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Heat stress is likely to be a key factor in the negative impact of climate change on

crop production. Heat stress significantly influences the functions of roots, which provide

support, water, and nutrients to other plant organs. Likewise, roots play an important role

in the establishment of symbiotic associations with different microorganisms. Despite

the physiological relevance of roots, few studies have examined their response to heat

stress. In this study, we performed genome-wide transcriptomic and proteomic analyses

on isolated root hairs, which are a single, epidermal cell type, and compared their

response to stripped roots. On average, we identified 1849 and 3091 genes differentially

regulated in root hairs and stripped roots, respectively, in response to heat stress.

Our gene regulatory module analysis identified 10 key modules that might control the

majority of the transcriptional response to heat stress. We also conducted proteomic

analysis on membrane fractions isolated from root hairs and compared these responses

to stripped roots. These experiments identified a variety of proteins whose expression

changed within 3 h of application of heat stress. Most of these proteins were predicted

to play a significant role in thermo-tolerance, as well as in chromatin remodeling and

post-transcriptional regulation. The data presented represent an in-depth analysis of the

heat stress response of a single cell type in soybean.
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INTRODUCTION

Temperature is a critical factor that controls plant growth and development (Patel and Franklin,
2009). The Intergovernmental Panel on Climate Change (IPCC) has forecasted that global
temperatures will increase between 2 and 5◦C by the end of this century (http://www.ipcc.ch).
In most regions, this global warming will negatively impact plant growth and development. As
a consequence, the yields of a variety of important crops, such as corn, wheat, and soybean will be
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compromised. Thus, it is imperative to understand the
physiological and molecular processes that plants use to cope
with heat stress as a first step to breed for plants more tolerant
to the negative effects of climate change.

Heat stress is considered one of the main factors that
negatively affect crop production (Tubiello et al., 2007; Wheeler
and von Braun, 2013). This is because high temperatures reduce
plant growth, as well as the number of flowers and seeds
per pod. At a biochemical level, high temperatures induce
protein denaturation, increase membrane lipid fluidity, increase
reactive oxygen species production, and inhibit function of the
photosynthetic apparatus (Larkindale et al., 2005; Hasanuzzaman
et al., 2013; Qu et al., 2013). Plants have developed a variety of
adaptations that allow them to cope with heat stress. Some of
these responses include changes in leaf orientation, modification
of membrane lipid composition, activation of anti-oxidative
mechanisms, accumulation of osmolites, and early maturation
(Hasanuzzaman et al., 2013). These responses are finely regulated
at transcriptional, post-transcriptional, and post-translational
levels by different transcription factors (TFs), small RNAs, and
protein kinases, respectively (Chen et al., 2012; Guan et al., 2013;
Sullivan et al., 2014).

Soybean is a chief source of protein for human consumption
and is grown on about 6% of the world’s arable lands (Hartman
et al., 2011). Soybean production in theUnited States significantly
increased over the last 10 years with a concomitant increase
in the value of the crop. However, as a clear example of the
impact of abiotic stress, US soybean production was reduced
∼7% during the severe drought/heat period in 2012 (http://
www.ers.usda.gov/topics/in-the-news/us-drought-2012-farm-an
d-food-impacts.aspx#crop). Useful models to predict the impacts
of changing climate on plant productivity will require accurate,
quantitative data that predict impacts across broad levels
and spatial scales. The combination of systems biology and
different “omics” approaches (i.e., transcriptomic, proteomic,
andmetabolomics) offers an attractive option to study the impact
of global climate change on plant growth and development.
Moreover, the inclusion of single cell models can significantly
increase the accuracy and resolution of this approach, especially
by avoiding signal dilution.

Most studies of plant responses to heat stress have focused
mainly on above ground organs. Here, we focus our evaluation
of heat stress on root cells and tissues. Roots provide support,
water and nutrients to other plant organs (Khan et al.,
2011). Indeed, soil temperature can influence root growth, cell
elongation, root length and extension, initiation of new lateral
roots and root hairs, and root branching (Pregitzer et al.,
2000). These effects are likely manifestations of the variety of
physiological effects brought about by temperature on plant
roots; including changes in root respiration, nutrient uptake,
as well as physicochemical effects on the soil environment
(e.g., changes in nitrogen mineralization). Ambient temperature
changes on above ground plant organs (e.g., effects on
photosynthetic rates) also affect below ground growth and
physiology. Despite the physiological relevance of roots, few
studies have examined the response of these plant organs to heat
stress.

In this study, we analyzed the transcriptional and proteomic
responses of soybean roots to heat stress. In order to better
understand the root responses to this abiotic stress, we performed
genome-wide transcriptomic and proteomic analyses on root
hairs, which are a single epidermal cell type. Our transcriptional
analysis identified 1849 genes differentially regulated in root
hairs in response to heat stress. These data were used to predict
key regulatory modules controlling the heat stress response.
We also conducted proteomic analysis on membrane fractions
isolated from stripped roots and root hairs. These experiments
identified a variety of proteins whose expression changed within
3 h of application of heat stress. Most of these proteins were
predicted to play a significant role in thermo-tolerance, as well as
chromatin remodeling and post-transcriptional regulation. The
data presented represent an in-depth analysis of the heat stress
response of a single cell type in soybean.

MATERIALS AND METHODS

Plant Material and Treatments
Soybean seeds [Glycine max L. (Merrill) cv. Williams 82] were
surface sterilized and sown on agar plates containing 1X B&D
(Broughton and Dilworth, 1971) nutrients. Plates containing
seeds were incubated for 3 days under dark conditions at 25◦C
in a growth chamber. Three day-old seedlings were further
incubated for various time points (0, 3, 6, 12, and 24 h) at 25◦C
(control) or 40◦C (heat stress). After a specific incubation time,
the whole roots were detached from the shoots and immediately
frozen in liquid nitrogen. These roots were used to isolate root
hairs and corresponding stripped roots (i.e., roots with root hairs
removed) according to the methods described in Brechenmacher
et al. (2009). Once the root hairs (RHs) were removed from the
whole root, both frozen stripped roots (STRs) and RHs were
stored at –80◦C until use. Two biological replicates per time point
were collected. In each biological replicate, 50 plates (each plate
contained 20 seeds, five plates for each time, and temperature
condition, in total 1000 seedlings were used in each biological
replicate) were included.

Protein and RNA Extraction
Proteins and total RNA were extracted from 1 g of RHs
or STRs using Trizol reagent supplemented with protease
inhibitors according to the manufacturer’s instructions. Total
RNA was subsequently purified using a chloroform extraction.
Total RNA concentration and integrity were analyzed using
a Nanodrop (Thermo Scientific, Whilmington, DE) analyzer
and a Bioanalyzer (Agilent, Santa Clara, CA), respectively. A
Coomassie Plus (Thermo Scientific, Grand Island, NY) protein
assay was used to quantify the total protein concentration and
about 200µg of protein per sample were obtained.

Microsomal Fraction
The microsomal fraction was purified from RH or STR extracts
according to Brechenmacher et al. (2009). Briefly, homogenized
RH preparations were sonicated in 0.1M Tris–HCl, pH 8,
10mM EDTA, 0.4% β-mercaptoethanol, and 250mM sucrose.
Cell debris was allowed to settle and organelles removed from the
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suspension by centrifugation at 20,000 g for 30min at 4◦C. The
microsomal fraction was obtained by centrifugation at 100,000
g for 1 h at 4◦C. The pellets were solubilized in 0.1M Tris–
HCl, pH 8.5, 8M urea, and 2% dodecyl-β-maltoside. Proteins
were precipitated using 25% trichloroacetic acid (TCA), washed
in acetone, and resolubilized with 8M urea and Tris–HCl,
pH 8.5. Finally, the supernatants were passed through 5.0 and
0.45-µM polyvinylidene difloride membrane filters (Millipore,
Billerica, MA). Proteins were quantified using the bicinchoninic
acid protein assay kit (Thermo Scientific, Grand Island, NY).
The same procedure was used to obtain microsomal fractions
from homogenized STR preparations, except that the roots were
ground using a mortar and pestle to extract the protein.

Protein Sample Preparation and
LC-MS/MS Analysis
The extracted microsomal proteins for three independent
sample for both RHs and STRs were dried with a speed
vac, followed by solubilization and denaturation in 150µL
of 7M urea, 2M thiourea, 4% 3-[(3-cholamidopropyl)
dimethylammonio]1-propanesulfonate (CHAPS) and 5mM
Tris(2-carboxyethyl)phosphine (TCEP) in 50mM ammonium
bicarbonate, pH 8. These preparations were vortexed, sonicated
and then heated at 60◦C for 30min. Protein concentrations
were again verified using the Coomassie Plus Protein Assay
with a bovine serum albumin standard. The denatured samples
were diluted 10-fold with 50mM ammonium bicarbonate.
CaCl2 was added to a concentration of 2mM and trypsin was
added at a trypsin:sample ratio of 1:50 (w/w). The samples
were digested overnight at 37◦C and were alkylated with
chloroacetamide at a concentration of 5mM in the dark for 2 h at
room temperature (RT). The peptides were desalted using SCX
SPE resin (SUPELCO Supelclean, 100 mg) using first a 10mM
ammonium formate, pH 3.0, 25% acetonitrile solution to wash
the peptides followed by 80:15:5 methanol:water:ammonium
hydroxide to elute the peptides. The SCX SPE resin removed the
detergents but the ammonium salts still needed to be removed
before iTRAQ labeling. For this latter purpose, the samples were
loaded onto a C-18 SPE column (SUPELCO Discovery, 50 mg)
followed by a wash using 0.1% TFA in nanopure water and then
subsequently 80% acetonitrile/0.1% TFA in water to elute the
peptides. Peptides were quantified using a BCA assay with a
bovine serum albumin standard.

Peptides were labeled with 8-plex iTRAQ reagents as
described below (AB Sciex, Foster City, CA). Thirty micrograms
of each sample was placed in a new tube and dried in a speedvac.
Thirteen micrograms of dissolution buffer (provided in the
iTRAQ kit) was added to each sample and vortexed into solution
followed by brief centrifugation to concentrate sample at the
bottom of the tube. Each iTRAQ reagent (10µL) was diluted with
isopropanol (35µL) and then added to each sample. The reaction
was carried out for 2 h at RT. Fifty millimolars of ammonium
bicarbonate (200µL) was added to quench each reaction tube.
After 1 h, the contents from all iTRAQ reactions were added to
one tube and the sample was vortexed, followed by drying in a
speed vac.

The labeled peptides were separated using an off-line high
pH (pH 10) reversed-phase (RP) XBridge C18 column (Waters,
Milford MA; 250 × 4.6mm column containing 5µm particles
and a 4.6 × 20mm guard column) using an Agilent 1200
HPLC System (Agilent Technologies, Santa Clara CA). The
sample loaded onto the C18 column was washed for 15min
with Solvent A (10mM ammonium formate, adjusted to pH
10 with ammonium hydroxide). The LC gradient used a linear
increase of Solvent B (10mM ammonium formate, pH 10,
90% acetonitrile) to 5% over 10min, then a linear increase
to 45% Solvent B over 65min, and then a linear increase to
100% Solvent B over 15min. This level of Solvent B was held
at 100% for 10min and subsequently dropped to 0% Solvent
B, holding the column at 100% Solvent A for 20min. The
flow rate was 0.5mL/min. A total of 48 fractions (1.98mL
each) were collected evenly over the gradient between 15 and
110min into a deep (2mL/well) 96 well plate throughout the
LC gradient. The plate fractions were concentrated using a
speed vac. The high pH RP fractions were then combined
into 12 fractions using the concatenation strategy reported in
a previous study (Wang et al., 2011) which were further dried
down and resuspended in nanopure water at a concentration
of 0.075µg/µL. Fractions were stored at −20◦C until time for
LC-MS/MS analysis.

Peptide mixtures were analyzed on a high-resolution,
reversed-phase constant flow nano capillary LC system coupled
to an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific,
San Jose CA). The automated LC system was custom built
using two Agilent 1200 nanoflow pumps and one Agilent 1200
Capillary pump (Agilent Technologies, Santa Clara CA), and a
PAL R© autosampler (LEAP Technologies, Carrboro, NC). Full
automation was made possible by custom software allowing for
parallel event coordination. Therefore, 100% of theMS duty cycle
was used by way of two trapping and two analytical capillary
columns. Capillary reversed-phase columns were prepared in-
house by slurry packing 3-µm Jupiter C18 (Phenomenex,
Torrence, CA) into 35 cm× 360µmo.d.× 75µm i.d. fused silica
(Polymicro Technologies Inc., Phoenix AZ). Trapping columns
were prepared similarly, but using 3.6µm Aeris Widepore XB-
C18 resin packed into a 4 cm length of 150µm i.d. fused silica.
Electrospray emitters were custom made using 150µm o.d. ×
20µm i.d. chemically etched fused silica (Kelly et al., 2006).
Mobile phases consisted of 0.1% formic acid in water (A) and
0.1% formic acid acetonitrile (B) operated at 300 nL/min with a
gradient profile as follows (min:%B); 0:5, 2:8, 20:12, 75:35, 97:60,
100:85. Sample injections (5µL) were trapped and washed on the
trapping columns at 1.5µL/min for 20min before alignment with
the analytical columns.

The LTQOrbitrap Velosmass spectrometer was operated with
a heated capillary temperature and spray voltage of 350◦C and
2.2 kV, respectively. Full MS spectra were recorded at a resolution
of 100 K (for ions at m/z 400) over the range of m/z 400–2000
with an automated gain control (AGC) value of 1e6. MS/MS
was performed in the data-dependent mode with an AGC target
value of 3e4. The 10 most abundant parent ions, excluding
singly charged ions, were selected for MS/MS using high-
energy collisional dissociation (HCD) with a normalized collision
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energy setting of 40%. A dynamic exclusion time of 45 s was
used.

Identification of Differentially Expressed
Proteins
MS/MS spectra were first converted to peak lists using
DeconMSn (version 2.2.2.2, http://omics.pnl.gov/software/
DeconMSn.php) (v1) with default parameters. Sequence
determination was provided by SEQUEST v27 in conjunction
with the soybean genome annotation (Gmax v10.3;Wm82.a2.v1).
Both full and partially digested tryptic peptides were considered
with two missed cleavages allowed. The mass tolerance for
precursor ions was 50 ppm and fragmentation tolerance for
HCD (higher energy collisional dissociation) was 0.05 Da. All
peptides were identified with <1% False Discovery Rate by using
an MS-Generating Function Score (MS-GF) <1e-10 and a decoy
database searching strategy (Kim et al., 2008, 2010; Granholm
et al., 2014). Modifications were searched looking for static
alkylation on cysteine and 8 plex iTRAQ modifications on the
N-terminus and lysine residues. Other modifications included
in the search were dynamic oxidation on methionine. Relative
abundances of peptides were determined using iTRAQ reporter
ion intensity ratios from each MS/MS spectrum. Individual
peptide intensity values were determined by dividing the base
peak intensity by the fraction associated with each reporter ion.
Multiple scans of the same peptide were consolidated into a
single peptide value by summation. Log2 transformed peptide
abundances were then normalized according to the mean of the
two pooled references (added to two channels of each iTRAQ
8-plex experiment) so that samples from different iTRAQ
experiments could be compared. The peptide abundances were
further normalized (to remove iTRAQ channel bias) using the
central tendency normalization algorithm (which normalizes
each proteome dataset to the global population median) available
in Inferno (http://code.google.com/p/inferno4proteomics/).
The Rrollup function in Inferno was used to roll up peptide
values to a protein value. The Rrollup function works by taking
log2-transformed data and identifying the peptide which has the
most presence and greatest abundance across all samples used
for comparison. All peptides were scaled to the most present
and abundant peptide and the final protein abundance value
used represents the median of the scaled peptide abundances.
ANOVA significance testing was performed on each sample time
point, determining significance via p-value between samples
subjected to either 25 or 40◦C. P-values were further corrected
for multiple-testing error using Benjamini–Hochberg p-value
correction. Fold changes are displayed as log2 fold change of
protein values obtained at 40◦C/protein values obtained at 25◦C.
The Figure S5 shows a detailed workflow about the design of this
experiment.

Preparation of RNA-seq Library
Total RNA was isolated from 1 g of control- or heat-stressed
RHs or STRs as described above. Non-strand-specific mRNA-seq
libraries were generated from 4µg of total RNA from each tissue
and prepared using the TruSeq RNA sample Prep Kit (Illumina)
according to the manufacturer’s instructions.

High-Throughput Transcriptomics
Sequencing
Forty non-strand-specific RNA-seq libraries 2 root types (RH and
STR)× 2 treatments (Control or Heat stress)× 5 treatments× 2
replicates] were multiplexed and sequenced for 51 cycles using an
Illumina HiSeq 2000 (Illumina, San Diego, CA) according to the
manufacturer’s instructions. Image analysis and base calling were
performed using the Illumina pipeline (http://www.illumina.
com).

Mapping and Processing of RNA-Seq
Reads
Following base calling, quality filtering was performed on the
RNA-Seq reads generated with the Illumina HiSeq 2000 using an
in-house custom Perl script including removal of reads with “N”
base and trimming of the 3′-end of the read for below threshold
quality. Additional filtering for removal of bad-quality bases
(any base with quality score values lower than 20 percentile was
considered as a base with bad quality) and read length size (<50
bp) was performed using the FASTA/Q Trimmer command of
the FASTX-toolkit available in FastQC software package (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). RNA-seq
reads with good quality were aligned to the soybean reference
genome (Gmax v10.3;Wm82.a2.v1; Schmutz et al., 2010) using
Tophat (version 1.4.1; Trapnell et al., 2009). The genome indexes
for Tophat were built using bowtie-build command of bowtie
(version 0.12.7) with the reference genome file as the input.
Tophat was then run with the default parameters to map the
trimmed- and filtered-reads for each library to the reference
genome. Tophat was supplied with the reference GTF file using
the –G option and replicates of each condition/sample were
mapped independently to improve alignment sensitivity and
accuracy for further analysis. For analysis of protein-coding
genes, only uniquely mapping reads were used. The gene
expression abundance was calculated in RPKM using Cufflinks
software (Trapnell et al., 2012).

Identification of Differentially Expressed
Genes
Low-count reads with a total sum fewer than 10 were removed
prior to data analysis (Auer and Doerge, 2011). A Poisson
linear mixed-effects model (Blekhman et al., 2010) was applied
to the raw read counts separately for each gene using the
software R/lme4 package (2.10.0 version) with the library size
as the offset value to make the comparison across different
samples comparable. Each generalized Poisson linear mixed
model includes the cell type effect, treatment effect, and the
random biological replicate effect, as well as random plate effect
accounting for the correlation between observations that share
the same plate. The likelihood ratio tests were then conducted
to identify differentially expressed genes between the treatment
and control groups for each of the cell types (i.e., RHheat vs.
RHcontrol). P-values for the likelihood ratio tests were obtained,
and an adjusted-P-value (Storey and Tibshirani, 2003) was then
computed to produce lists of differentially expressed genes with
an estimated FDR of 1%. Among these significantly differentially
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expressed genes, genes with a fold change above two were further
considered.

Gene Regulatory Networks Analysis
A gene regulatory module analysis was performed using the
method described by Zhu et al. (2012). Briefly, based on the
differentially regulated genes between the treatment and control
groups for each exposition time (i.e., RHheat vs. RHcontrol), the
expression levels of transcription factors (TF) were clustered
into two or three categories (1: highly expressed; 0: normally
expressed; –1: lowly expressed) using the K-means clustering
algorithm, where the number of categories equals the number
of types (>3, <–3, or in between) of expression. A specific set
of TFs was assumed to regulate the expression of genes in a
module through a path in the binary decision tree composed of
TFs as internal nodes and condition subgroups as leaf nodes.
A regulatory path from the root node to the leaf node was
interpreted as a series of binary queries on the expression level
(up-regulated or not, or down-regulated or not) of internal nodes
(i.e., TFs) under treatment conditions leading to the observed
expression levels of the genes in the leaf node under the same
treatment conditions. Therefore, the regulatory decision tree
represents the combinatorial logic by which the TFs regulate the
expression of the genes in the module under different treatment
conditions. In order to construct the gene regulatory module, the
differentially expressed genes were clustered using the K-means
algorithm, aiming to assign genes exhibiting similar expression
patterns across all the treatment conditions into the same cluster.
Once the genes were clustered, the modules were constructed
in an iterative two-step manner, including: (1) constructing a
binary tree consisting of several TFs that can best interpret
the expression of the genes in a cluster, and (2) re-assigning
into clusters those genes whose regulatory tree can explain their
expression pattern best. The two steps were alternated until the
likelihood of the gene expression data was maximized. After a
gene regulatory tree was constructed for every gene cluster, a gene
re-assignment procedure was used to assign each gene to a cluster
whose regulatory tree best explained its expression values over all
the treatment conditions.

Gene Functional Classification
The biological relevance of the differential regulated genes and
proteins was assessed by a gene function enrichment analysis
using the method Singular Enrichment Analysis (SEA) available
in the web-based tool AgriGo (Du et al., 2010; http://bioinfo.
cau.edu.cn/agriGO/analysis.php). Briefly, Gene Ontology (GO)
terms enriched in each individual set of genes and proteins
were compared to the Wm82.a.V.2.1 gene reference background.
P-values for the GO terms were obtained through Fisher’s
exact test, and a q-value was computed to produce lists of
significant GO terms with an estimated FDR of 5%. Among these
significantly enriched GO terms, terms with q > 0.05 were
further considered. Additionally, MAPMAN gene functional
classification was used (Thimm et al., 2004; Usadel et al., 2009).
For MAPMAN analysis an in-house custom soybean mapping
file, which allows a survey of all the functional categories included
in the software MAPMAN, was used.

RNA Extraction and qRT-PCR
Total RNA was isolated from stressed or control RHs and STR
using Trizol Reagent (Invitrogen), according to manufacturers’
specifications. Genomic DNA (gDNA) was removed from
purified RNA by using TURBO DNAse (Ambion) according
to manufacturer’s instructions. Two micrograms of gDNA-free
RNAwere used to synthetize cDNA as described in (Libault et al.,
2010).

qRT-PCR was performed as described in Libault et al. (2008)
using the housekeeping gene cons6 to normalize the expression
levels of the analyzed genes (Libault et al., 2008). Primer design
was performed as described in Libault et al. (2010). Expression
levels of each candidate gene were calculated according to E

= P
(−1Ct)
eff

, where Peff is the primer efficiency calculated using
LinRegPCR (Ramakers et al., 2003). Fold changes were calculated
between the ratios of the expression levels of heat-treated (40◦C)
and control (25◦C) samples, and expression levels were calculated
for three different time points (3, 12, and 24 h) for two biological
replicates.

RESULTS

RNA-seq Analysis
Most studies of the transcriptional responses to heat stress used
entire organs (e.g., leaves) (Barah et al., 2013; Johnson et al.,
2014). Thus, the values obtained from these studies represent
an average of the response of all the different cell types in the
tissue analyzed. In order to reduce the “tissue dilution” effects
inherent to such studies, we conducted an RNA-seq analysis
using a single-type of soybean cell, the root hair.

A total of 40 cDNA libraries were derived from control RHs
(RH_C) and RHs exposed to 40◦C (RH_H), as well as from
control STRs (STR_C) and STRs exposed to 40◦C (STR_H).
These libraries were sequenced using the Illumina HiSeq2000
platform. After filtering low quality reads, a total of 1,053,532,578
reads (50 bp in size) were aligned to the soybean genome
reference sequence (Gmax v10.3;Wm82.a2.v1; Schmutz et al.,
2010; Table S1) using Bowtie and Tophat software (Trapnell
et al., 2009). Of these, 997,923,404 reads were uniquely mapped
to the soybean genome and were used for further analysis.
Of the 56,044 predicted protein-coding genes in the soybean
genome (https://phytozome.jgi.doe.gov/pz/portal.html), 46,366
genes were deemed to be expressed in this study based on the
occurrence of at least one read in both biological replicates
(Table S1). The RNAseq gene expression, proteomic expression,
and differential expression datasets are all available for browsing
in the Soybean Knowledge Base (SoyKB; http://www.soykb.org/;
Joshi et al., 2012, 2014).

Transcriptional Responses to Heat Stress
at Single Cell Resolution
In order to identify genes that were differentially regulated
in response to heat stress, the RNA-seq data were analyzed
using a generalized Poisson linear mixed-effects model with
an additional cutoff of 2-fold in pairwise comparisons (e.g.,
RH_H/RH_C). On average, 1849 regulated genes were identified
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in RHs, with a maximum of 3126 (3 h treatment: 1447 up-
regulated and 1679 down-regulated). In contrast, on average,
3091 regulated genes were identified in STRs, with a maximum
of 4484 (6 h treatment: 2210 up-regulated and 2274 down-
regulated). Across all four-exposure time points (3, 6, 12, and
24 h) to the heat stress, a total of 9246 and 14,681 differentially
regulated genes were identified in RHs and STRs, respectively
(Figure S1). A comparison across the four-treatments revealed
4087 genes that were up-regulated in RHs, whereas 7084 were
up-regulated in STRs (Figure S1). Subsequently, a comparison
between the differentially regulated genes in both RH and STR
samples was performed to identify genes commonly or uniquely
regulated in these tissues. This analysis revealed that 2865 genes
(1321 up-regulated and 1544 down-regulated) were commonly
regulated in both RHs and STRs (Figure 1 and Table S1). In
contrast, 6381 (2766 up-regulated and 3615 down-regulated)
and 11,816 (5763 up-regulated and 6053 down-regulated) were
uniquely regulated in RHs and STR, respectively (Figure 1).
These numbers attest to the strong impact that heat treatment
has on transcription.

To confirm these RNAseq results, the expression of 15
randomly selected genes was analyzed via qRT-PCR (Figure S2).
The pattern of expression obtained by qRT-PCR showed the
same trend observed by RNAseq in response to heat stress. We
found some differences in the fold-change measured by the two
methods, which we explain by the relative sensitivity of each
method, as well as technical aspects (e.g., efficiency and specificity
of qRT-PCR primers).

We also compared the transcriptional response in RH and
STR across the four treatment time points (3, 6, 12, and
24 h). This analysis revealed that only 14% (645 genes: 330
up-regulated and 315 down-regulated) of the differentially
regulated genes in RHs were regulated across all four-
treatment time points. In the STR samples, only 13% (1026
genes: 530 up-regulated and 496 down-regulated) of the
differentially regulated genes were regulated at all four treatment
time points (Figure S1). Collectively, these data indicate

that each root-tissue type responded differently to the heat
stress.

Transcriptional responses to heat stress might be controlled
by 10 different regulatory modules in RHs.

Recently, we developed a new algorithm that can predict
gene regulatory modules from either DNA microarray or
RNA-seq transcription data (Zhu et al., 2012, 2013). This
allows prediction of: (1) transcription factors (TFs) that
control a specific regulatory module; and (2) genes that
participate in a specific regulatory module (Zhu et al., 2012,
2013). We used this algorithm to analyze the differentially
regulated genes that responded across all four-treatment time
points (i.e., 645 commonly regulated genes). This analysis
predicted 10 different regulatory networks (Figure S3). These
modules are regulated in a combinatorial manner by five
TFs: Heat Stress Factor (HSF; Glyma.03G157300), AP2/EREBP
(Glyma.13G152000), MAD-box (Glyma.07G181600), and two
WRKYs TFs (Glyma.17G097900 and Glyma.19G020600). With
the exception of the HSF, the expression of the TFs that control
the 10 gene regulatory modules was down-regulated across the
four treatments. Furthermore, we found that five of the 10
regulatory networks contain down-regulated genes, whereas the
other five networks have either highly- (fold-change ≥3) or
mildly (fold-change≤2) up-regulated genes. Interestingly, the TF
WRKY encoded by Glyma.17G097900, regulates eight of the 10
modules, which indicates that this TF may be a master regulator
of the heat stress response in soybean RHs.

By way of an example, we describe in detail the regulatory
modules 7 and 9 in Figure 2. Module 7 contains two
signal-transduction related genes (Glyma.14G100800: Receptor
kinase; Glyma.15G048500: MAPKKK) whose expression was up-
regulated across the four treatments (Figure 2A). These genes
are predicted to be under the control of two WRKY TFs
(Glyma.17G097900 and Glyma.19G020600) whose expression
was down-regulated across the four treatments. Module 9
contains 84 down-regulated genes controlled by the same two
WRKY TFs that control module 7. Some of the genes belonging

FIGURE 1 | Number of overlapping and non-overlapping heat-responsive genes among soybean root hairs (RHs) and stripped roots (STRs).

Differentially regulated genes in each cell type were identified by linear mixed models at FDR < 0.01, with additional cutoff of two-fold in pairwise comparison

(heat-stressed vs. control). Over- and non-over-lapping genes were identified after a pairwise comparison between treatments. Numbers in parenthesis indicate all the

regulated genes across the four exposure time points.
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FIGURE 2 | Gene regulatory modules controlling the transcriptional responses of soybean root hairs to heat stress. Panels (A,B) show two significant

modules controlled by two different TFs. Individual genes are represented by small squares. Transcript abundance values were false color-coded by using a scale of

−2 to ±8. The intensity of green and red colors indicates the degree of expression of the corresponding genes. Data are the average of two biological replicates.

to this network are likely involved in cell wall degradation,
flavonoid biosynthesis and transcriptional regulation by different
TFs, like MYB and C2H2 (Figure 2B). Collectively, the gene
network analysis suggests that many heat-stress induced genes
might be significantly regulated by only five different TFs.
Furthermore, four (i.e., Glyma.17G097900, Glyma.19G020600,
Glyma.13G152000, and Glyma07G181600) of these five TFs
likely act as repressors of gene expression. However, further
investigation is needed to validate these predictions.

Heat Stress Induces Changes in the Root
Hair Proteome
Changes in transcriptional activity do not always reflect changes
in expression of the encoded proteins (Stevens and Brown,
2013; Ponnala et al., 2014). Therefore, we also undertook an
analysis of the RHs and STRs proteome in response to heat
stress. We specifically focused on the microsomal (membrane)
fraction in order to reduce the complexity of the protein profile
and to specifically determine how membrane function (e.g.,
transporter expression) was affected by heat stress. Proteins were
isolated from the same RHs and STRs used for the RNA-seq
transcriptome analysis. LC/MS-MS analysis of these samples
identified 244 and 79 differentially expressed proteins in RHs and
STRs, respectively (Figure 3). To identify commonly or uniquely
regulated proteins, we performed a comparative analysis among
the proteins detected in both tissue types. Our analysis revealed
that only 30 proteins (27 up-regulated and three down-regulated)
were commonly expressed in response to heat in both RHs and
STRs (Figure 4). In contrast, 214 proteins (123 up-regulated
and 91 down-regulated) were expressed only in RHs whereas

83 (52 up-regulated and 31 down-regulated) were exclusively
expressed in STRs (Figure 4). We observed that 3 h of heat
treatment was sufficient to trigger significant changes at protein
levels in response to heat stress. Additionally, we detected
more differentially expressed proteins in RHs than in STRs.
For instance, 135 differentially regulated proteins (73 induced
and 62 repressed) were detected in RHs after 24 h of treatment,
whereas 43 (23 induced and 20 repressed) were detected in
STRs. This is likely due to a reduction in the effects of tissue
dilution (that averages the signal over many cell types) in the
STR samples, relative to the RHs. The proteomic expression
and differential expression data are available for browsing in the
Soybean Knowledge Base (SoyKB; http://www.soykb.org/; Joshi
et al., 2012, 2014).

Heat-Stress Related Proteins Play Some
Role in the Chromatin Remodeling and
Post-transcriptional Regulation in RHs
A functional enrichment analysis, as well as a functional
classification by using MAPMAN software, was performed on
the regulated proteins identified in each heat treatment (Figure 5
and Figure S4). This analysis revealed that proteins known to
respond to environmental stimuli that includes response to light,
temperature, and heat stress, were those most enriched among
the proteins responding to the heat treatment. This category
was followed by proteins involved in cellular and metabolic
processes, for instance in cell wall formation, amino acids, and
lipid biosynthesis as well as in the elimination of reactive oxygen
species (Figure 5). Interestingly, 84% of the identified proteins
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FIGURE 3 | Number of overlapping and non-overlapping heat-stress responsive proteins detected at four exposure times in soybean RHs (A) or STRs

(B). Differentially regulated proteins in each cell type were detected by LC/MS/MS at FDR <0.05; Fold Change >2. Over- and non-overlapping proteins were identified

after a pairwise analysis. Gene identification for each gene bellowing to each category is provided in the Table S3.

FIGURE 4 | Number of overlapping and non-overlapping heat-stress responsive proteins among soybean RHs and STRs. Differentially regulated proteins

in each cell type were detected by LC/MS/MS at FDR <0.05; Fold Change >2. Over- and non-overlapping proteins were identified after a pairwise analysis. Gene

identification for each gene bellowing to each category is provided in the Table S4.

responding after 3 h of treatment were related to the heat stress
response. Although, proteins with a potential role in adaptation
to heat stress were identified at the other treatment time
points, proteins with a potential role in chromatin remodeling,
post-transcriptional and post-translational regulation were also
identified in these time points (Figure 5).

In order to assess the relationship between the RNA and
protein expression profiles, a pairwise comparison was made
between the proteins and mRNA levels at the various treatments.
This analysis gave a relatively low correlation value (0.2–0.79)
between the mRNA and protein expression levels. However, on
average, expression values for the mRNAs of 61 and 79% of the
expressed proteins in RHs and STRs, respectively, were present
in the transcriptome data set (Figure 6 and Table S2). Together,
our proteomic data indicates that the majority of the expressed
proteins have some, predicted role in coping with the heat stress,
but also likely function to reprogram the transcriptional activity
during heat stress conditions.

DISCUSSION

The predicted effects of continued climate change are complex

but include effects on air and surface temperature, with

coincident effects on water availability. In most regions, these
effects are expected to significantly impact crop yields. Thus, it

is important to understand the molecular mechanisms that allow
plants to adapt and tolerate climate change induced stresses,
including heat stress. Most of the studies to understand the
plant responses to heat stress have focused on the leaf responses.
For example, in different plant species both transcriptomic and
proteomic analysis indicates that most of the molecular leaf
responses are to protect the photosynthetic apparatus and to
acquire general thermo-tolerance (Barah et al., 2013; Johnson
et al., 2014; Liu et al., 2014; Sullivan et al., 2014). Despite the
physiological relevance of roots, as well as the obvious effects that
above ground processes have on root physiology, less attention
has been placed on understanding how roots also respond to heat
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FIGURE 5 | Gene Ontology (GO) enriched terms of the differentially regulated genes identified in soybean root hairs (A, 3 h; B, 6 h; C, 12 h; and D, 24 h).

The GO annotation is: RS: Response to Stimulus; Rep: Reproduction; CCO: Cellular Component Organization; RBP: Regulation of Biological Process; BR: Biological

Regulation; DP: Development Process; MOP: Multicelluar Organismal Process; CP: Cellular Process; RP: Reproductive Process; MP: Metabolic Process; EL:

Establishment of Localization; L: Localization; MuOP: Multi-organism Process; CCB: Cellular Component Biogenesis; G: Growth; LO: Locomotion.

stress. Therefore, we undertook a detailed transcriptomic and
proteomic study of the heat stress response in soybean roots. An
important and unique aspect of our study was the examination
of the effects on soybean root hairs, a single, differentiated, root
epidermal cell.

Significant transcriptional and translational reprograming has
been observed in different plant species grown under heat stress
conditions (Zeller et al., 2009; Li et al., 2013; Johnson et al.,
2014; Sullivan et al., 2014). Likewise, it was reported that this
reprograming occurs very quickly, for instance after 10min
of treatment (Matsuura et al., 2010). Somewhat similar results
were observed in our transcriptional analysis. Interestingly, we
did observe that RHs showed a faster (e.g., 3 h) transcriptional
and translational reprograming to heat stress than STRs. This
observation suggests that studies of the response in single cells
may reveal very different response kinetics and gene/protein
expression responses than one can measure by studies of whole
organs.

Over 2000 and 3000 genes were differentially regulated by
heat in the RH and STR samples, respectively. A gene function
enrichment analysis of these regulated genes suggest that heat
has a strong effect on cellular metabolism, impacting genes
involved in metabolic processes, response to environmental
stimuli, transcriptional regulation, protein folding, chromatin
remodeling, lipid, and ATP biosynthesis. It is important
to note that these transcriptional responses are somewhat

different from those reported for heat-stressed leaves, where
the majority of the regulated genes are involved in thermo-
tolerance and protection of the photosynthetic apparatus (Usadel
et al., 2009; Barah et al., 2013; Zhu et al., 2013; Sullivan
et al., 2014). The data indicate that there is a significant
and early remodeling of the root transcriptional program in
response to heat stress, presumably to maintain vital biological
processes.

Under continuing predicted climate change conditions, it
is important to develop stress-resistant crops. It was proposed
that transcriptional network analysis can significantly contribute
to the identification of new maker genes for potential use in
plant breeding programs (Gehan et al., 2015). For example,
previous regulatory network analysis in Arabidopsis and rice
plants identified the TFs HSF, NF-X1, NF-Y, ZIM, bHLH, MYB,
and DREBP as key to the transcriptional response to heat stress
(Barah et al., 2013; Sarkar et al., 2014). Additionally, it was
demonstrated that the rice transcriptional response to heat stress
is mainly controlled by three gene regulatory modules (Sarkar
et al., 2014). Similarly, our gene regulatory module analysis
indicates that relatively few TFs are the main regulators of
the heat stress response in soybean roots. However, these TFs
are predicted to act in a combinatorial manner to control ten
different regulatory modules. Specifically, these TFs are HSF
(Glyma.03G157300), AP2/EREBP (Glyma.13G152000), MAD-
box (Glyma.07G181600), and two WRKYs (Glyma.17G097900
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FIGURE 6 | Relationship between protein- and mRNA levels in

heat-stressed soybean root hairs (A) and stripped roots (B).

and Glyma.19G020600). Interestingly, previous studies in other
plant species support the participation of these TFs in the
plant response to different abiotic stresses, including heat stress
(Rushton et al., 2010; Lata and Prasad, 2011; Lenka et al., 2011).
Further research focused on these specific TFs and the genes
belonging to the identified modules that they control should
provide additional mechanistic details to aid efforts to develop
more heat tolerant soybean.

Although useful in predicted genes for further study,
transcriptome analysis does not predict the level of expression of
the encoded proteins. Hence, our proteomic analysis identified
357 proteins whose expression level was significantly affected
by heat treatment. Interestingly, in contrast to the enrichment
analysis of the transcriptome, themajority of proteins responding
to heat are predicted to play a role in thermo-tolerance. For
instance, we did identify heat-shock, class I and II, proteins,
as well different peroxidases. Furthermore, it was reported that
plants can modify membrane fluidity in response to heat stress
(Hasanuzzaman et al., 2013). Consistent with this, we observed
that different fatty acid desaturases were down-regulated. Other
proteins which cause a significant downward expression of
proteins in heat-stressed RHs include histones, which contribute
to chromatin structure (Berger, 2007). Previous research also
implicated histone modifications as playing an important role
in plant adaptation to abiotic stresses (Pecinka and Scheid,
2012). For instance, it was reported that the occupancy of the
histone H2A.Z, which tightly wraps the DNA, is reduced in
heat-stressed Arabidopsis plants (Kumar and Wigge, 2010). This
reduction in H2A.Z occupancy has a positive impact on the
expression of heat-stress, induced genes (Kumar and Wigge,
2010). Thus, down-regulation of the soybean histone H2A by
heat could contribute to an activation of chromatin regions

supporting the expression of different genes in heat-stressed
RHs.

Coupling transcriptomic and proteomic analysis of the same
samples provides the opportunity to directly compare the data.
As seen in a number of previous studies (Petrica et al., 2012;
Stevens and Brown, 2013; Ponnala et al., 2014), there was a
relatively low, overall correlation between the protein andmRNA
expression levels. This is not unexpected since translation is
governed by a variety of regulatory mechanisms, independent of
transcription rate. These include the impacts of miRNA, mRNA
half-life, translational rates, as well as protein turnover (Petrica
et al., 2012).

Finally, signal dilution, which results from averaging the
response from different cell types by sampling whole tissues,
obscures the actual cellular response. Hence, it is impossible to
discern the difference, for example, of a gene that is expressed
at a low level in all cells from a gene that is expressed at very
high level but only in few cells. Signal dilution can obscure
key cellular responses to heat stress. Hence, sampling single
cells is an excellent way to better define the cellular response
to environmental changes (Hossain et al., 2015). In this study,
we employed this approach with a specific focus on soybean
root hairs, a single, differentiated cell type that plays a critical
role in plant nutrition and water uptake. As expected, significant
differences were noted when the response of RHs and STRs was
compared. For instance, our gene/protein enrichment analysis
indicated that after 6 h of treatment, most of the differentially
regulated transcripts and proteins in RHs are directly involved in
the root adaptation to the to heat stress. In contrast, the majority
of the differentially regulated genes/proteins in STRs are involved
in primary metabolism, with very few (∼10) predicted to play
a direct role in adaptation to heat stress. Our data reinforce the
importance of single cell models to understand the molecular
responses that allow soybean plants to adapt to heat stress.
Likewise, our data also show that RHs are excellent model to
discern the first root responses to environmental stimuli.

In conclusion, our results clearly demonstrate that roots
respond strongly to heat stress and that the response
of the single cell RHs is quite distinct from that of the
remaining root tissue. The datasets generated provide
a rich resource for further study and efforts to develop
crop plants that can withstand the impacts of a changing
climate.
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