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Sulfur deficiency in plants has severe impacts on both growth and nutrient composition.

Fumigation with sub-lethal concentrations of H2S facilitates the supply of reduced sulfur

via the leaves while sulfate is depleted from the roots. This restores growth while sulfate

levels in the plant tissue remain low. In the present study this system was used to reveal

interactions of sulfur with other nutrients in the plant and to ascertain whether these

changes are due to the absence or presence of sulfate or rather to changes in growth

and organic sulfur. There was a complex reaction of the mineral composition to sulfur

deficiency, however, the changes in content of many nutrients were prevented by H2S

fumigation. Under sulfur deficiency these nutrients accumulated on a fresh weight basis

but were diluted on a dry weight basis, presumably due to a higher dry matter content.

The pattern differed, however, between leaves and roots which led to changes in shoot

to root partitioning. Only the potassium, molybdenum and zinc contents were strongly

linked to the sulfate supply. Potassium was the only nutrient amongst those measured

which showed a positive correlation with sulfur content in shoots, highlighting a role as

a counter cation for sulfate during xylem loading and vacuolar storage in leaves. This

was supported by an accumulation of potassium in roots of the sulfur-deprived plants.

Molybdenum and zinc increased substantially under sulfur deficiency, which was only

partly prevented by H2S fumigation. While the causes of increased molybdenum under

sulfur deficiency have been previously studied, the relation between sulfate and zinc

uptake needs further clarification.

Keywords: Brassica, hydrogen sulfide, sulfur deficiency, yield quality, mineral composition

INTRODUCTION

Understanding interactions between plant nutrients is essential for optimizing fertilization
strategies and improving nutrient use efficiency in crops (Baxter, 2009; Maathuis, 2009; Reich
et al., 2014a). Sulfur was recognized as an essential nutrient for crops more than a century ago
(Bogdanov, 1899; Hart and Peterson, 1911) and since then it had shown to be involved in many
vital processes in plants (Thompson, 1967; Hell, 1997; De Kok et al., 2005; Hawkesford and De
Kok, 2006; Takahashi et al., 2011). In contrast to the intensive study of the uptake and assimilation
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of sulfur (reviewed e.g., by Leustek et al., 2000; Kopriva, 2006;
Hawkesford, 2012; Honsel et al., 2012) and their interconnection
with carbon and nitrogen metabolism (Kopriva et al., 2002) the
interaction with other nutrients is less well-known.

As sulfur deficiency is becoming a constraint to yield in
many cropping systems throughout the world (Zhao et al.,
1999) it is momentous to uncover the effects on other elements,
which determine the nutritional quality of crops. Numerous
members of the Brassicaceae family are used as food and oil crops
worldwide and Chinese cabbage has an increasing importance
in many developing countries (Kawashima and Soares, 2003;
Rakow, 2004; Park et al., 2005) and is highly nutritious (Moreno
et al., 2002; Kawashima and Soares, 2003; Di Noia, 2014).

Interactions between nutrients may appear at different
physiological levels. The uptake of nutrients from the soil
solution by the roots represents the first level of possible
interaction. Mineral nutrients are usually taken up in the form
of soluble salts, i.e., as cations or anions. Differences in charge
leads to antagonisms and synergisms between ions and many
nutrient interactions may be driven by a balance of charge.
An increased uptake of an anion may lead to the decrease of
nutrients taken up as cations or an increase of another anion
and vice versa. Additionally, ion transporters usually do not
exclusively transport one single nutrient as their substrate but
also translocate others with similar molecular structure, though
usually with a lower affinity. Therefore the deficiency or complete
absence of the preferred ion might lead to the transport and
subsequent accumulation of another ion that would usually
be outcompeted as a substrate. This is true, for example for
sulfate transporters in the plasmamembrane of roots, which have
been shown to also transport selenate and molybdate (Shibagaki
et al., 2002; Shinmachi et al., 2010). Due to its similar size,
selenium may replace sulfur in many molecules (White et al.,
2004).

Studies on nutrient interactions almost exclusively apply
alterations of the rhizospheric concentration of the nutrient of
interest to study the impact on uptake and metabolism of other
nutrients. This always bears the risk of observing indirect effects
due to changes in growth. Studies on sulfur offer the possibility
of supplying plants with sulfur gases as an additional or sole
source of reduced sulfur. In the present study H2S was used in
concentrations that were below toxic levels but high enough to
cover the bulk requirement of the plant for organic sulfur (also
see Maas et al., 1987; Westerman et al., 2000). If sulfur is present
in sufficient concentrations in the root medium, H2S fumigation
typically leads to a partial down-regulation of sulfate uptake by
the roots. However, if sulfur is absent in the root medium, H2S
can serve as a source for sulfur and enable normal growth. In
many industrial regions in the world significant amounts of H2S
are present in the atmosphere and might have an impact on the
nutritional quality of crops.

The aim of the present study was to examine the separate
and interactive effects of rhizospheric and atmospheric sulfur
nutrition on the tissue content and shoot-to-root partitioning of
other essential macro- and micronutrients. The results will help
to distinguish between nutrients that are directly affected by the
presence or absence of sulfate and nutrients, which are coupled

to the changes in growth and organic sulfur caused by different
sulfur supply.

MATERIALS AND METHODS

Plant Material, Growth Conditions, and
Growth Analysis
Brassica pekinensis (Lour.) Rupr. cv. Kasumi F1 (Nickerson-
Zwaan, Made, The Netherlands) was germinated in vermiculite.
Ten day-old seedlings were grown in a 25% Hoagland nutrient
solution (pH 5.9), consisting of 1.25mM Ca(NO)3.4H2O,
1.25mM KNO3, 0.25mM KH2PO4, 11.6µM H3BO3, 2.4µM
MnCl2.4H2O, 0.24µM ZnSO4.7H2O, 0.08µM CuSO4.5H2O,
0.13µM Na2MoO4.2H2O, and 22.5µM Fe3+-EDTA containing
either 0.5mM (+S) or 0mM (-S) MgSO4.7H2O. Plants were
grown in 13 l containers (10 sets of plants per container, three
plants per set) in climate-controlled fumigation cabinets for
11 days and fumigated with 0 or 0.2µl l−1 H2S. Day/night
temperatures were 21/18◦C, relative humidity was 60–70% and
the photoperiod was 14 h at a photon fluence rate of 300 ±

20µmol m−2 s−1 (within the 400–700 nm range) at plant height,
supplied by Philips HPI-T (400W) lamps.

For determination of the dry matter content fresh plant tissue
was dried at 80◦C for 24 h and stored in a desiccator for further
use.

Analysis of Mineral Nutrient Content
Dried plant tissue (0.2–0.5 g) was digested with 5ml of
nitric acid/perchloric acid (87:13, v/v; 70% concentration,
trace analysis grade; Fisher Scientific; Zhao et al., 1994). The
digest solution samples were analyzed for mineral nutrients by
inductively coupled plasma mass spectrometry (ICP-MS) and
inductively coupled plasma atomic emission spectrometry (ICP-
AES) analysis. Repeat samples were carried out every 10 samples;
blanks and standard reference material (NIST 1567, a wheat
flour) were used for quality control.

Inductively coupled plasma analysis was carried out using a
7500ce Octopole Reaction System ICP-MS apparatus (Agilent
Technologies). The sample introduction system consisted of a
micromist glass concentric nebulizer, quartz Scott-type double-
pass spray chamber at 2◦C, and nickel sample (1mm) and
skimmer (0.4mm cones). Operating parameters were optimized
daily using a tune solution containing 1µg l−1 cerium, lithium,
tellurium, and yttrium. Other instrument conditions were
radiofrequency forward power of 1550, sample depth of 8.0mm,
carrier gas flow rate of 0.89 l min−1, reaction gas flow rate (H2)
of 4ml min−1 or (helium) of 4.5ml min−1. An internal standard
(500µg l−1 germanium) was used to correct for signal drift. The
analytical procedures gave satisfactory values for the standard
reference materials.

Mineral nutrient contents were measured from driedmaterial.
These contents were multiplied with the average dry matter
content to calculate the contents based on fresh weight.

Statistical Analysis
One-way-analysis of variance (ANOVA) was used to test for
significant differences in growth parameters (Table 1) and an
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TABLE 1 | The effect of sulfur deprivation (−S) and H2S fumigation on total

biomass (fresh weight), shoot-to-root ratio and dry matter content (DMC)

of shoot and roots of seedlings of Chinese cabbage.

Total Shoot-to-root DMC DMC

biomass (FW) ratio shoot roots

Control 3.14± 0.28a 7.64± 0.75a 6.63±0.11a 6.72±0.10a

−S 0.58± 0.31b 4.25± 0.41b 11.93±0.30b 8.11±0.59b

H2S 3.15± 0.34a 7.31± 1.04a 6.75±0.05a 6.25±0.12a

−S H2S 2.71± 0.42a 5.42± 0.99c 6.96±0.86a 6.45±0.14a

Data represent the mean (± SD) of nine measurements with three plants in each.

Data derived from Shahbaz et al. (2014).Values with different letters are significantly

different(p < 0.05; one-way-ANOVA,Tukey’s multiple comparison as post-hoc test).

Unpaired Student’s t-test to compare nutrient contents of the
treatments (-S, H2S, -S H2S) with the control conditions (+S;
Table 3). A two-way-ANOVA was performed to analyze the
contribution of rhizosperic and atmospheric sulfur supply to
the total variance in nutrient contents (Table 4). The changes
in sulfur and potassium content were correlated using a
linear regression (Figure 2). All analyses were performed using
GraphPad Prism (GraphPad Software, San Diego, CA, USA).

RESULTS AND DISCUSSION

Understanding all interactions between plant nutrients remains
a challenge (Baxter, 2009; Maathuis, 2009) but is essential to
improve nutrient use efficiency of agricultural and horticultural
systems (Reich et al., 2014a). A major constraint in studying
nutrient-nutrient interactions is the effect of nutrient availability
on plant growth. Decreasing the tissue content of an essential
nutrient below a critical level will lead to growth impairment and
consequently the changes in content of other nutrients can be a
direct cause of the absence of this nutrient or an indirect result
of the impaired growth. The regulation of sulfate uptake and
sulfur metabolism is presumed to be interconnected with plant
development (Hawkesford, 2012).

This study presents results obtained from an experimental
set-up in which inorganic sulfur status was uncoupled from
effects on growth and the organic sulfur pool. H2S fumigation
serves as a reduced sulfur source to plants and leads to a
replenishing of the organic sulfur fraction in shoots and, to a
lesser extent, also in the roots whilst leaving inorganic sulfur
pools (viz. sulfate) largely unaffected (Shahbaz et al., 2014).
This creates a situation in which effects of sulfate status can
be disentangled from effects of growth (Table 1; De Kok et al.,
2007). In sulfur deficiency, the increase of calcium, copper, iron,
magnesium, manganese, sodium, and phosphorus in shoots on
a fresh weight basis was completely reversed if plants were
supplied with H2S (Figure 1, Tables 2, 3). On a dry weight basis
all these nutrients, except copper and sodium, were actually
decreased. A two-way ANOVA showed that the variation in zinc
and molybdenum content was mainly caused by rhizospheric
sulfur supply (Table 4). The large increase of molybdenum is
known to be caused by the affinity of sulfate transporters for
molybdate (Leggett and Epstein, 1956; Fitzpatrick et al., 2008;

TABLE 2 | The effect of sulfur deprivation and H2S fumigation on mineral

nutrient content in [µmol g dry weight−1] of shoot and roots of seedlings

of Chinese cabbage.

Shoot Control −S H2S −S H2S

Ca 799± 48 600± 16 792± 17 770± 31

Cu 0.18± 0.05 0.21± 0.02 0.12± 0.01 0.12± 0.01

Fe 1.61± 0.24 1.13± 0.07 1.52± 0.07 1.23± 0.21

K 2046± 137 870± 31 2070± 14 1683± 65

Mg 203± 14 142± 3 199± 7 182± 2

Mn 2.29± 0.06 2.12± 0.10 2.22± 0.15 1.94± 0.16

Mo 0.06± 0.004 0.40± 0.03 0.05± 0.002 0.21± 0.01

Na 9.11± 1.30 11.03± 0.38 9.10± 0.41 7.73± 0.36

P 221± 16 193± 5 232± 11 212± 1

S 279± 17 29± 2 301± 17 113± 9

Zn 0.33± 0.05 0.46± 0.02 0.30± 0.03 0.50± 0.02

Roots +S −S +S H2S −S H2S

Ca 487± 42 289± 15 397± 37 371± 21

Cu 0.38± 0.02 0.61± 0.01 0.44± 0.02 0.72± 0.11

Fe 17.8± 2.6 34.0± 1.6 19.9± 5.1 21.6± 2.0

K 1681± 5 1498± 59 1944± 164 1544± 44

Mg 186± 11 122± 4 202± 14 135± 2

Mn 19.7± 1.7 29.4± 1.3 20.8± 3.9 19.7± 1.6

Mo 0.07± 0.001 0.96± 0.07 0.08± 0.001 0.45± 0.02

Na 8.4± 0.4 11.3± 0.92 10.3± 1.1 9.5± 0.6

P 309± 4 375± 10 352± 35 316± 3

S 351± 14 68± 1 330± 29 100± 3

Zn 0.72± 0.09 1.40± 0.09 0.73± 0.07 1.04± 0.02

Data represent the mean (± SD) of three measurements with three plants in each. Relative

responses and significance are shown in Table 3.

Shinmachi et al., 2010). The other way around, an excessive sulfur
fertilization can lead to molybdenum deficiency (MacLeod et al.,
1997). Interestingly, H2S exposure counteracted the increase
of molybdenum under sulfur deficiency, although it did not
completely reverse it (Figure 1, Tables 2, 3). It is a well-known
phenomenon that atmospheric, sub-lethal H2S concentrations
enable plants to maintain sufficient levels of organic sulfur
compounds in leaves but do not necessarily lead to a complete
down-regulation of gene expression of the sulfate transporters
and sulfate uptake capacity (De Kok et al., 1997; Buchner
et al., 2004; Koralewska et al., 2008). The effect of H2S on
molybdenum levels in the present study could be due to this
partial down-regulation of the sulfate transporters or to an
effect of growth as proposed for the other nutrients. The
strong effect of sulfur deficiency observed on zinc found in
the present study is a less studied phenomenon. One possible
explanation for this observation is a change in rhizosphere pH.
It is well-known that zinc uptake negatively correlates with
rhizosphere pH (Lucas and Davis, 1961; Marschner, 1993), which
is the likely reason for higher zinc uptake under ammonium
nutrition and phosphorus deficiency which both lead to an
acidification of the rhizosphere (Alloway, 2009; Reich et al.,
2016). Measurements with H+-electrodes showed that sulfur
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TABLE 3 | Relative effect of sulfur deficiency (–S), H2S fumigation on the content of mineral nutrients in shoot and roots of seedlings of Chinese cabbage.

Shoot (dry weight basis) Roots (dry weight basis) Shoot (fresh weight basis) Roots (fresh weight basis)

Element
Treatment

−S H2S −S H2S −S H2S −S H2S −S H2S −S H2S −S H2S −S H2S

Ca 25** 1n.s. 1n.s. 41** 19* 24* 35*** 1n.s. 2n.s. 28** 24* 27**

Cu 16n.s. 35n.s. 36n.s. 62*** 18** 92** 109** 34n.s. 32n.s. 95*** 10n.s. 84**

Fe 30* 6n.s. 24n.s. 91*** 26n.s. 21n.s. 26n.s. 4n.s. 20n.s. 130*** 4n.s. 16n.s.

K 57*** 1n.s. 18* 11** 16* 8** 23** 3n.s. 14* 8* 8n.s. 12**

Mg 30** 2n.s. 10n.s. 34*** 9n.s. 27** 26** 0 6n.s. 21** 1n.s. 30***

Mn 7n.s. 3n.s. 15* 50** 5n.s. 0 67*** 1n.s. 11n.s. 81*** 2n.s. 4n.s.

Mo 575*** 19* 250*** 1300*** 23*** 553*** 1112*** 17n.s. 267*** 1589*** 14n.s. 527***

Na 21n.s. 0 15n.s. 34** 22* 13n.s. 118*** 2n.s. 11n.s. 62** 13n.s. 9n.s.

P 12* 4n.s. 4n.s. 22*** 14n.s. 2n.s. 58*** 7n.s. 1n.s. 47*** 6n.s. 2n.s.

S 90*** 8n.s. 59*** 81*** 6n.s. 72*** 81*** 10n.s. 57*** 77*** 12n.s. 73***

Zn 40* 9n.s. 53** 94*** 1n.s. 45** 150*** 7n.s. 61** 134*** 6n.s. 39**

Data expressed as relative change in % to control levels. Relative increase compared to the control is accentuated in orange, relative decrease in blue. Significant difference from the

control is indicated by bold font and coloration (Unpaired Student’s t-test on original values; *p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 1 | The effect of sulfur deprivation and H2S fumigation on

mineral nutrient content in shoot and roots of seedlings of Chinese

cabbage. Radar diagrams showing response ratios relative to control

conditions. Shoot (A,C); roots (B,D); dry weight basis (A,B); fresh weight

basis (C,D). Control (black); H2S (green); −S (red); −S + H2S (blue).

Molybdenum was excluded from this figure due to its extraordinary large

changes. For absolute contents see Table 2.

deficiency also leads to a lower pH at the roots of B. pekinensis
seedlings (Reich et al., 2014b), which could increase zinc uptake.
Another possibility for the increased content of transition metals
under sulfur deficiency, and a prevention of such by H2S, is
their reactivity with and mutual detoxification by reduced sulfur
compounds. Particularly cysteine-rich polypeptides possessing
sulfhydryl groups (-SH) are highly reactive with transition metals
(Steffens, 1990). Under sulfur deficiency these compounds are
less abundant while H2S fumigation usually leads to a restock
or even higher concentrations (Buchner et al., 2004). This might

FIGURE 2 | Strong positive correlations between changes in sulfur and

potassium contents in response to sulfur deficiency and H2S

fumigation in the shoot of seedlings of Chinese cabbage. The values for

sulfur are multiplied by two to account for the divalency of sulfate. Data

represent the mean (±SD) change in content relative to control conditions of

three measurements with three plants in each. The goodness of fit (r2) of a

linear regression is indicated.

explain why copper levels are recovered by H2S fumigation
(Figure 1, Table 2) but not why zinc levels are still higher under
sulfur deficiency and H2S fumigation. Both, molybdenum and
zinc, are co-factors of important enzymes and zinc is involved
in auxin biosynthesis (Mendel and Hänsch, 2002; Broadley
et al., 2007). The metabolic consequences of an increase of
these micronutrients under sulfur deficiency should be further
investigated.

The only nutrient besides sulfur itself that significantly
decreased in concentration in shoots under sulfur deficiency
on both fresh and dry weight basis was potassium and
this decrease was only partly reversed by H2S fumigation.
Interestingly, potassium decreased to about the same extent
as sulfur, if its content was multiplied by two in order to take
the divalency of sulfate into account (Figure 2). Additionally,
variation in potassium content in shoots was mainly caused
by rhizospheric sulfur supply (Table 4). Potassium therefore
seemed to compensate for the changes in sulfate and to play
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TABLE 4 | Results of a two-way-ANOVA showing the contribution of rhizopsheric (R) and atmospheric (A) sulfur supply and their interaction (I) to the total

variance in mineral nutrient content in shoot and roots of seedlings of Chinese cabbage (%; *p < 0.05, **p < 0.01, ***p < 0.001; Bonferroni’s multiple

comparison as post-hoc test).

Dry weight basis Fresh weight basis

Shoot Roots Shoot Roots

R A I R A I R A I R A I

Ca 42 23 27 56 0 33 36 28 31 38 20 29

p-value *** *** ** *** n.s. ** *** *** *** ** * **

F-value 37.9 20.5 24.2 39.6 0.1 23.3 59.3 46.8 52.3 18.8 10.0 12.8

Cu 2 73 3 80 10 1 21 53 20 92 0 1

p-value n.s. *** n.s. *** * n.s. *** *** *** *** n.s. n.s.

F-value 0.9 26.2 0.9 64.7 7.9 0.5 31.5 78.7 29.2 109.1 0.0 1.7

Fe 65 0 4 43 14 28 2 45 31 41 25 28

p-value ** n.s. n.s. ** * ** n.s. ** ** *** *** ***

F-value 16.7 0.0 1.0 24.4 8.2 15.9 0.7 16.2 11.3 53.2 31.6 36.0

K 64 18 16 57 17 8 81 8 2 11 11 56

p-value *** *** *** *** * n.s. *** * n.s. n.s. n.s. **

F value 304.0 87.1 77.4 31.4 8.9 4.4 75.9 7.7 2.2 3.9 3.9 20.4

Mg 61 13 19 91 4 0 16 39 39 86 2 4

p-value *** ** ** *** * n.s. ** *** *** *** n.s. n.s.

F-value 71.7 15.4 22.2 152.1 7.5 0.1 17.8 44.3 44.2 88.6 2.4 3.8

Mn 46 13 3 24 23 36 20 39 37 28 34 31

p-value * n.s. n.s. * * ** *** *** *** *** *** ***

F-value 9.6 2.8 0.7 10.6 10.2 16.0 56.4 108.8 103.3 35.4 42.4 38.7

Mo 76 13 10 75 12 13 57 22 20 66 16 17

p-value *** *** *** *** *** *** *** *** *** *** *** ***

F-value 727.8 120.9 96.2 842.2 131.6 148.7 737.5 281.0 259.2 777.7 193.3 203.9

Na 1 40 39 19 0 53 25 36 38 32 15 43

p-value n.s. ** ** * n.s. ** *** *** *** ** ** ***

F-value 0.4 15.4 15.2 5.4 0.0 15.2 110.9 162.0 170.6 25.3 12.3 34.3

P 52 20 3 6 2 69 28 26 43 23 27 45

p-value ** * n.s. n.s. n.s. ** *** *** *** *** *** ***

F-value 16.6 6.4 1.1 2.1 0.6 24.1 85.4 79.4 129.2 35.4 42.4 70.5

S 92 5 2 98 0 1 93 5 1 98 0 1

p-value *** *** ** *** n.s. * *** *** * *** n.s. *

F-value 862.5 51.6 17.8 743.4 0.4 7.7 739.4 39.0 6.9 729.6 2.8 10.3

Zn 87 0 4 76 9 11 73 14 11 62 20 16

p-value *** n.s. n.s. *** ** ** *** *** *** *** *** ***

F-value 75.8 0.2 3.6 131.6 16.2 18.3 287.9 56.6 41.6 198.1 63.6 50.3

the role of a counter-ion. This is supported by studies on
isolated vacuoles (Kaiser et al., 1989). Sulfate application
also increased potassium levels in e.g., alfalfa (Razmjoo
and Henderlong, 1997). In studies with Norway spruce
potassium, magnesium, and manganese were increased in
the endodermis and mesophyll cells if sulfate was increased
due to SO2 fumigation. This led the authors to postulate that
those cations act as counter-ions for sulfate accumulation
in vacuoles (Slovik et al., 1996; Bäucker et al., 2003). While

potassium was decreased together with sulfur in shoots
under sulfur deficiency, calcium was increased (Figure 1,
Table 3). Potassium, calcium, and magnesium are known to
behave antagonistically in many cases due to their common
positive charge, especially at the level of uptake (Jakobsen,
1993; Marschner, 2012). Indeed, contents of the single
cations in the shoot differed proportionally more between
sulfur sufficient and deprived conditions, than their sum
(Figure 3).
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FIGURE 3 | The effect of sulfur deficiency and H2S fumigation on the

cation balance in shoot and roots of seedlings of Chinese cabbage.

Data represent the mean (±SD) of the contents of potassium (K), calcium (Ca),

and magnesium (Mg) in shoot (left) and root material (right) of three

measurements with three plants in each. The contents of Ca and Mg were

doubled to account for their divalency.

The changes in growth due to the manipulation of
rhizospheric and atmospheric sulfur supply seem to be the main
driver of the content of most nutrients with the few above-
mentioned exceptions which are linked to clear physiochemical
mechanisms. However, looking at the changes in root tissue
(Figure 1, Table 3) indicates a more complex picture. The
relationship discussed above between sulfur and potassium was
not found here. Instead, a relative accumulation of potassiumwas
observed while calcium and magnesium decreased. However, the
sum of decrease of the two cations was not enough to compensate
for the decrease in sulfur, as it was for potassium in shoots. We
assume that the xylem loading of potassium and its translocation
to the shoot are partly determined by the amount of sulfate
translocated and accumulating in the shoot, while potassium
uptake by the roots is not. Therefore, potassium accumulates in
the roots when sulfate is absent.

Some authors proposed a cross-talk between sulfur and
iron uptake and metabolism (Forieri et al., 2013) due to the
cooperative role of both nutrients in plant metabolism, for
example in iron-sulfur clusters of proteins in the electron
transport chain. In the present study, however, no significant
changes in iron in leaves were observed (on a fresh weight basis)
under sulfur deficiency, while sulfur decreased at 81%. On the
contrary, in roots a 130% increase in iron was observed under
sulfur deficiency, possibly indicating a declined sink strength
of the shoot for iron due to the lack of sulfur. H2S completely
reversed this effect. Also Zuchi et al. (2015) observed a decrease
of iron in plants subjected to sulfur deficiency, however, here the
content of the nutrients was expressed on a plant basis. As usual,
sulfur deficiency led to severe impairment of growth in that study
and a lower nutrient content on a plant level is to be expected.
Dividing the iron content by the dry plant biomass given by
Zuchi et al. (2015) revealed that that iron content was indeed also
decreased by 55% on a dry weight basis, which was comparable
to the decrease of 30% observed in the current study (Table 2).
This decrease, however, disappeared if the large increase in dry
matter content upon sulfur deficiency (Table 1) was taken into
account and the content was calculated on a fresh weight basis,
which presents a better estimation of the actual concentration
(Table 2).

While increases in manganese, sodium, phosphorus, and zinc
due to sulfur deficiency were prevented by H2S fumigation in
shoot and roots, the increased copper levels in roots remained
completely unaffected. Both copper and zinc increase the uptake
of sulfate (Shahbaz et al., 2010; Stuiver et al., 2014) and, as the
present study shows, sulfate deprivation in turn led to an increase
in concentration of these transition metals in root and shoot
tissues under non-toxic concentrations of these micronutrients
in the growing medium. Exposure with H2S partly ameliorated
this effect of sulfur deficiency, however, differently for copper
and zinc. In response to H2S exposure, sulfur deficient plants
showed copper levels in the shoot similar to that of sulfur
sufficient plants. In the roots however, the increased copper
levels were still maintained. The different interactions of zinc
and copper with sulfate uptake and assimilation need further
clarification.

CONCLUSIONS

Sulfur deficiency has a diverse impact on the whole ionome
of B. pekinensis with important implications for yield quality.
By combining atmospheric and rhizospheric sulfur supply we
were able to distinguish between nutrients on the basis of their
direct or indirect interaction with the presence of sulfate. H2S
fumigation with simultaneous sulfate deprivation revealed that
most nutrients change due to growth impairment and changes in
dry matter content under sulfur deficiency, rather than a direct
interaction with sulfate. Potassium was the only nutrient that
was decreased together with total sulfur under sulfur deficiency
and showed a strong positive correlation with sulfur content.
As sulfate represents the bulk part of total sulfur, these results
suggests that potassium acts as the main counter-ion for the
characteristically high sulfate levels in leaves of Brassica. Besides
molybdenum also zinc, a crucial nutrient for human nutrition,
was strongly increased by sulfur deficiency independent of
changes in growth. Lower root surface pH under sulfur deficiency
and a lower abundance of organic sulfur compounds, which
could react with zinc are possible mechanisms.
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