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The biomass composition represented in constraint-based metabolic models is a key

component for predicting cellular metabolism using flux balance analysis (FBA). Despite

major advances in analytical technologies, it is often challenging to obtain a detailed

composition of all major biomass components experimentally. Studies examining the

influence of the biomass composition on the predictions of metabolic models have

so far mostly been done on models of microorganisms. Little is known about the

impact of varying biomass composition on flux prediction in FBA models of plants,

whose metabolism is very versatile and complex because of the presence of multiple

subcellular compartments. Also, the published metabolic models of plants differ in

size and complexity. In this study, we examined the sensitivity of the predicted

fluxes of plant metabolic models to biomass composition and model structure. These

questions were addressed by evaluating the sensitivity of predictions of growth rates

and central carbon metabolic fluxes to varying biomass compositions in three different

genome-/large-scale metabolic models of Arabidopsis thaliana. Our results showed

that fluxes through the central carbon metabolism were robust to changes in

biomass composition. Nevertheless, comparisons between the predictions from three

models using identical modeling constraints and objective function showed that model

predictions were sensitive to the structure of the models, highlighting large discrepancies

between the published models.

Keywords: biomass composition, model structure, sensitivity, flux balance analysis, central carbon metabolism,

Arabidopsis, large-scale metabolic model

INTRODUCTION

Flux balance analysis (FBA), a constraint-based modeling approach, is widely used in predicting
metabolic fluxes based on stoichiometric metabolic models, in particular, large-scale or genome-
scale metabolic models (GSMs; Orth et al., 2010). Stoichiometric metabolic models are typically
underdetermined because the number of reactions in themodel is usually larger than the number of
metabolites (Bonarius et al., 1997; Kauffman et al., 2003). Therefore, inmost cases, constraint-based
analysis yields multiple feasible flux solutions. To narrow down the space of feasible solutions,
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additional constraints can be imposed by specifying the range
of fluxes through any particular reaction. In addition to the
application of constraints, an objective function is usually defined
for identifying biologically relevant flux solutions. The most
commonly used objective function for FBA is the biomass
objective function (BOF), which is to maximize the efficiency
of biomass production, i.e., growth rate (Feist and Palsson,
2010). Biomass production is mathematically represented by a
so called “biomass reaction” which, in essence, is a collection of
all individual biomass constituents together with their fractional
contributions to the overall cellular biomass, and energetic
requirements for the biomass generation.

Knowledge of the biomass composition is crucial for
predicting flux distribution in metabolic models using FBA
because the intracellular fluxes are dependent on the fluxes
contributing to biomass synthesis (Pramanik and Keasling,
1997; Schwender and Hay, 2012). Therefore, an important
consideration during the development of GSMs is to define
the biomass composition, ideally for the condition under study.
Experimental evidence indicates that the biomass composition
varies between species, cell types and physiological conditions
(Novak and Loubiere, 2000; Hay and Schwender, 2011).
However, due to a lack of organism-specific and/or condition-
specific experimental information, the biomass compositions
used in plant GSMs are often collected from diverse types of
measurements, experiments, research groups, and even different
cell types and plant species (Collakova et al., 2012).

Some computational methods have been developed to
estimate the fractional contribution of a precursor to the biomass
reaction in microorganisms, e.g., calculating the coefficients
of deoxy-nucleotide triphosphates (dNTPs) and nucleotide
triphosphates (NTPs) according to the fraction of DNA and RNA
(Thiele and Palsson, 2010). Nevertheless, these approaches can
only be used for amino acids, NTPs (ATP, GTP, CTP, UTP),
and dNTPs (dATP, dGTP, dCTP, dTTP). Given the existence of
multiple organelles in plants, one needs to be cautious when
applying these approaches to plant models.

With the increasing use of network reconstructions and
constraint-based approaches, a need has arisen to clearly define
and demonstrate the relevance of the modeling parameters,
such as biomass composition, for predicting metabolic fluxes.
Work examining the influence of the biomass composition
on the predicted fluxes has mostly been done on models of
microorganisms, in particular Escherichia coli (Pramanik and
Keasling, 1997; Feist et al., 2007). Most recently, a sensitivity
analysis of a yeast model suggested that model predictions are
sensitive to variations in biomass composition (Dikicioglu et al.,
2015). These observations naturally lead to questions about the
sensitivity of flux predictions in plant metabolic networks to
biomass composition and the robustness of plant metabolic
models. Thus far, there are very limited studies exploring
the effects of changes in biomass composition on the flux
distributions in plants. Plant metabolic networks are significantly
more complex than those of microorganisms due to the presence
of multiple compartments and parallel metabolic pathways. A
study on a model of oilseed rape suggested that flux predictions
are sensitive to the contents of oil and protein, which are the

major storage components in oil seed (Schwender and Hay,
2012). However, in a study of Arabidopsis heterotrophic cell
culture, central carbon metabolism has been observed to be
robust to different conditions despite the significant differences
in the resulting biomass compositions (Williams et al., 2010).
Given that plants are adapted to grow in diverse environmental
conditions, plant metabolism is expected to be flexible in face of
perturbations. Thus, it deserves theoretical exploration on basis
of constraint-based metabolic models to assess the influence of
changing biomass composition on predicted fluxes.

Arabidopsis, a model organism for plant biology, has been
studied extensively with systems-biology approaches. In this
study, we started by reviewing the published Arabidopsis
metabolic models followed by an investigation of the
impact of changing the biomass composition on the flux
predictions in large- or genome-scale plant metabolic models, in
particular, the fluxes through central metabolic pathways [i.e.,
glycolysis, pentose phosphate pathway (PPP), TCA cycle, and
mitochondrial electron transport chain (ETC)]. This is because
these existing large-scale metabolic networks of plants provided
mostly qualitative predictions of intracellular fluxes for primarily
central carbon metabolism. Furthermore, previous work has
shown that fluxes of central carbon metabolism dominate
the FBA results, with little to no flux through the secondary
metabolic pathways (Collakova et al., 2012). Here, we focused
on study on three published models of Arabidopsis, which have
different biomass compositions and network structures. We
systematically evaluated the influence of biomass composition
on the outcome of FBA simulations in three ways: (1) using
different biomass compositions with the same model; (2)
using the same biomass composition with different models;
(3) varying individual components of the biomass composition
and maintenance cost. Our analyses indicate that (i) the central
metabolic fluxes are relatively stable in face of varying biomass
composition, regardless of model structure; and (ii) the model
structure is the main factor in determining the variation in
computational results generated by using FBA.

METHODS

Stoichiometric Models
In this study, we compared and investigated three published
stoichiometric models of Arabidopsis, denoted as Poolman
(Poolman et al., 2009), AraGEM (de Oliveira Dal’Molin et al.,
2010a), and AraCore (Arnold and Nikoloski, 2014). The Systems
Biology Markup Language (SBML) format for the Poolman
and AraCore model were available from supplementary files of
the corresponding paper. The direction of the phenylpyruvate
carboxylase reaction in the Poolman model has been corrected as
reported in their subsequent publication (Williams et al., 2010).
For the AraGEM model, an updated version was obtained from
http://web.aibn.uq.edu.au/cssb/resources/Genomes.html. In this
study, we simulated the cellular metabolism of Arabidopsis cells
growing on glucose as carbon and energy sources under aerobic
heterotrophic conditions.

Although all major biomass components (i.e., cell wall,
protein, lipid, carbohydrate, DNA, and RNA) were taken into
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account in the three models via representative metabolites or
corresponding precursors, the biomass components included
in these three models are not exactly the same. For example,
xylose and γ-aminobutyric acid (GABA) were not considered in
Poolman model, but were included in AraGEM and AraCore
models. Similarly, soluble metabolites were only considered in
AraCore model, but not in Poolman and AraGEM models. To
keep the list of biomass components as consistent as possible
between the three models, we added some additional biomass
transporters to the models if required. It is noted that not
all newly added biomass components can be produced by all
models, e.g., maltose, xylose, and GABA cannot be produced
in Poolman model, coniferyl-alcohol, coumaryl-alchol, sinapyl-
alcohol, and xylose cannot be produced by AraCore model as
these metabolites are not present in AraCore. Therefore, in this
study, we only added new biomass components that can be
produced by all the three Arabidopsis models. In total, we added
nine new biomass transporters to Poolman model and seven for
AraGEM (Supplementary Data 1).

Biomass Equations
The biomass compositions used in this study were extracted
from previous studies, hereafter referred to as PoolmanBOF,
AraGEMBOF, and AraCoreBOF, corresponding to the biomass
composition used in Poolman, AraGEM and AraCore model,
respectively (Supplementary Data 2). Since three condition-
specific biomass compositions (reflecting carbon-limiting,
nitrogen-limiting, and optimal growth conditions) have been
employed in the AraCore model, here we chose the carbon-
limiting biomass reaction to represent AraCoreBOF. The
original biomass composition of each model, together with
the calculation of weight percentage of biomass components
(Figure 1) is provided in Supplementary Data 2.

Due to the different units originally used in the three studies
(mmol/g/L in Poolman and mmol/g DW in AraGEM and
AraCore), the biomass compositions were normalized to enable
a fair comparison. These calculations were performed by weight,
defining 1 unit of flux through the biomass equation equals to
1 g of biomass. The details of these calculations are provided in
Supplementary Data 2. Finally, we used the normalized biomass
equations to perform our model simulations.

Model Simulations
FBA was used to determine the flux solutions at steady-
state condition. All simulations were performed using FBA
in geometric mode (Smallbone and Simeonidis, 2009) as
implemented in the COBRA toolbox (Becker et al., 2007)
executed in MATLAB (The MathWorks, version R2012a).
Geometric FBA enables a unique optimal solution that is central
to the range of possible flux distributions. The Gurobi Optimizer
(http://www.gurobi.com, version 5.0.2) solver in combination
with the COBRA toolbox were used to solve the linear
programming problems. In our study, the biomass equation was
maximized to obtain the optimal solution of the metabolic model
as described elsewhere (Orth et al., 2010). Formally, the FBA
problem can be stated as follows:

Maximize : vgrowth
∑

i

ciXi + GAM
vgrowth
−→ 1Biomass

Subject to Sv = 0

and vmin ≤ v ≤ vmax

where vgrowth is the flux that the biomass reaction carries,
representing growth rate, c is the vector of biomass coefficients,
whose component ci indicates the ratio of v metabolite Xi

required for the formation of a unit of biomass, S is the
stoichiometric matrix, is a vector of all reaction fluxes in the
system, also referred to as the flux distribution, vmin and vmax

represent lower and upper bounds for the flux of each reaction,
respectively. GAM refers to growth associated maintenance.

To simulate the cellular behavior of Arabidopsis cells, we
constrained the glucose uptake rates at 10 flux units, which
was the only source of carbon and energy. AraCore represents
a photoautotrophic cell, which does not have organic sources
for heterotrophic scenarios, but it can also be utilized to
simulate heterotrophic conditions by adapting the energy source
(Arnold and Nikoloski, 2014). Consequently, we added an
additional glucose exchange reaction “Im_Glc” to AraCore
model. Ammonia (NH3) and hydrogen sulfide (H2S) were
constrained to be utilized as the sole N and S sources, respectively,
because AraGEM and AraCore can only grow with H2S and
NH3 as the S and N sources, respectively. Since SO2−

4 is the
sole S source in the Poolman model, it does not have an H2S
transporter. We therefore added an H2S transporter to Poolman
model, namely “H2S_tx”, enabling H2S as sole sulfur source in
all models. Pi is the sole P source input in all three models.
Additionally, non-growth associated maintenance (NGAM) was
included in all simulations with a value of 2.02, which is a
normalized flux unit referring to the value reported in Poolman
model (Supplementary Data 2). Similarly, GAM was fixed at
53.26 flux units in this study, which was scaled based on the value
reported in AraGEM model. Imported or exported metabolites
are always freely exchangeable across the system boundary to
provide the necessary nutrients and remove secreted substances.

The biomass equation (i.e., BOF) is generated by defining all of
the biomass constituents, in which all the precursor metabolites
are assembled in one single reaction with corresponding
coefficients (Feist and Palsson, 2010; Thiele and Palsson,
2010). For a fair comparison, we only considered the biomass
components which can be produced by all three models in the
three biomass equations (Supplementary Data 2). This results in
new biomass compositions for AraGEM and AraCore models
because some biomass metabolites such as xylose and maltose
that cannot be produced by all three models are not taken
into account in our biomass reaction. The modified weight
percentages of biomass compositions that are included in our
biomass reactions differs slightly from the original ones for the
three models (Figure 1).

To investigate the influence of biomass composition
on the predicted fluxes, we performed three scenarios in
each model with the biomass equations of PoolmanBOF,
AraGEMBOF, and AraCoreBOF, respectively. We replaced
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FIGURE 1 | Weight percentage of the biomass components. The original and modified (used for simulations) weight percentage for each class of metabolites

contributing to biomass synthesis is displayed. The composition is displayed for Poolman model (A), AraGEM model (B), and AraCore model (C). The calculations for

each class of metabolites are shown in Supplementary Data 2.

the coefficient of each biomass component in the biomass
equation with the corresponding values in the other two
models. In total, nine scenarios were simulated in the study,
namely “Poolman-PoolmanBOF,” “Poolman-AraGEMBOF,”
“Poolman-AraCoreBOF,” “AraGEM-PoolmanBOF,”
“AraGEM-AraGEMBOF,” “AraGEM-AraCoreBOF,” “AraCore-
PoolmanBOF,” “AraCore-AraGEMBOF,” and “AraCore-
AraCoreBOF.” To assess the differences between predicted
fluxes obtained from different scenarios, we define the biomass
composition given in each model as the “reference” scenario.
Thus, “Poolman-PoolmanBOF,” “AraGEM-AraGEMBOF,”
and “AraCore-AraCoreBOF” are the “reference” scenarios in
Poolman, AraGEM, and AraCore model, respectively.

To confirm the confidence of the predictions, flux variability
analysis (FVA) was conducted for the nine model-biomass
combinations, which determines the range of possible solutions
for each reaction while giving rise to the same optimal value for
the objective function (Mahadevan and Schilling, 2003).

RESULTS

Comparisons between Plant
Flux-Balanced Models
Origins and Uses of Biomass Compositions in Plant

Flux-Balanced Models
To understand how the biomass composition data is obtained
in published metabolic models, we surveyed the source of data
used in formulating biomass equations in the existing large-
scale metabolic models of plants (Table 1). From the survey, it
was verified that only 5 out of 21 models had their biomass

compositions measured by the research group that constructed
the model, whereas, the remaining 16 studies either do not
include any biomass information or adopted from other research
groups, some of which were from other organisms. Furthermore,
within the surveyed plant metabolic networks, 6 of 21 (29%)
used biomass data as the objective function, 11 of 21 (52%) used
biomass data as constraints, whereas the rest did not perform any
FBA simulations.

General Properties of Published Arabidopsis

Flux-Balanced Models
To investigate the variability of the biomass compositions
and structure of the models for the same species, we chose
Arabidopsis since eight metabolic models were published since
2009. The general statistics of the available Arabidopsis models
to date is summarized in Table 2. In general, we observed an
increase in the number of genes, metabolites, reactions, and
transporters included in Arabidopsis metabolic models over
time, but this increase was not uniform. For example, the
number of metabolites and reactions in the model of Mintz-Oron
et al. (2012) is much larger than that of AraGEM (de Oliveira
Dal’Molin et al., 2010a), but the latter has more genes than
the former. Toward the compartmentalization, the organelles
included in each model are relatively invariant over time.
The various Arabidopsis genome-scale models were reviewed
more extensively elsewhere (Collakova et al., 2012; de Oliveira
Dal’Molin and Nielsen, 2013; Baghalian et al., 2014; Arnold et al.,
2015).

Besides the general statistics, these models differ in several
aspects, for instance, the inclusion of cellular maintenance
costs (Table 3). The models are quite different regarding cell
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TABLE 1 | Summary of the origin of biomass data in the existing large-scale metabolic models of plants.

Species No. Model Biomass composition data Biomass used as

Arabidopsis (Arabidopsis

thaliana)

1 Poolman et al., 2009 Experimental Constraint

2 de Oliveira Dal’Molin et al.,

2010a

Literature (Guinn, 1966; Poorter and Bergkotte, 1992; Niemann

et al., 1995)

Constraint

3 Radrich et al., 2010 No biomass No simulation

4 Saha et al., 2011 Literature (Spector, 1956; Muller et al., 1970; Penningd et al.,

1974; Wedig et al., 1987) or other related organisms

No simulation

5 Mintz-Oron et al., 2012 Literature (Weise et al., 2000; Reinders et al., 2005; Poolman

et al., 2009; de Oliveira Dal’Molin et al., 2010a)

No simulation

6 Chung et al., 2013 No biomass No simulation

7 Cheung et al., 2013 Experimental Constraint

8 Arnold and Nikoloski, 2014 Literature (Döermann et al., 1995; Sharrock and Clack, 2002;

Mooney et al., 2006; DeBolt et al., 2009; Tschoep et al., 2009;

Pyl et al., 2012; Sulpice et al., 2013)

Objective

Barley (Hordeum vulgare) 9 (Grafahrend-Belau et al.,

2009)

Literature (OECD, 2004) Objective

10 Grafahrend-Belau et al.,

2013

Literature (Antongiovanni and Sargentini, 1991; Bonnett and

Incoll, 1993a,b)

Constraint

Rapeseed (Brassica napus) 11 Hay and Schwender, 2011 Biomass macromolecules determined experimentally, the

composition of biomass macromolecules obtained from

literature (Katterman and Ergle, 1966; Norton, 1989; Schwender

and Ohlrogge, 2002; Town et al., 2006)

Constraint

12 Pilalis et al., 2011 Literature (Schwender et al., 2004, 2006) Objective

Maize (Zea mays) 13 de Oliveira Dal’Molin et al.,

2010b

Literature (Poorter and Bergkotte, 1992; Niemann et al., 1995;

Guinn, 1966)

Constraint

14 Saha et al., 2011 Literature (Spector, 1956; Muller et al., 1970; Penningd et al.,

1974; Wedig et al., 1987) or other related organisms

Objective

15 Simons et al., 2014 Experimental Objective

Sorghum (Sorghum bicolor) 16 de Oliveira Dal’Molin et al.,

2010b

Literature (Guinn, 1966; Poorter and Bergkotte, 1992; Niemann

et al., 1995)

Constraint

Sugarcane (Saccharum

officinarum)

17 de Oliveira Dal’Molin et al.,

2010b

Literature (Guinn, 1966; Poorter and Bergkotte, 1992; Niemann

et al., 1995)

Constraint

Rice (Oryza sativa) 18 (Poolman et al., 2013) Literature (Juliano, 1985; Kwon and Soh, 1985) Constraint

19 Lakshmanan et al., 2013 Literature (Juliano, 1985; Edwards et al., 2012) Objective

Tomato (Solanum

lycopersicum)

20 Colombié et al., 2015 Experimental Constraint

21 Yuan et al., 2016 Literature (Sheen, 1983; Roessner-Tunali et al., 2003; Schauer

et al., 2005; Nunes-Nesi et al., 2007; Sánchez-Rodríguez et al.,

2010; El-Sayed, 2013)

Constraint

maintenance, because its experimental quantification is a major
challenge (Sweetlove et al., 2013).

Three Arabidopsis Models have Different Biomass

Compositions
Poolman, AraGEM, and AraCore models each use a different
biomass composition to simulate cell growth. Although the
relative amounts of each biomass component for all three models
were derived from experimental data, they relied entirely on
different sources. Poolman model used measurements from
their own group for modeling a heterotrophic cell culture,
while, AraGEM and AraCore used data for various tissues
for Arabidopsis or related species. As a further comparison,
we analyzed the macromolecular compositions for each model
(Supplementary Data 2), finding the three models differ

significantly in the composition of biomass macromolecules
(Figure 1). In Poolman model, cell wall comprised more than
half of cell biomass. In contrast, cells contain higher amounts of
protein in AraGEM and AraCore model. Experimental evidence
indicates that the distributions of biomass components are
very tissue-specific (Ohlrogge and Browse, 1995; Mueller et al.,
2003). One would expect that the biomass compositions of
AraGEM and AraCore to be similar as both models represent
photosynthetic leaf cells. While there are some similarities in
terms of the proportions of cell wall, carbohydrate, and protein,
there are also major differences. For example, the proportion
of lipid in AraCore biomass is much larger than in AraGEM
biomass (18.4 vs. 1.1%). This could be explained by the fact
that biomass data in AraGEM model is collected from different
organisms.
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TABLE 2 | Structure comparison of the reconstructed metabolic models for Arabidopsis.

References Abbreviation Year Organelles Number of

genes

Number of

metabolites

Number of

reactions

Number of

exchange

reactions

Number of

intracellular

transporters

Poolman et al., 2009 Poolman[a] 2009 2 (c,m) Not available 1253 1406 42 –

de Oliveira Dal’Molin et al.,

2010a

AraGEM[a] 2010 5

(c,m,p,x,v)

1419 1737 1601 18 81

Radrich et al., 2010 Radrich[a] 2010 – 1571 2328 2315 – –

Saha et al., 2011 iRS1597[a] 2011 5

(c,m,p,x,v)

1597 1820 1844 18 81

Mintz-Oron et al., 2012 Mintz-Oron[a] 2012 7

(c,m,p,x,v,g,e)

1223 2930 3508 101 772

Chung et al., 2013 iAT1475[b] 2013 4 (c,m,p,x) 1475 1761 1895 22 86

Cheung et al., 2013 Cheung[a] 2013 5

(c,m,p,x,v)

2857 2739 2769 20 192

Arnold and Nikoloski, 2014 AraCore[a] 2014 4 (c,m,p,x) 634 407 549 98 124

Symbol “–“indicates information is unknown; “a” indicates information is extracted from the original models; “b” indicates information is retrieved from papers. Exchange reactions allow

for exchange of specific metabolites with the extracellular space. Transporters indicate metabolites can move between intracellular organelles; “c,” cytosol; “m,” mitochondria; “p,”

plastid; “x,” peroxisome; “v,” vacuole; “g,” Golgi; “e,” endoplasmic reticulum.

TABLE 3 | Network characteristics and FBA simulations in Arabidopsis GSMs.

Items

model

Cell type Model format Cell

maintenance

Objective function BOF included

Poolman Heterotrophic ScrumPy and SBML NGAM Minimize total flux PoolmanBOF

AraGEM Photosynthetic and Heterotrophic SBML GAM Minimize photon/sucrose uptake of

growth rate

AraGEMBOF

Radrich Unknown SBML Not included Not included Not included

iRS1597 Photosynthetic and Heterotrophic Excel GAM Maximize biomass AraGEMBOF

Mintz-Oron Photosynthetic and Heterotrophic SBML GAM Minimize metabolic adjustment

(MOMA)

AraGEMBOF

iAT1475 Photosynthetic and Heterotrophic Excel GAM Maximize IPP production AraGEMBOF

Cheung Photosynthetic and Heterotrophic ScrumPy and SBML GAM and

NGAM

Five objective functions[a] Biomass as

constraints

AraCore Photosynthetic and Heterotrophic SBML Not included Maximize biomass and energy

efficiency

AraCoreBOF

“PoolmanBOF” indicates the biomass objective function included in the Poolman model; “AraGEMBOF” indicates the biomass objective function included in the AraGEM model;

“AraCoreBOF” indicates the biomass objective function included in the AraCore model. GAM, growth associated maintenance; NGAM, non-growth associated maintenance. [a]5

objective functions are minimization of overall flux, maximization of biomass, minimization of glucose consumption, maximization of ATP production and maximization of NADPH

production.

Differences in Central Carbon Metabolism between

the Three Arabidopsis Models
Going beyondmerely comparing general network characteristics,
we compared the models at the individual reaction level,
concentrating on the compartmentation and reversibility of
reactions in central carbon metabolism, which is an essential
biological process to sustain growth and biomass synthesis
(Supplementary Figure 1). We focused on three Arabidopsis
models, Poolman, AraGEM, and AraCore models, which have
distinct model structures and biomass compositions. Generally,
the three models covered all the listed central metabolic reactions
(Supplementary Table 1). Compared with the other two models,
AraGEM did not include PPi-dependent phosphofructokinase
(EC 2.7.1.90), NADP-dependent non-phosphorylating

glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) or
NAD-dependent 6-phosphogluconate dehydrogenase (EC
1.1.1.343). Moreover, AraGEM uses two lumped reactions
to represent the electron transport chain (ETC) reactions,
which are referred to as alternative oxidase pathway (AOX)
and cytochrome C oxidase pathway (COX). In contrast,
Poolman and AraCore models incorporate separate reactions to
describe the ETC. Beyond these differences, the localization and
directionality of central metabolic reactions in the three models
are not always consistent. For example, the reaction catalyzed
by phosphoenolpyruvate carboxylase (EC 4.1.1.31) in Poolman
model operates in the opposite direction compared to other
two models, which was corrected in a subsequent publication
(Williams et al., 2010). For AraCore, some reactions known
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to be reversible, such as aconitase (EC 4.2.1.3) and fumarase
(EC 4.2.1.2), are set as irreversible. Poolman model is not fully
compartmentalized, so most of the reactions involved in central
carbon metabolic pathways are assigned to the cytosol.

The Impact of Biomass Composition and
Model Structure on Central Metabolic
Fluxes
Central Carbon Metabolism is Robust to Changes in

Biomass Composition
To test the sensitivity of FBA solutions to the biomass
composition, nine scenarios described in the Methods Section
were simulated with three flux-balanced metabolic models
of Arabidopsis, Poolman, AraGEM, and AraCore models, in
combination with their respective biomass compositions. The
maximization of growth rate is used as the objective function
subjecting to mass-balance constraints, and setting the glucose
uptake rates as 10 flux units (“Methods”). In particular, we
analyzed how central metabolic reactions listed in Supplementary
Table 1 respond to a change in biomass composition. The results
are illustrated in Figure 2 in which the differences in color
intensity between columns (compare horizontally) reflects the
differences in flux values of each reaction calculated by the
three biomass compositions. It can be seen that for the majority
of the reactions, in particular the glycolytic reactions, the flux
patterns were very similar. This indicates a high stability of
the central carbon metabolism in Arabidopsis with respect to
biomass composition, regardless of model structures.

Some reactions showed larger flexibility in our predictions.
The flux distribution predicted by AraCore model with
AraGEMBOF resulted in flux through 2-oxoglutarate
dehydrogenase reaction (reaction 17), a reaction belonging
to the TCA cycle, whereas this reaction did not carry flux
with PoolmanBOF and AraCoreBOF. The flux distributions
through the TCA cycle reflect the function of the metabolic
network, and its operation largely depends on the cell type
and the considered physiological context (Sweetlove et al.,
2010). In addition, 2-oxoglutarate (2-OG) is an essential
intermediate for the biosynthesis of amino acids such as
glutamine and glutamate (Supplementary Figure 1). Given that
AraGEMBOF contains a much higher amount of glutamine
and glutamate (Supplementary Data 2), it is not surprising
that 2-oxoglutarate dehydrogenase reaction carried non-zero
flux implemented with AraGEMBOF in AraCore model. For
AraGEM model, the biomass composition greatly affected the
fluxes through glyceraldehyde-3-phosphate dehydrogenase (EC
1.2.1.9/1.2.1.12; reaction 7 and 8), phosphoglycerate kinase (EC
2.7.2.3; reaction 9), phosphoglycerate hydratase (EC 4.2.1.11;
reaction 11), pyruvate kinase (EC 2.7.1.40; reaction 12) and
malate dehydrogenase (EC 1.1.1.37; reaction 21). For example,
the use of PoolmanBOF on the AraGEM model gave rise to
higher fluxes through malate dehydrogenase compared to using
AraGEMBOF, which is due to a reaction cycle that malate
dehydrogenase involves in with PoolmanBOF. Commonly,
the great changes occurred at the branch points of glycolysis
and the TCA cycle, where there were drains for the synthesis

of cellular constituents. Under heterotrophic conditions, it is
generally thought that the oxidative PPP (OPPP) predominately
provides reducing power for the production of biomass, in
particular for fatty acid synthesis. As a result, we would expect
the OPPP reactions to be active in our simulations. However,
OPPP reactions carried no flux in any of the predicted solutions
of Poolman and AraGEM model. Interestingly, for AraCore
model, using AraGEMBOF resulted in small flux through OPPP
reactions such as glucose 6-phosphate (EC 1.1.1.49; reaction
22), 6-phosphogluconolactonase (EC 3.1.1.31; reaction 23) and
6-phosphogluconate dehydrogenase (EC 1.1.1.44/1.1.1.343;
reaction 24, 25). Previously, Williams et al. (2010) showed
that the OPPP was poorly predicted by Poolman model,
which was suggested to be caused by the error in assigning
the reversibility of the NADP+-dependent glyceraldehyde-
3-phosphate dehydrogenase (EC 1.2.1.13; Cheung et al.,
2013).

Model Structure has a Large Impact on Model

Predictions
Furthermore, we assessed the effects of model structures on
the flux predictions by comparing the model predictions from
the same biomass equation with different models (Figure 2,
comparisons between rows; compare vertically). It is apparent
that the vast majority of central metabolic reactions carried
different fluxes from each other, despite the application of
identical biomass composition and boundary constraints. For
example, the hexokinase reaction (reaction 1), which converts
glucose to glucose-6-phosphate for entry into glycolysis, carried
significantly different fluxes in three Arabidopsis models,
irrespective of the biomass equation used. Based on 10
flux units of glucose, the Poolman model produces 2.84
units of biomass by using the biomass equation of Poolman
model (i.e., PoolmanBOF), while the models of AraGEM and
AraCore synthesize 1.53 and 1.42 biomass units respectively.
Similarly, Poolman model yields the highest biomass by using
AraGEMBOF and AraCoreBOF (2.40 and 2.12 flux units,
respectively), while, AraGEM generates the lowest biomass (1.29
and 1.13 flux units, respectively; Figure 2). This indicates that
the Poolman model predicts more efficient conversion of glucose
into biomass compared to the other two models. Overall, model
structure has a large impact on the model prediction made with
FBA, which highlights the importance of the quality of metabolic
models on the variation of model predictions.

To quantify the variation of fluxes in face of changing biomass
composition and model structure, we calculated the standard
deviation, a robust measure for the dispersion within a set of
data, for each reaction fluxes that were predicted from nine
model-biomass equation combinations. We then compared the
median of the standard deviation (Supplementary Data 3). The
medians of the standard deviations of reaction fluxes for the cases
with the same biomass composition but different models (4.59,
3.35, and 3.22 for PoolmanBOF, AraGEMBOF, and AraCoreBOF
combinations, respectively) were systematically higher than that
of simulations with the same metabolic network (0.29, 0.53,
and 1.98 for Poolman, AraGEM, and AraCore combinations).
This indicates that the predicted fluxes were considerably more
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FIGURE 2 | Flux maps of central carbon metabolism predicted from three Arabidopsis models: Poolman model, AraGEM model, and AraCore model.

Fluxes were predicted using three different biomass compositions in each model: PoolmanBOF, the biomass composition included in Poolman model; AraGEMBOF,

biomass composition included in AraGEM model; AraCoreBOF, biomass composition included in AraCore model. Each reaction is numbered, referencing Table S1,

and the color intensity of each box corresponds to the flux value (mmol g−1 DW h−1) for the respective labeled reaction in each scenario. The results calculated by

different biomass compositions with the same model can be interpreted by comparing between columns (compare horizontally). The results calculated by the same

biomass composition with different models can be interpreted by comparing between rows (compare vertically). DW, Dry cell weight. Metabolite abbreviations are as

follows: GLC, glucose; 2-OG, 2-oxoglutarate; 3-PGA, 3-phosphoglycerate; 2-PG, 2-phosphoglycolate; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate;

6PGL, 6-phosphogluconolactone; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; X5P, xylulose-5-phosphate; S7P,

sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; FBP, fructose-1,6-biphosphate; DHAP, dihydroxyacetone phosphate; DPG, glycerate-1,3-bisphosphate;

PEP, phosphoenol pyruvate; OAA, oxalacetic acid; GAP, glyceraldehyde-3-phosphate; 2-PGA, 2-phosphoglycerate; Pyr, pyruvate; Cit, citrate; IsoCit, threo-isocitrate;

Suc, succinate; SucCoA, succinyl-CoA; Fum, fumarate; Mal, malate; QH2, ubiquinone; Q, ubiquinol; Cytred , cytochrome reduced; Cytox , cytochrome oxidized; Fdred ,

ferredoxin reduced; Fdox , ferredoxin oxidized.

dispersed when using different models, despite of the same
biomass equation, revealing that model structure has a larger
impact on the FBA predictions.

For further confirmation, FVA was performed to examine
the flux capacity for each reaction under the 9 model-biomass

combinations (Supplemental Data 4). FVA analysis showed
that 10 of 33 considered reactions (pyruvate dehydrogenase,
reaction 13; citrate synthase, reaction 14; succinate thiokinase,
reaction 18; complex II, reaction 19; glucose 6-phosphate
dehydrogenase, reaction 22; 6-phosphogluconolactonase,
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reaction 23; ribulose-phosphate 3-epimerase, reaction 26;
ribulose 5-phosphate epimerase, reaction 27; transketolase
1, reaction 28; and transketolase 2, reaction 29) have non-
overlapping flux variability ranges in the compared scenarios
and agreed with the FBA analysis. However, the rest have a
large range of possible flux values in, at least one of considered
scenarios, resulting in overlapping flux variability ranges in the
compared scenarios, which are not comparable.

Robustness of Growth Rate Predictions
with Respect to Changes in Individual
Biomass Component and Maintenance
Cost
From Figure 2, we observed that growth rate is not sensitive to
the biomass composition. Considering the BOF is the employed
objective in this study, which is the most commonly used
objective for FBA (Feist and Palsson, 2010), we further analyzed
the impact of changing the fractional contribution of each single
biomass component on the growth rates with the “reference”
scenarios—Poolman-PoolmanBOF, AraGEM-AraGEMBOF, and
AraCore-AraCoreBOF three scenarios. The coefficient of each
compound in the biomass equation was independently varied
30% up or down (this value referred to Pinchuk et al., 2010)
in each “reference” scenario, while the composition of the rest
of the biomass components was kept unchanged. The resulting
model predictions of the growth rates were compared with that
of “reference” biomass equation. Overall, our analyses showed
that the predicted growth rates were not sensitive to changes in
the ratios of biomass components. For instance, growth rates
in AraGEM and AraCore models were altered by, at most, 4
and 6%, respectively (Supplementary Tables 3, 4). The only
exception is in the Poolman model where a 30% decrease or
increase of the composition of cell wall led to 19.9% and 14.3%
variation in growth rate, respectively (Supplementary Table 2).
This discrepancy is not unexpected as cell wall is the largest
part (66.6%) of the overall biomass composition in the Poolman
model (Figure 1).

Our analysis preferentially revealed that growth rate has a
larger change at higher coefficient in terms of C atom. Given
that glucose, which is the carbon and energy source, was used
as the limiting nutrient in the analyses in this study, we would
expect growth rate correlates to the fractional coefficient of
C atom. To quantify this effect, we calculated the Pearson
correlation coefficient (PCC), a measure of the linear dependence
between two variables, for all predicted growth rates simulated by
decreasing and increasing of each single biomass component by
30% (Supplementary Figure 2).We also calculated the correlation
coefficients between changes in growth rate and the coefficient
in terms of weight (Supplementary Figure 3). We found that
the correlations among the coefficient in terms of weight were
systematically similar to the observed correlations among the
coefficient in terms of C atoms (Supplementary Figure 2),
indicating that when the fractional contribution of C atoms
were altered, the growth rates were increased or decreased in a
synchronized fashion.

In addition to the structure of the metabolic network and
biomass composition, the in silico growth rate can also be
influenced by the maintenance cost, i.e., GAM and NGAM.
Therefore, we evaluated the influence of maintenance on
the predicted growth rates with three “reference” scenarios
characterized by constraints on: (i) no maintenance, (ii) sole
GAM, (iii) sole NGAM, and (iv) GAM and NGAM. We then
compared the growth rates of scenario (i), (ii), and (iii) with
that of scenario (iv), separately. The analyses showed that
the influence of maintenance parameters varies with the used
model. The exclusion of GAM and/or NGAM changes the
growth rate by, at most, 29.6 and 1.3% in AraGEM model and
AraCore model, respectively (Supplementary Table 5). Given that
AraGEM and AraCore models describe the ETC reactions quite
differently (Section Differences in Central Carbon Metabolism
between the Three Arabidopsis Models), it is unsurprising to
observe large discrepancies between the influence ofmaintenance
cost on growth rate predictions for these two models. It is worth
mentioning that the growth rate predicted from the Poolman
model did not change with the maintenance, which is biologically
implausible. This is because there exist futile cycles in Poolman
model (Arnold et al., 2015).

DISCUSSION

In this study, we investigated the effect of biomass composition
and model structure on steady-state flux predictions in the
metabolic models of Arabidopsis. Different combinations
(three models and three biomass equations) were tested to
cover multiple possibilities for biomass composition. Our
results demonstrated that flux predictions of the central
metabolic network are fairly insensitive to changes in biomass
composition, regardless of the employed metabolic networks
(Figure 2). Biomass demands are a principal drive of the
flux distributions in metabolic models, therefore one would
expect the flux distributions to be sensitive to changes in the
biomass composition. However, several experimental studies
provided evidence that central carbon metabolism is rather
stable when the substrate source remains unchanged (Rontein
et al., 2002; Spielbauer et al., 2006; Junker et al., 2007; Williams
et al., 2008, 2010). In a study of heterotrophic Arabidopsis
cell culture, fluxes through the central metabolic network
measured by metabolic flux analysis (MFA) were observed
to be unchanged under different physiological conditions,
despite under which the biomass composition altered (Williams
et al., 2008). Consistently, Spielbauer et al. (2006) found that
flux distributions of central carbon metabolism were stable in
maize endosperm. Nonetheless, under conditions with different
substrates provided, the flux distribution in the central carbon
metabolism altered significantly (Junker et al., 2007). The
noticeable stability of central carbon metabolism has been
extensively demonstrated in many microorganism studies
(Pramanik and Keasling, 1997, 1998; Feist et al., 2007).

Our results also showed that 30% variations in individual
biomass precursor had a minor effect on the growth rates
with Arabidopsis models (Supplementary Tables 2–4). This
observation is in agreement with the previously reported findings
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(Pramanik and Keasling, 1998; Puchalka et al., 2008). Puchalka
et al. (2008) reported that varying a single biomass component
by 20% up or down has a negligible effect (<1%) on the growth
rate. Due to the large number of macromolecules such as protein
and carbohydrate in the cell, it is not surprising that single
biomass component, which makes up the macromolecules did
not significantly affect the growth rate. However, in other studies,
it was found that varying the macromolecular composition
had considerable effect on the flux simulations (Feist et al.,
2007; Nookaew et al., 2008). Similarly, our analyses showed
that the effect of maintenance cost on growth rate was limited
(Supplementary Table 5), which contradicts previous results of
E. colimodel that maintenance cost had larger impact on growth
rate prediction (Feist et al., 2007). However, it is important to
point out that the growth yield altered merely by 5% when
increasing or decreasing GAM twofold in the study of Puchalka
et al. (2008), whereas, the effect of NGAM depends on the
rate of carbon source supply. The discrepancies of the effect
of maintenance cost on growth rate predictions of models of
different organisms is likely to due to the difference in lifestyle
and metabolic behavior of the different organisms.

Sensitivity analyses of biomass composition performed on
different models often yields conflicting results. According to the
sensitivity analysis on the E. coli model of Feist et al. (2007),
small changes in biomass composition did not significantly affect
growth rates, while, cellular maintenance cost can considerably
influence growth rate prediction. However, the study of the E.
coli model of Varma and Palsson (1994) noted that predictions
of constraint-based model are not very sensitive to maintenance,
including GAM and NGAM. Recently, Dikicioglu et al. (2015)
found that the predicted fluxes of the metabolic models of yeast
were sensitive to biomass composition. These are likely caused
by inherent differences in the respective metabolic networks.
To verify this, we examined the differences of FBA solutions
between different models by constraining the same biomass
outputs and cellular maintenance costs, and our results indicated
that model structure has a larger impact on the flux predictions
than the biomass composition (Figure 2). Moreover, our analyses
of the impact of maintenance on the predicted growth rates
showed large differences between the three examinedmodels that
represent the ETC reaction differently (Supplementary Table 5).
These observations indicate the structure of metabolic models is
a major determinant of the variation in model predications.

Although, our analysis indicated the robustness of the growth
rate and central metabolic fluxes in response to changes in
biomass composition and maintenance cost, it does not suggest
that it is sufficient to generalize biomass composition from any
cell type within a plant or from other closely related organisms.
This is because the biomass composition for different tissues

and organisms may include metabolites specific to them, which
need specific determination. Notably, variables other than model
structure, such as the P/O ratio have considerable impacts on flux
distributions according to previous reports (Feist et al., 2007).

CONCLUSIONS

In this study, we reviewed the characteristics of published
Arabidopsis metabolic models, concentrated on three particular
models with distinct model structures and different compositions
of biomass components.We examined the sensitivity of predicted
fluxes to biomass composition, which is particularly relevant
to plant metabolic models for which the biomass data is often
collected from various sources. Our analysis showed that central
metabolic fluxes as well as growth rates were insensitive to
the variations in biomass composition, but were significantly
affected by model structure. This work represents a thorough set
of analyses performed in plants by means of constraint-based
modeling, thereby providing relevant information about how
critical FBA solutions can be affected by biomass composition,
and more importantly by the structure of the models. Despite
differences in several aspects such asmodel structure and number
of metabolites and reactions included, each of the evaluated
models has its own merits. Comparative analysis of the models
paves the way for exploring the existence of principles that are
relevant for the regulation and robustness of plant central carbon
metabolism.
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