

Accumulating genetic studies have started to shed some light
in the control of acid transport and metabolism in fruits. The
existence of many varieties with different fruit acid levels suggests
that citrate and other organic acids are genetically controlled
(Fang et al., 1997; Boudehri et al., 2009; Terol et al., 2010; Bai
et al., 2012; Zhang et al., 2012; Morgan et al., 2013; Cohen
et al., 2014; Sauvage et al., 2014). However, only the PH gene
has been convincingly demonstrated to act in the control of
acid accumulation in melon fruits, although its biochemical
mechanism remains a mystery (Cohen et al., 2014).

Extensive studies of molecular biology and transcriptomics
have led to a model of citrate transport and utilization in fruit
acidity control. These studies have been performed mostly in
tomato, a major climacteric fruit model system, and citrus, which

forms the largest tree fruit industry and has the potential of
becoming a model system for non-climacteric fruits. For citrate
transport into the vacuole, a lemon proton pump most closely
related to Arabidopsis Autoinhibited H+-ATPase Isoform 10
(AHA10) has been proposed to drive citrate out of the vacuole
(Aprile et al., 2011). There is corroborating biochemical evidence
for the involvement of two types of H+-ATPase in acidification
in lemon fruits (Muller et al., 1996). Although there is no
convincing evidence for the correlation of citrate synthase or
transporter gene with acid accumulation in citrus and tomato
(Etienne et al., 2013), one recent study indicated that a mutation
in a malate transporter-like gene is associated with low fruit
acidity in apple (Bai et al., 2012). Regarding citrate conversion
to isocitrate, several studies have shown that expression of Aco
genes, which encode several isoforms of the enzyme aconitase
involved in converting citrate to isocitrate, is up-regulated in
both tomato and citrus fruits. Furthermore, varieties of acidless
orange or mandarin exhibit higher expression of Aco1 and
Aco2 genes than varieties with normal acidity (Terol et al.,
2010) and Aco enzyme inhibitor experiments showed the role
of Aco genes in citrate accumulation (Degu et al., 2011). The
most convincing evidence supporting a role for Aco control
in acid accumulation is the observed increase of citrate and
malate in transgenic tomato lines where Aco3b is suppressed
via antisense RNA (Morgan et al., 2013). Support for possible
involvement of the GABA shunt at Stage III comes from a prior
transcriptomic profiling study in citrus, where fruits at all of
three stages were subjected to microarray analysis, showing up-
regulation of several genes encoding enzymes involved in various
steps of the GABA pathway, in particular Glu decarboxylase
(GAD) (Cercos et al., 2006). The negative correlation between
GAD1/2 expression and acid loss is confirmed by recent studies
in lemon and orange fruits (Aprile et al., 2011; Liu et al.,
2014).

In summary, results from these gene expression studies
suggest a very interesting model for understanding acid decline
during fruit ripening. However, it has been reported that at least
in some of citrus acidless varieties a consistently very low citric
acid level is maintained throughout fruit development compared
to normally acidic varieties (Albertini et al., 2006), indicating
that genetic factors play a role early at stage I or II. Therefore,
it remains to be tested whether the proposed citrate utilization
model mainly operating at Stage III could explain the genetic
variations in fruit acid contents in tomato, citrus or other species.

As a first step towards dissection of genetic mechanisms
underlying organic acid accumulation in non-climacteric fruits,
we have carried out an RNA sequencing (RNA Seq)-based
transcriptomic study in sweet orange fruits. Sweet orange
genome has been sequenced (Xu Q. et al., 2013; Wu G.A.
et al., 2014), making it an excellent model system for non-
climacteric fruits. Fruits collected at two stages (close to the end
of Stage I and the middle of Stage II) from four varieties, which
show differential fruit acidity, were used in RNA Seq analysis,
followed by integradated sysntems analysis including Pearson
correlation analysis, the Weighted Gene Coexpression Network
Analysis (WGCNA), and Surrogate Variable Analysis (SVA).
Taken together, our results have revealed candidate acid-related
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genes likely associated with fruit acidity control in developing
orange fruits.

MATERIALS AND METHODS

Plant Materials
Four varieties of sweet orange (C. sinensis L. Osbeck), Newhall,
Xinhui, Bingtang and Succari, were grown in China National
Citrus Germplasm Repository managed in Citrus Research
Institute of Chinese Academy of Agricultural Sciences/Southwest
University, Chongqing, China. They were all grafted onto the
same root stock Trifoliate orange (Poncirus trifoliata L. Raf.,
synonym Citrus trifoliate L.). Representative fruits at various
stages of development were harvested. Exocarp (flavedo) and
mesocarp (albedo) were carefully removed. The remaining pulp
tissues (endocarp) were dissected into small segments, weighted,
and then quickly frozen with liquid nitrogen before acid, sugar
and RNA extractions. For comparison of 45 and 142 DPA, three
biological replicates were used. Because of the differences in
fruit sizes and acid levels across varieties between 45 and 142
DPA, different sampling strategies were used. For 45 DPA, each
replicate contained five fruits which were mixed and aliquoted
for sugar and acid measurement and RNA Seq analysis. For 142
DPA, each fruit was used as a replicate and sliced into aliquots
for both sugar and acid measurement and RNA Seq for each
variety.

Measurement of Sugar and Titratable
Acid Contents
Total titratable acid content was measured by following the
0.1 M NaOH-based titration method according to (Cercos
et al., 2006), using a citric acid coefficient of 0.064. Sugar levels
were determined using the Sucrose/D-Glucose/D-Fructose kit
(R-Biopharm/Roche) developed based on enzymatic reactions
by hexokinase, glucose-6-phosphate dehydrogenase, and
phosphoglucose isomerase, and the sum of glucose, fructose and
sucrose was presented as the total sugar content.

RNA Extraction, Sequencing Library
Construction, and Data Processing
Approximately 5–8 g of pulp tissues were used for total RNA
extraction by following the ethanol- and LiCl-based protocol
described elsewhere (Tao et al., 2004). Total RNA samples
were sent to Beijing Genomics Institute (BGI) Tech Solutions
Co. in Shenzhen, China, for library construction, sequencing,
data preprocessing and gene mapping. In briefly, total RNA
was first treated with DNase I to degrade any possible DNA
contamination, followed by mRNA enrichment through the
oligo(dT) magnetic beads. mRNA was then fragmented into short
fragments of approximately 200 nucleotides, which were used for
cDNA synthesis. After purification, the double stranded cDNA
is subjected to end reparation and 3′-end single nucleotide A
(adenine) addition and sequencing adaptors ligation. Finally, the
fragments are enriched by PCR amplification and the resulting
library products were sequenced via Illumina HiSeqTM 2000.

Raw data, which were deposited into NCBI GEO database
(accession number 78046), were preprocessed by removing
adaptor sequences and/or low quality reads, resulting in clean
reads data. These clean reads data were then mapped to the sweet
orange reference sequences (version 2.0) published recently (Xu
Q. et al., 2013) and maintained in the Citrus sinensis Genome
Annotation Project1 using SOAP aligner/SOAP2 (Li et al., 2009).
The gene expression level is calculated by using the RPKM (Reads
Per kb per Million reads) method (Mortazavi et al., 2008).

Analysis of Citrus Homologs in
Arabidopsis and Gene Ontology
Enrichment
The sweet orange proteins for the whole genome (Xu Q. et al.,
2013) was input into the functional annotation website Mercator
(Lohse et al., 2014) for prediction of the most closely related
proteins in Arabidopsis, using the TAIR release 10 of Arabidopsis
proteome with a BLAST-Cutoff of 80. Subsequently, GO terms
were assigned to citrus genes using the GO terms for their
corresponding counter parts in Arabidopsis (GAF version 2.0
updated on September 5, 2014). GO enrichment analysis was
performed in the Gene Ontology Enrichment Analysis Software
Toolkit (Zheng and Wang, 2008), using the hypergeometric test
with the Yekutieli-based adjustment for multiple testing (FDR
under dependency) and a cutoff of FDR at 0.05.

Statistical Analysis of Differentially
Expressed Genes
Methods implemented in EdgeR (Robinson et al., 2010) are
used to identify differentially expressed genes between 45 and
142 DPA for each of four varieties. After removing genes
with low counts (i.e., removing if the mean counts is less
than 10), the quantile-adjusted conditional maximum likelihood
method is used to estimate the negative binomial dispersion
parameters. Then the exact test method for the negative
binomial distribution (Robinson and Smyth, 2007) is used to
identify differentially expressed genes. The methods we chose are
developed deliberately for studies with very small sample sizes.
We are interested only in those with at least twofold difference.
Statistical significance of the tests is controlled at FDR of 0.05.

Pearson Correlation Analysis
Pearson correlation coefficients (Pcc) are calculated between
citric acid content and gene expression levels on three biological
replicates. We focus only on 7,430 differentially regulated genes
and the gene expression levels are log2 transformed to normalize
the data distribution. The correlation is significant at level of 0.05
(FDR adjusted).

Global Characterization of the
Transcriptome Data via Clustering
Analysis
Clustering analysis is an important unsupervised learning
technique for data exploratory analysis. First, we use K-means

1http://citrus.hzau.edu.cn/orange/
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clustering via principal component analysis (Ding and He,
2004) of all available gene expression data to assess the
quality of our biological replicates and to find samples with
more homogenous gene expression patterns. The hierarchical
clustering analysis (Everitt et al., 2001) using average linkage with
Pearson correlation-based distance is also used for this purpose
(Figure 2B).

Second, to identify genes with similar expression patterns
across samples from all four genotypes at both 45 and 142
DPA (Figure 3A; Supplementary Figure S2), we perform the
average linkage- based hierarchical clustering analysis using 7,430
differentially regulated genes. Again, the Pearson correlation-
based distance criterion is used.

Network Construction and Visualization
Weighted gene co-expression network analysis (WGCNA) is
a powerful and general approach for identifying which set
of genes/functional pathways are linked to phenotypes. We
constructed the networks by using functions from the WGCNA
package in R (Langfelder and Horvath, 2008). Specifically,
pairwise Pearson correlations for all possible pairs of 7,430
genes are calculated. Construction of a weighted gene network
requires the choice of the soft thresholding power β (Zhang
and Horvath, 2005). Here the power β is chosen such that
the scale-free topology criteria R2 of the network reaches
0.9, which corresponds to a power of 24 in our data. The
7430∗7430 adjacency matrix is defined as A=[aij], where aij =
|cor(vi, vj)|β with vi and vj as expression levels at log2 scale
for genes i and j. The networks are exported to Cytoscape for
visualization.

The modules (i.e., subsets of genes) with coherent expression
profiles are detected using functions from the WGCNA package
in R. First, the adjacency matrix A is transformed into the
topological overlap matrix (TOM) Ω =[Wi,j], where

Wij =
aij +

∑
u aiuauj

min
{∑

u aiu,
∑

u auj
}
+ 1− aij

.

TOM provides a measure of similarity among genes (Zhang
and Horvath, 2005). The average linkage hierarchical clustering
with the topological overlap measure-based distance criterion
is used for module detection. To identify modules that are
significantly correlated with the acid contents, we calculate
Pearson correlations between the acid content and the first
eigengene of each module. The first eigengene is chosen because
it is believed that they can provide optimal summaries of gene
expression profiles for the given modules.

Surrogate Variable Analysis
The SVA approach is also used to find the gene expression
and acid level association. It is understood that many factors,
such as batch effects and environmental and technical variations,
might have a substantial impact on transcriptome profiling.
If ignored, it may result in reduced study power and biased
biological conclusion. To adjust for those unknown, unmodeled,
or latent sources of noise, surrogate variables are first constructed
using functions in the R package “sva” (Leek and Storey, 2007;

Leek et al., 2012) and then controlled, along with genotype
and developmental stage, in the subsequent regression analysis
to identify a list of candidate genes associated with fruit
acidity.

Quantitative Reverse Transcription-PCR
(qRT-PCR) Analysis
RNA was reverse transcribed after removal of DNA by the DNase-
treatment. Gene-specific primers (Supplementary Table S2)
were designed for qRT-PCR analysis using SYBRGreen. As
described elsewhere (Xin et al., 2005), relative mRNA levels
were determined by first normalizing their PCR threshold cycle
numbers with those of the reference gene (Cs1g05000/Actin) and
setting the relative mRNA levels for each gene in Newhall at 45
DPA (Table 1) or 142 DPA (Supplementary Table S5) as 1 or
100, respectively, depending on the genes.

RESULTS

Analysis of Fruit Acidity at Early Stage of
Fruit Development in Four Orange
Varieties
To determine which stages of fruit development could be used
for profiling transcriptomes related to citric acid accumulation in
sweet oranges, we have selected two popular varieties with normal
acid contents, Newhall and Xinhui, and two varieties with low
acid levels, Succari and Bingtang, for analysis of total titratable
acids content changes in the pulp tissues from fruits at 45, 99, 118,
142, 179, and 230 DPA. In citrus fruits, the majority of titratable
acids measured are citrate, with malate only accounting for
approximately 10%, and the titration results correlated well with
measurement of individual acids by HPLC methods (Cercos et al.,
2006). Our results showed that at 45 DPA (which is close to the
end of Stage I of fruit development; Supplementary Figure S1),
there was no obvious difference in acid content between the
four varieties (Figure 1A). Fruit acid accumulated rapidly and
reached the peak at 99–142 DPA (which corresponds to early
and middle Stage II; Supplementary Figure S1) for Newhall and
Xinhui. However, acid content declined at late Stage II (179 DPA),
and stayed almost the same close to the end of Stage III (230
DPA). This acid accumulation pattern in Newhall and Xinhui
is similar to earlier reports (Albertini et al., 2006; Cercos et al.,
2006), consistent with the notion that organic acids in citrus
fruits undergo the most dramatic and dynamic change at Stage
II where cell expansion is predominant. In contrast, Bingtang
and Succari exhibited different acid accumulation kinetics.
Bingtang started to accumulate acids at 118 DPA and reached
the peak at 142 DPA and then declined at 179 DPA, although
at 230 DPA the acid content increased slightly. Interestingly,
Succari did not show any acid accumulation throughout fruit
development (Figure 1A). While Newhall has slightly larger
fruits at 142 DPA, the other three varieties have very similar
fruit sizes (Figure 1B). Sugar content measurement at 45 and
142 DPA showed that these four varieties all increased their sugar
accumulation in mid Stage II (Figure 1D). Therefore, these four
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TABLE 1 | Pearson correlation analysis of gene expression values detected by RNA sequencing and qPCR.

Genes Methods 45 DPA 142 DPA Pcc p-value

Newhall Xinhui Bingtang Succari Newhall Xinhui Bingtang Succari

Cs1g16150
(AHA10)

RNA seq 5.0 0.8 0.4 0.0 40.2 30.4 7.7 0.0 0.98 2.8E-05

qPCR 1.0 0.2 0.1 0.0 17.0 10.3 5.7 0.0

Cs1g20480
(AIL6)

RNA seq 9.9 10.7 14.4 11.8 1.1 0.6 0.8 13.1 0.99 4.3E-06

qPCR 1.0 1.2 1.4 1.2 0.1 0.1 0.1 2.0

Cs5g31400
(TT8)

RNA seq 2.3 1.3 0.9 0.5 30.7 14.1 6.3 2.4 0.98 1.7E-05

qPCR 1.0 0.8 0.5 0.1 22.6 6.5 4.2 1.1

Cs6g08410
(APD2)

RNA seq 1.0 0.7 0.6 0.5 11.2 6.9 2.1 0.5 0.94 5.8E-04

qPCR 1.0 0.6 0.5 0.7 29.8 19.0 11.7 1.3

Cs9g17580
(unknown)

RNA seq 0.5 0.3 0.1 0.1 8.2 3.4 1.4 0.1 0.94 5.8E-04

qPCR 1.0 0.7 0.4 0.7 12.7 6.2 2.6 0.1

Cs6g15800
( glycosyltransferase)

RNA seq 0.7 1.4 1.2 1.8 5.2 13.3 21.8 26.0 0.99 4.2E-06

qPCR 1.0 2.3 1.3 2.0 6.2 20.3 20.6 45.9

Cs1g25820
(Heavy metal-associated
domain containing protein)

RNA seq 0.0 0.0 0.2 0.0 2.2 0.2 0.8 18.7 0.98 1.5E-05

qPCR 1.0 1.1 0.9 2.1 10.2 3.1 6.2 135.6

Expression patterns for seven genes which were determined to be differentially regulated between different varieties by RNA sequencing (RNA seq) were validated by
using quantitative PCR (qPCR) analysis of the RT products. Values are the means of RNA seq data (RPKM) or qPCR data (with the value for Newhall at 45 DPA set as 1
after normalization to the Actin control) from three biological replicates. DPA, days post anthesis; Pcc, Pearson correlation coefficient.

orange varieties mainly differ in the fruit acidity rather than sugar
accumulation.

Overview of Fruit Transcriptomes
As acid accumulation at 142 DPA is the major factor in
determining fruit sweetness in the four varieties, we decided to
extract RNA from the pulp tissues of fruits at 45 and 142 DPA
(Figure 1C) for transcriptomic analysis. RNA sequencing was
used to profile transcriptomes for eight genotype and stage
combinations, each with three biological replicates. Mapping the
sequence reads to the orange genome revealed that a total of
24,166 unique genes have perfect matches with the sweet orange
genes. Those genes with an average of smaller than 10 raw
counts in any of the eight fruit genotype-stage combinations
were considered low abundant genes and thus were discarded,
resulting in a total of 17,540 genes for statistical analysis. EdgeR
(Robinson et al., 2010) was used to identify significantly expressed
genes by comparing 142 vs. 45 DPA for each of four varieties,
resulting in a total of 7,430 genes differentially expressed in any
of these four varieties with a two-fold cutoff (Supplementary
Table S1). Gene expression levels for seven selected genes
obtained through qRT-PCR were found to highly correlate with
that of RNA seq, with Pearson correlation coefficients (Pcc)
ranging from 0.94 to 0.99 and p-values of <0.001 (Table 1),
indicating that our RNA sequencing data are reliable.

K-means clustering via principal component analysis of
17,540 genes from those eight fruit variety-stage combinations
clearly indicates that the 24 samples can be clustered into
five groups (Figure 2A). The four orange varieties at 45 DPA
have homogenous gene expression patterns. In contrast, each
of the four orange varieties at 142 DPA shows rather distinct
gene expression patterns (Figure 2A), although the variation
for three biological replicates of Succari at this stage was

slightly larger than that for the other three varieties. Overall,
these assessments indicate that our biological replicates are
reproducible. Using the mean expression level of three biological
replicates in cluster analysis of 7,430 differentially regulated
genes (Figure 2B), we found that expression profiles at 45 DPA
do not differentiate among all four genotypes, while those
at 142 DPA differentiate the four varieties. Moreover, at 142
DPA Newhall, Xinhui and Bingtang oranges are more similar
to each other, while Succari is distinct from the other three
genotypes.

Hierarchical clustering of 7,430 differentially regulated genes
showed that the majority of genes exhibited similar expression
patterns in the four varieties (Figure 3A, Supplementary
Figure S2 and Table S1). For example, the largest cluster
(Cluster 1) has 4,482 genes which exhibit a similar down-
regulation pattern when comparing expression at 142 with
45 DPA, while the second largest cluster (Cluster 2) has 2,055
genes that show a similar up-regulation pattern (Figure S2).
This result indicates that from 45 to 142 DPA the majority of
genes turn on and off similarly in these four orange varieties.
Venn diagram analysis revealed that 726 and 2,329 genes were
commonly up-regulated and down-regulated in all four varieties
(Figure 3B). Together, there are 3,145 differentially regulated
genes from 45 to 142 DPA that are common to all four varieties,
indicating that this group of orange early fruit development-
related genes are likely the most conserved ones in four sweet
orange varieties.

Pearson Correlation Analysis of Fruit
Acidity and Gene Expression Changes
To identify the genes significantly correlated with the acid
accumulations in orange fruits, pairwise correlation between
gene expression and acid levels were performed using classical
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FIGURE 1 | Acid and sugar metabolic changes during orange fruit development. (A) Total acidity in endocarps of four orange varieties. Six time points are
45, 99, 118, 142, 179, and 230 days post anthesis (DPA). FW, fresh weight. Values are means and SE of 3–4 fruits. (B) Images of half fruit of four orange varieties at
45 and 142 DPA. The same scale bar represents 1 cm for all fruits. (C) Images showing the endocarp fruit tissues (indicated by the areas within a red dotted circle)
excised for metabolic and RNA analyses. Exocarp (albedo) and mesocarp (flavedo) outside the red circle were carefully removed. Endocarp or pulp botanically is the
collection of carpels filled with juicy sacs or vesicles. (D) Total sugar contents in endocarps of four orange varieties at 45 and 142 DPA. Total sugar includes glucose,
fructose and sucrose. Values are means and SE of three fruits.

Pearson correlation analysis on three biological replicates.
Among 7,430 differentially regulated genes, a total of 39 genes
had Pcc larger than 0.80 (positive correlation) or smaller than
-0.80 (negative correlation), with a minimal false discovery
rate (FDR) of 1.0E-04 (Table 2). The majority (29 out of 39,
approximately 75%) of these genes were positively correlated
with acid level, with Cs6g08410 exhibiting the strongest
correlation (Pcc = 0.96), which is mostly closed related to
Arabidopsis APD2 gene, a RING/U-box superfamily protein

shown to be involved in pollen development (Luo et al.,
2012).

Gene ontology (GO) analysis of these 39 acid-correlated
genes did not reveal any significantly overrepresented GO.
Although 15 of those genes were classified as unknown
biological process, the remaining 24 genes can be classified
into four major GO categories, metabolic processes, transport,
transcription factors and protein degradation (Table 2). The
metabolic process category contains 10 genes, among which
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FIGURE 2 | Global relationships between four orange varieties and
their biological replicates. (A) Principal component analysis plot of RNA
seq data. Expression of 17,540 genes in each biological replicate for every
orange variety at 45 and 142 DPA (days post anthesis) were used for principal
component analysis. The x- and y-axes represent the scores of principal
components 1 (explained 48.7% of total variance) and 2 (11.2% of total
variance), respectively. (B) Cluster dendrogram of transcriptome data using
the mean expression level of three biological replicates in each of orange
varieties for 7,430 differentially expressed genes.

three genes are closely related to Arabidopsis cytochrome
P450-type genes (CYP704A2, CYP86A8, and CYP71B34). Other
genes are involved in various aspects of metabolic process.
For example, Cs2g19320 is closely related to Arabidopsis
JMT involved in jasmonate synthesis. Cs2g19320 is highly
similar to Arabidopsis SAM-dependent methyltransferase.
Cs3g11790/VEP1 encodes an enzyme participating in
steroid metabolic process and involved in xylem and
phloem pattern formation (Jun et al., 2002; Bauer et al.,
2012). Cs9g18830 is homologous to a member of UDP-
glucosyltransferase, UGT88A1. It remains unclear whether
the metabolic processes controlled by these gens relate to acid
accumulation.

The GO category of transport, which has five genes, is of
particular interest. Cs1g16150 is predicted to encode an H+-
ATPase and most similar to Arabidopsis AHA10, which has
been shown to function in vacuolar biogenesis and acidification
(Baxter et al., 2005). Furthermore, this gene was also identified
by comparing the transcriptomes using lemon, orange, and

FIGURE 3 | Heatmap and Venn diagram of differentially expressed
genes. (A) Heatmap of 7,430 differentially expressed genes in orange fruits
between 45 and 142 DPA (days post anthesis). (B) Venn diagram of
up-regulated, down-regulated and differentially regulated genes from 45 to
142 DPA in four varieties.

pummelo varieties with differential acid levels (Aprile et al., 2011;
Shi et al., 2015), indicating that H+ pump activity regulation
could be a potentially important mechanism in the control of
fruit acidity. Another transport-related protein (Cs3g15070) is
similar to Arabidopsis AVP1, which regulates apoplastic pH and
auxin transport (Sarafian et al., 1992; Li et al., 2005). Two other
genes, Cs1g20080 and Cs5g13360, are most closely related to
Arabidopsis ECA4 (calcium transport ATPase) and MSL6 (a
mechanosensitive ion channel), respectively (Wu et al., 2002;
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Haswell et al., 2008). In addition, Cs1g14330 is most closely
related to Arabidopsis Ara7 which acts in trafficking to vacuole
(Jia et al., 2013). Except for MSL6, these transport-related genes
have very strong positive correlations with fruit acidity. Given

that citrate movement into and storage in the vacuole is critical
for acid accumulation, this result highly indicates a potential role
for these transport-related genes in citrate homeostasis in orange
fruits.

TABLE 2 | A list of genes strongly correlated with the acid level in orange fruits.

CsGID Pcc FDR AtGID Arabidopsis gene description

Metabolic process (10)

Cs6g13410 −0.81 3.3E-04 At5g06390 FLA17, cell wall arabinogalactan protein 17 precursor

Cs9g18830 0.89 4.8E-06 At3g16520 UGT88A1, UDP-glucosyl transferase 88A1

orange1.1t00260 0.82 2.6E-04 At2g45510 CYP704A2, cytochrome P450

Cs5g03440 0.82 2.6E-04 At2g45970 CYP86A8, cytochrome P450

Cs2g19590 −0.88 9.2E-06 At3g26300 CYP71B34,cytochrome P450

Cs5g09970 0.81 3.6E-04 At4g22880 LDOX, proanthocyanin biosynthesis and vacuole formation

Cs2g19300 0.87 1.6E-05 At1g19640 JMT, Jasmonic acid carboxyl methyltransferase

Cs2g19320 0.93 2.9E-11 At5g66430 SAM-dependent methyltransferase

Cs3g23110 −0.80 6.4E-04 At3g16150 ASPGB1, asparaginase B1

Cs3g11790 0.85 3.9E-05 At4g24220 VEP1, steroid metabolic process, xylem and phloem pattern formation

Transport (5)

Cs1g16150 0.89 2.4E-06 At1g17260 AHA10 (H+-ATPase), vacuolar biogenesis and acidification

Cs3g15070 0.88 9.1E-06 At1g15690 AVP1 (H+-PPase), apoplastic pH and auxin transport

Cs1g20080 0.93 5.8E-08 At1g07670 ECA4, calcium transport ATPase, calcium signaling

Cs5g13360 −0.80 6.4E-04 At1g78610 MSL6, mechanosensitive ion channel

Cs1g14330 0.84 7.6E-05 At4g19640 Ara7, Rab small GTPase, function in trafficking to vacuole

Transcription factors (4)

Cs1g20480 −0.80 6.4E-04 At5g10510 AIL6, AP2-domain transcription factor, development

Cs5g31400 0.89 2.4E-06 At4g09820 TT8, bHLH family, regulation of flavonoid pathways

Cs9g03070 0.90 1.7E-06 At3g13540 MYB5, seed coat development

orange1.1t04785 0.85 4.1E-05 At4g09460 MYB6, response to hormones gibberellin, jasmonic acid and salicylic acid

Protein degradation (3)

Cs2g04770 0.85 4.7E-05 At1g09580 XBCP3, Xylem bark cysteine peptidase

Cs3g15620 0.93 5.8E-08 At5g01450 APD2, RING/U-box superfamily protein, pollen development

Cs6g08410 0.96 6.5E-10 At5g01450 APD2, RING/U-box superfamily protein, pollen development

Other (2)

Cs8g02590 −0.82 2.2E-04 At4g35070 SBP, S-ribonuclease binding protein family

Cs2g15460 −0.81 3.3E-04 At3g58640 MAPKKK-related kinase, protein phosphorylation

Unknown function (15)

Cs1g10860 0.80 6.4E-04 No hit

Cs1g26060 0.87 1.6E-05 At2g17710 Unknown

Cs2g05055 0.85 4.1E-05 No hit

Cs2g21750 0.88 9.2E-06 No hit

Cs3g25020 0.83 1.6E-04 No hit

Cs4g19810 0.86 2.0E-05 At2g20740 Tetraspanin family protein

Cs5g25860 −0.81 3.1E-04 At3g26040 HXXXD-type acyl-transferase family protein

Cs5g32490 0.91 6.0E-07 No hit

Cs6g15070 0.80 6.4E-04 At3g59320 Eukaryotic protein of unknown function (DUF914)

Cs7g17040 0.92 3.8E-07 No hit

Cs9g03580 −0.84 6.7E-05 No hit

Cs9g03065 0.94 3.9E-08 No hit

Cs9g17580 0.93 7.6E-08 At3g49055 Unknown

orange1.1t01749 0.90 2.4E-06 At2g47115 Endomembrane system

orange1.1t03644 −0.83 1.7E-04 No hit

A total of 39 citrus genes are highly correlated with the acid levels in orange fruits of four varieties, with a Pearson correlation coefficient (Pcc) of at least ± 0.80 and an
adjusted p-value (FDR, false discovery rate) of larger than 1.0E-04. CsGID, Cs gene ID. The number of genes for individual biological process is indicated in parenthesis.
The most closely related homolog of Arabidopsis genes are presented as AtGID (At gene ID), with gene description shown. No hit, no Arabidopsis homolog for CsGID.
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In addition, four transcription factor genes are highly
correlated to acid level. Cs1g20480 is orthologous to Arabidopsis
AIL6, an AP2-domain containing transcription factor. AIL6 is
critical for auxin-mediated flower development (Krizek, 2009,
2011). Cs5g31400 is most closely related to Arabidopsis TT8,
a member of a large family bHLH transcription factor. Given
that TT8 is an important regulator of flavonoid biosynthesis
pathway (Xu W. et al., 2013) and as described above,
another proanthocyanin biosynthesis gene, Cs5g09970/LDOX,
is also positively correlated with acid level, it is possible that
flavonoid/anthocyanin metabolism may play a role in the control
of acid accumulation in orange fruits. Two other transcription
factors belong to the large MYB family, Cs9g03070 (MYB5), and
orange1.1t04785 (MYB6) and they also show positive correlations
with acid level.

Three genes are predicted to act in protein degradation based
on GO analysis or functional demonstration in Arabidopsis.
Cs2g04770 is similar to XBCP3, a vacuolar cysteine peptidase
(Beers et al., 2004; Carter et al., 2004). The other two
closely orange genes, Cs6g08410 and Cs3g15620, which have
the strongest correlation with acid level (Table 2), are most
closely related to Arabidopsis Aberrant Pollen Development 2
(APD2). Arabidopsis APD2 acts in ubiquitin-mediated protein
degradation and is involved in cell division during pollen
development (Luo et al., 2012).

Two other genes also have been annotated with biological
process, Cs2g15460 (encoding a MAPKKK-related protein
kinase) and Cs8g02590 which is closely related to SBP (a member
of S-ribonuclease binding protein family).

Network Analysis of Early Fruit
Development Transcriptomes Using
WGCNA
To gain further insights into the gene expression networks
in early fruit development with a particular focus on the
transcriptional architecture of citrate accumulation, WGCNA
were used for gene coexpression network construction, module
detection and visualization (Langfelder and Horvath, 2008). This
tool has been widely used in animal systems analysis and recently
used in fruit crops including coexpression network analysis in
citrus and strawberry (Zheng and Zhao, 2013; Hollender et al.,
2014). From the coexpression network constructed based on
7,430 differentially regulated genes between 45 and 142 DPA, we
have identified a total of 10 distinct modules (Figure 4A). The
majority (80%) of genes belongs to the largest module Turquoise,
and each of the other nine modules contains only 0.4–5.7% of
genes (Figure 4B). Furthermore, the most conserved early fruit
development genes (3,145) are heavily distributed (95%) to the
Turquoise module, but the 39 strongly acid correlated genes
(Table 2) are distributed into three modules, Magenta (2 genes),
Pink (24 genes), and Turquoise (13 genes). The Pink module is
of particular interest as 24 of 39 acid related genes belong to
this module, representing 47% of all the Pink module genes in
the network (Figure 4B). Indeed, correlation analysis between
the module eigengenes and fruit acid levels suggests that the
Pink module is most strongly and positively correlated with acid

FIGURE 4 | Coexpression network analysis of early fruit development
transcriptomes using WGCNA. (A) Dendrogram and modules for 7,430
differentially expressed genes. The major tree branches represent 10 modules
shown in different colors. Each leaf in the tree represents one gene.
(B) Distribution of 7,430 differentially expressed genes and correlation of
modules and acid levels. Number (No.) and percentage (%) of the genes for
each module and correlation coefficient (Cor.) between acid contents and
module eigengene expression were shown. P-value, FDR adjusted p-value.
Asterisk indicates statistically significant correlation.

level (Pcc = 0.85, adjusted p-value < 0.001), while the other
two modules, Magenta and Turquoise, only showed weak and
negative correlations with acid levels (Figure 4B).

Analysis of Citrate-Correlated Modules
and Subnetworks
To provide a systems view of gene networks for the orange
fruit acid control, networks from the three modules strongly
correlated with acid levels, Magenta, Pink and Turquoise, were
extracted. We first constructed the acid-correlated Magenta
subnetwork using the two genes strongly associated with
acid levels, Cs3g23110/ (ASPGB1) and Cs1g20480 (AIL6) as
the seed nodes. The expression pattern for these two genes
is shown in Figure 5A. While their expression in Newhall,
Xinhui and Bingtang was down-regulated at the peak of
acid accumulation (142 DPA) compared to 45 DPA, they
maintained similarly high expression levels at 142 DPA in
acidless Succari, showing a clear negative correlation with
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FIGURE 5 | Acid-related Magenta and Pink modules and subnetworks. (A) Expression pattern for two of the acid-correlated genes from the Magenta module.
N, X, B and S indicate Newhall, Xinhui, Bingtang and Succari, respectively. DPA, days post anthesis. (B) Subnetwork of the acid-correlated genes from the Magenta
module. (C) Expression pattern for 24 of the acid-correlated genes from the Pink module. (D) Subnetwork of the acid-correlated genes extracted from the Pink
module. The subnetworks are constructed by using the acid-correlated genes from the Magenta and the Pink modules, respectively, as seed nodes to extract the
weighted gene coexpression network of all 7,430 differentially expressed genes. The resulting correlation subnetworks (edge weight larger than 0.2) are visualized by
Cytoscape. The acid-correlated genes used as seed nodes are coded in yellow.
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acid accumulation (Table 2). In this subnetwork, 16 genes
had interactions with AIL6 (Figure 5B), although none of the
genes showed strong interactions with ASPGB1. Among the
AIL6-ineeracting genes, 15 have their closest homologs identified
in Arabidopsis and nine of them are given specific gene names.
For example, there are two genes likely involved in structural
constituent (Cs8g16840/FLA12, a plasma membrane-associated
FASCICLIN-like arabinogalactan-protein; and Cs3g1660/TUA6,
an alpha tubulin), and four genes encode enzymes involved in
various metabolic processes, including orange1.1t02024/FAD2
(fatty acid desaturase), Cs5g05240/ALDH2B4 (a mitochondria
and chloroplast-localized NAD aldehyde dehydrogenase), and
Cs8g1629/PAL1 (a Phe ammonia lyase). Most interestingly, five
genes are likely involved in regulation of transcription, including
two transcription factors (Cs2g23600/SOM and Cs1g17580)
and three transcriptional regulators (Cs6g15330/GRF3,
Cs7g27910/PRR7 and Cs5g28040/LUH). SOM (SOMNUS)
is a CCCH-type zinc finger protein. PRR7 (PSEUDO-
RESPONSE REGULATOR 7) is a two-component response
regulator involved in light signaling and circadian rhythmic
response (Kaczorowski and Quail, 2003). GRF3 (GROWTH-
REGULATING FACTOR 3) is one of nine GRF-type
transcription activators. LUH (Leuning-homolog) encodes
a WD40 repeat and LUFS domain-containing protein which
has a role in flower development (Sridhar et al., 2004). This
subnetwork analysis indicates a possible transcriptional network
involving the acid-correlated AIL6 transcription actor and other
transcription factors or regulators.

We then analyzed the Pink module which contains the
majority of the acid-correlated genes (Figure 4B). These
24 genes exhibit a pattern (Figure 5C) opposite to that
in the Magenta module (Figure 5A), i.e., they showed up-
regulation at 142 DPA compared to 45 DPA. These genes
also show differential down-regulation between Bingtang and
Succarri, and thus they are most strongly and positively
correlated with acid accumulation in orange fruits. Among these
genes, Cs2g04770/XBCP3, Cs1g26060, and Cs1g16150/AHA10
showed the largest changes in absolute expression levels in
Bingtang and Succari. Gene coexpression network constructed
by extracting these 24 genes from the Pink module revealed
that most of these 24 genes are highly interconnected, with
only two genes (Cs4g19810 and orange1.1t00260/CYP704A2)
not present in this subnetwork and three genes which are
not strongly correlated with acid (NHX1, LOG5 and NPR3;
highlighted in pink) having interactions with the 22 acid-
correlated genes (Figure 5D). In this subnetwork, 15 acid-
correlated genes have 9–15 interactions and the remaining
seven genes have only 1–3 interactions. The 10 genes having
at least 10 interactions are labeled with larger node sizes in
the subnetwork (Figure 5D). Among these, Cs6g08410/APD2,
the most strongly acid-correlated gene has the largest number
(15) of interactions. Cs3g15620, which also has a very strong
correlation with acid level (Table 2) and is also most closely
related to APD2, has only three interactions including the one
with Cs6g08410/APD2. Most interestingly, Cs6g08410/APD2
gene has interactions with all the other nine hub genes with
at least 10 interactions (Figure 5D). Two of them are genes

encoding ATPases involved in proton (Cs1g16150/AHA10) or
cation transport (Cs1g20080/ECA4). ECA4 is also connected
to another proton transport protein Cs3g15070/AVP1. In
addition, two transcription factor genes, Cs5g31400/TT8 and
Cs9g03070/MYB5, are also connecting to Cs6g08410/APD2.
These two transcription factor genes are connected to each
other and each has interactions with other genes highly
correlated with acid level. Moreover, MYB5 is also connected
to orange1.1t04785/MYB6. The other functionally known hub
gene, Cs2g04770/XBCP3, has interactions with APD2, TT8,
MYB5, AHA10, ECA4, and others. Arabidopsis APD2 is
a RING/U-box superfamily protein localized in intracellular
membranes and recently shown to possess an E2-dependent
E3 ligase activity in vitro (Luo et al., 2012). The cysteine
peptidase XBCP3 in Arabidopsis is localized in vacuole and
ER and predicted to be involved in proteolysis (Carter et al.,
2004). Taken together, analysis of this Pink module-based
acid-correlated subnetwork indicates that the three groups of
genes involved in protein degradation, proton/calcium transport
and transcription have a highly orchestrated transcriptional
regulatory pattern.

For the Turquoise module which contains 13 acid-correlated
genes (Figure 4B), although the correlation between the
Turquoise module eigengene expression and fruit acid levels
is negative (–0.59; Figure 4B), these 13 genes actually exhibit
two contrasting patterns (Figures 6A,B). One is represented
by eight genes which exhibit strong down-regulation in
Newhall and Xinhui but weak in Bingtang and Succari
(Figure 6A), and the other represented by five genes which
show strong up-regulation in Newhall and Xinhui but weak
in Bingtang and Succari (Figure 6B). For the first pattern
(Figure 6A), which has negative correlations with acid level
(Table 2), Cs2g19590/CYP71B34 and Cs6g13410/FLA17 show
the most dramatic expression differences. For the second pattern
(Figure 6B), which has positive correlations with acid level
(Table 2), Cs5g03440/CYP86A8 and Cs5g32490 display the
largest difference in expression levels. Using these 13 acid-related
genes as the seed nodes to extract the Turquoise module, a huge
subnetwork was derived (Figure 6C). This subnetwork contains
six of the acid-correlated genes (highlighted in yellow) plus 412
other genes, with a total of 421 interactions (Supplementary
Figure S3 and Table S3). However, the majority (393) of
these genes have the interactions with Cs5g13360/MSL6, the
largest hub in the subnetwork (Figure 6C). Among those 393
genes, six of them connect MSL6 to another acid-correlated
gene, Cs3g11790/VEP1. In addition, Cs4g03830 (most closely
related to Arabidopsis PUMILO 6 or PUM6) connects MSL6
to a small hub, Cs5g03440/CYP86A8, another acid-correlated
gene (Table 2). Indeed, another cytochrome P450-type gene,
Cs2g19590/CYP71B34, is also present in this subnetwork. MSL6
has a relatively weak, negative correlation (Pcc = –0.80; Table 2)
with acid level and down-regulation at 142 DPA is weaker
in Bingtang and Succari than that in Newhall and Xinhui
(Figure 6A). Arabidopsis MSL6 is a member of mechanosensitive
ion channel proteins likely involved in sensing and responding
to mechanical stimuli such as touch, osmotic pressure (Haswell
et al., 2008).
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FIGURE 6 | Acid-correlated Turquoise module and subnetwork. (A) Expression pattern for eight of the acid-related genes from the Turquoise module. N, X, B,
and S indicate Newhall, Xinhui, Bingtang, and Succari, respectively. DPA, days post anthesis. (B) Expression pattern for five of the acid-related genes from the
Turquoise module. (C) Subnetwork of the acid-correlated genes from the Turquoise module (edge weight larger than 0.2). Genes belonging to the Turquoise module
are coded in yellow.

SVA of Candidate Genes Related to Fruit
Acidity
After controlling the effects of genotypes, developmental stage
and unmodeled latent factors, we identify a total of 104 genes
that are significantly associated with the acid level, using an
FDR cutoff at 0.0005 (Supplementary Table S4). Venn diagram
analysis shows that 15 of those genes (Table 3) overlap with the
list of 39 genes (Table 2) identified using Pearson correlation
analysis. Among these 15 genes, 11 belong to the Pink module,

one the Magenta and three the Turquoise modules (Table 3).
Interestingly, the majority of these genes are the hub genes in the
acid subnetworks (Figures 5 and 6), and all three genes involved
in protein degradation (Cs6g08410/APD2, Cs3g15620/APD2,
and XBCP3) and three of five in transport process (AHA10, ECA1
and Ara7) are revealed by all three distinct algorithms (Pearson,
WGCNA, and SVA).

To further validate the result, we used qRT-PCR to analyze
the expression of Cs1g16150/AHA10 and Cs6g08410/APD2, two
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TABLE 3 | A list of 15 acid-related candidate genes identified by three algorithms.

CsGID Gene Name SVA (FDR) Pearson correlation (Pcc) WGCNA modules

Cs6g08410 APD2 1.6E-04 0.96 Pink

Cs3g15620 APD2 3.7E-04 0.93 Pink

Cs2g04770 XBCP3 3.8E-04 0.85 Pink

Cs1g16150 AHA10 3.1E-05 0.89 Pink

Cs1g20080 ECA4 3.6E-06 0.93 Pink

Cs9g18830 UGT88A1 3.2E-04 0.89 Pink

Cs2g19300 JMT 4.5E-04 0.87 Pink

orange1.1t04785 MYB6 3.2E-04 0.85 Pink

Cs9g17580 4.4E-04 0.93 Pink

orange1.1t01749 1.8E-04 0.90 Pink

Cs1g26060 4.7E-04 0.87 Pink

Cs1g20480 AIL6 7.3E-06 −0.80 Magenta

Cs1g14330 ARA7 3.7E-04 0.84 Turquoise

Cs2g19590 CYP71B34 1.3E-05 −0.88 Turquoise

Cs6g13410 FLA7 2.8E-04 −0.81 Turquoise

A total of 15 genes are present in both the list of 39 acid-correlated genes (Table 2) identified using Pearson correlation analysis and the list of 104 genes (Supplementary
Table S5) identified by Surrogate Variable Analysis (SVA). The majority of these genes are in the Pink module revealed by WGCNA (weighted gene coexpression network
analysis). CsGID, Cs gene ID; FDR, false discovery rate; Pcc (Pearson correlation coefficient).

genes from the list (Table 3), in fruits of 142 DPA collected from
a different year than the year for RNA Seq analysis. Our results
showed that expression of these two key hub genes in the Pink
module (Figure 5D) was significantly correlated with the RNA
Seq data (Supplementary Table S5). Taken together, this subset
of 15 genes revealed through our integrated systems analysis may
represent the candidate genes most likely associated with fruit
acidity in developing orange fruits.

DISCUSSION

Because of the paramount importance of manipulating
fruit acidity in improving fruit quality, many genetic and
transcriptomic studies have been performed with a goal
of unraveling genetic mechanisms of citrate and malate
accumulation in fruits. Except one melon study (Cohen et al.,
2014), most of forward genetic studies have not revealed the
genes that show causative effects in fruit acidity control. Forward
genetic study in citrus is severely hindered because of its
extremely complex genetic background and long juvenile phase.
We therefore addressed this key question by using an integrated
systems biology approach.

Our Unique Transcriptome and Systems
Biology Study Has Led to the
Identification of a List of Candidate
Genes Likely Associated with Fruit
Acidity Control
Although a number of transcriptomic studies in tomato, orange
and other fruits have been reported, our transcriptome profiling
and network analysis differ from those prior studies in several
ways. First, several of the prior transcriptomic studies used the
RNA samples from fruits of normal acidity or the ripening

mutants showing pleiotropic phenotypes (Alba et al., 2005;
Cercos et al., 2006; Janssen et al., 2008; Mounet et al., 2009;
Fasoli et al., 2012; Osorio et al., 2012; Kang et al., 2013). Second,
in case that acidless varieties were included, these studies did
not analyze the samples at Stage I or early stage II which had
similar acid levels for both acidic and acidless varieties and thus
it remains a challenge to have a sound comparison of gene
expression (Aprile et al., 2011; Yu et al., 2012; Wu J. et al.,
2014). In our study, three types of sweet orange fruits have been
used for comparison, acidless variety (Succari), low acid variety
(Bingtang), and two varieties with normal acid levels (Newhall
and Xinhui). Furthermore, we have compared the fruit samples at
late Stage II (where citrate levels exhibit a large difference between
the varieties) with those close to the end of Stage I (where citrate
levels do not differentiate between the varieties). Consequently,
we are able to identify a list of 39 genes strongly associated
with acid levels, among a large number (7,430) of genes which
exhibited differential regulation from Stage I to Stage II in any
of the four sweet orange varieties. Third, we have integrating the
results using three different algorithms (Pearson, WGCNA and
SVA) to identify a total of 15 genes (Table 3) which are found
to be most likely associated with fruit acidity. In addition, the
majority of these 15 genes are hub genes in the acid accumulation
gene networks. Clearly, use of these four sweet orange genotypes
with varying fruit acidity and through integrated systems analysis
have led to the identification of candidate genes that are small in
number but likely more specifically associated with the control of
organic acids in developing fruits.

Three Distinct Regulatory Modules
Provide Novel Insights into the Orange
Fruit Acidity Control
To provide clues to the possible involvement of citrate synthesis
and GABA shunt in the fruit acidity control during early stages of
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sweet orange development, we examined the expression of genes
predicted to function in citrate synthesis or GABA shunt. We
did observe that some of Aco1/2/3 and GAD1/2 genes encoding
enzymes critical for citrate utilization and GABA shunt (in
particular for Aco3 and GAD2) were up-regulated from 45 to
142 DPA (Supplementary Table S6). However, the expression
difference at 142 DPA between four varieties with varying acidity
was either lacking or at most marginal (less than twofold), in
sharp contrast to prior studies (Terol et al., 2010; Aprile et al.,
2011; Liu et al., 2014). In addition, the genes encoding citrate
synthase (orange1.1t01588 and Cs7g01170) did not exhibit any
expression difference between 45 and 142 DPA and among four
varieties, and the genes predicted to function as putative citrate
synthase (such as Cs7g08950 and Cs9g02230; Supplementary
Table S1) decreased expression slightly from 45 to 142 DPA
but similarly in all four varieties. On the other hand, none of
the 39 acid-correlated genes identified by Pearson correlation
analysis encodes enzymes directly involved in citrate synthesis
and the proposed citrate utilization model including the GABA
shunt. Although we cannot exclude the possibility that those
genes involved in citrate synthesis or GABA-shunt can still be
regulated at the translational or post-translational level, our
result raises a possibility for a citrate synthesis and GABA
shunt-independent mechanism at the transcriptional level in
maintaining low accumulation of citrate at Stages I and II at least
in the two sweet orange varieties analyzed here, Bingtang and
Sucarri.

Interestingly, our systems analysis has revealed the existence of
three distinct regulatory modules, Magenta, Pink and Turquoise.
While the Magenta module of the network contains genes
that show negative correction, the major module Pink (with
24 of the acid-correlated genes) is positively correlated with
acid levels, and the Turquoise module exhibits both positive
and negative correlations. Among these three modules, the
Pink might play a predominant role in the control of fruit
acidity. This is because more than 60% of the acid-related genes
belong to this module, and this gene number represents 47%
of all the Pink module genes in the fruit development network.
In addition, gene coexpression network analysis suggests that
transcription factors may act as major hubs in the acid control
subnetworks, such as AIL6, TT8, and MYB5. The other type
of acid-correlated genes can be grouped into the GO categories
of transport and protein degradation. The transport category
includes AHA10, ECA4, AVP1, MSL6, and ARA7. The first
three belong to the Pink module and they connect with each
other and with other proteins in the subnetwork, while the
latter two genes belong to the Turquoise module. MSL6 turns
out to be a super hub, interacting with almost 400 genes.
AHA10 and AVP1 are shown to act as proton pumps in
Arabidopsis, consistent with a biochemical study where two
types of H+-ATPases activities are found in vacuoles of lemon
fruits (Muller et al., 1996). The most interesting one is AHA10.
Correlation of AHA10 expression with fruit acidity has been
reported by an earlier study which compared acidic and acidless
lemon fruits (Aprile et al., 2011) and was recently confirmed
in orange and pummelo varieties with differential acid levels
(Shi et al., 2015). Together with our finding, we hypothesize

that AHA10 might represent a conserved regulatory molecule
involved in acid accumulation in the vacuole of sweet orange
and lemon fruits. Indeed, convincing genetic evidence has
demonstrated that Arabidopsis AHA10 is involved in vacuolar
biogenesis and pH regulation (Baxter et al., 2005). The study
of vacuolar acidification in Arabidopsis also led to the finding
that anthocyanin accumulation is subjected to the regulation by
AHA10. Consistent with this finding, our study has also revealed
that one of the positively acid-correlated genes, Cs5g09970, is
most similar to Arabidopsis LDOX involved in proanthocyanin
biosynthesis and vacuole formation (Abrahams et al., 2003).
Therefore, our work raises an intriguing possibility that AHA10-
type ATPase has a conserved function in controlling pH or acidity
in fruits or other organs in many types of plants. It will be
interesting to test this hypothesis in fruit crops such as orange
and tomato.

Another potentially interesting result from our work is
the identification of regulatory proteins involved in protein
degradation. This includes one XBCP3-like cysteine peptidase
and two genes most closely related to Arabidopsis APD2,
a RING/U-box superfamily protein involved in ubiquitin-
mediated protein degradation (Luo et al., 2012). They all belong
to the Pink module and are identified by the other two algorithms,
Pearson and SVA. These two APD2-like genes exhibit very strong
correlations with acid levels, with the most strongly correlated
one (Cs6g08410) acting as a major hub in the subnetwork by
interacting with transcription factors (TT8 and MYB5) and ion
pumps AHA10 and ECA4. Mutants of APD2 and three other
closely related APD genes have been reported to alter pollen
development due to a defect in cell division (Luo et al., 2012),
and thus it remains unclear whether these genes are also involved
in fruit development and/or acid control in orange. Of particular
note, a preliminary yeast two-hybrid study using Arabidopsis
APD2 as a bait resulted in the identification of two proteins,
AT1G75630 and AT2G25610, which are parts of subunit C of
the V-type ATPase that catalyzes ATP hydrolysis to transport
protons (Luo et al., 2012). Taken together, the results from our
integrated systems analysis together with insights from studies
in the Arabidopsis model system provide a testable intriguing
hypothesis that the ubiquitin-mediated protein degradation
pathway might link ion transport and transcription factors in the
control of citrate accumulation in orange fruits.

In summary, our integrated systems analysis of the acid-
related genes has led us to propose interesting hypotheses
involving ion transport, protein degradation and transcription
for the genetic control of citrate accumulation in orange fruits. As
in almost all of the transcripomic studies, it remains a daunting
task to determine which of those candidate genes actually have
regulatory roles in the fruit acidity control. A recent study in
Arabidopsis seed germination reported that 22–50% of the hub
genes in the seed network turned out to have physiological
functions in seed germination (Bassel et al., 2011). Therefore, our
integrated systems biology analysis provides an important basis
for future study of those hub genes identified here to test whether
they play important roles specifically in citrate accumulation or
broadly in fruit development in citrus which has a potential to be
used as a model for non-climacteric fruits.
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