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Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant

abiotic stress responses as a global positive regulator of abscisic acid signaling. In

the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been

identified, and some are upregulated by abiotic stresses. In this study, we heterologously

overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression

of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and

PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained

under salt stress conditions, leading to higher survival rates under salt stress

compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7

overexpression affected stress-related metabolic genes, including lipid metabolism

and flavonoid metabolism, even under normal growth conditions. However, the stress

response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat

SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore,

PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response

to salt stress; genes related to transport activity, including anion transport-related genes,

were characteristically upregulated, and a variety of metabolic genes were specifically

downregulated. We also found that the salt stress response genes were greatly

upregulated in thePtSnRK2.7 overexpressor. Taken together, poplar subclass 2PtSnRK2

genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular

signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes.

Keywords: SnRK2, overexpression, salt stress, transport, metabolism, salt tolerance, poplar

INTRODUCTION

Plants face various environmental stresses including drought, high salinity, and extreme
temperatures. Such adverse circumstances can often lead to severe agricultural and industrial
losses, so it is important to understand the molecular and physiological mechanisms that plants
use to cope with abiotic stresses for further stable production of crops and biomass feedstock.

Abbreviations: SnRK2, SNF1-related protein kinases 2; ABA, abscisic acid.
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Many studies have indicated that regulatory factors of
protein phosphorylation play essential roles in response to
environmental stimuli (Sopory and Munshi, 1998; Umezawa
et al., 2013). One of the well-characterized protein kinases
involved in stress responses is the group of sucrose non-
fermenting 1 (SNF1)-related protein kinases (SnRKs; Halford
and Hey, 2009). SnRKs are grouped into three subfamilies,
SnRK1, SnRK2, and SnRK3 (Halford and Hey, 2009), and recent
studies have indicated pivotal roles of plant-specific subgroups of
SnRK2 and SnRK3 in the link between abiotic stress and abscisic
acid (ABA) signaling to regulate metabolic pathways (Hrabak
et al., 2003; Halford and Hey, 2009). Increasing evidence shows
that SnRK2 proteins function as positive regulators of ABA
signaling for stress responses, as well as development, in plants
(Umezawa et al., 2013). In Arabidopsis thaliana (Arabidopsis)
and rice, the SnRK2 family includes 10 members, such as SRK2A-
SRK2J or SnRK2.1–2.10 in Arabidopsis and SAPK1-10 in rice
(Yoshida et al., 2002; Hrabak et al., 2003; Kobayashi et al., 2004),
and they are further classified into three subclasses based on their
domain structures (Kobayashi et al., 2004). Most SnRK2 proteins
are activated by abiotic stresses, while the members of subclasses
2 and 3 are also activated by ABA (Boudsocq et al., 2004, 2007;
Kobayashi et al., 2004). In the current model, ABA-induced
activation is largely explained by the interaction between SnRK2s
and protein phosphatase type 2C (PP2C) proteins in the ABA
signaling pathway (Leung et al., 1994, 1997; Meyer et al., 1994;
Saez et al., 2004; Nishimura et al., 2007; Umezawa et al., 2009;
Cutler et al., 2010; Ng et al., 2014). In the absence of ABA,
group A PP2Cs physically bind to SnRK2s to dephosphorylate
SnRK2s, resulting in the inhibition of ABA signal transduction,
while in the presence of ABA, SnRK2 will be released from such
inhibitory regulation by PP2C, because the soluble ABA receptor
PYR/PYL/RCAR inhibits PP2C activity (Umezawa et al., 2009;
Vlad et al., 2009).

In Arabidopsis, detailed analyses of subclass 2
(SRK2F/SnRK2.7 and SRK2C/SnRK2.8) and subclass 3
(SRK2D/SnRK2.2, SRK2I/SnRK2.3, and SRK2E/SnRK2.6) have
revealed their redundant functions in ABA signaling for abiotic
stress responses and developmental controls (Yoshida et al.,
2002; Fujii et al., 2007; Fujii and Zhu, 2009; Fujita et al., 2009;
Nakashima et al., 2009; Mizoguchi et al., 2010). Importantly,
overexpression of SnRK2 genes resulted in enhanced abiotic
stress tolerance in Arabidopsis (AtSRK2C/SnRK2.8, Umezawa
et al., 2004; TaSnRK2.3, TaSnRK2.4, TaSnRK2.7, and TaSnRK2.8,
Mao et al., 2010; Zhang et al., 2010, 2011; Tian et al., 2013)
and in rice (SAPK4; Diédhiou et al., 2008). Overexpression
of SnRK2 genes in Arabidopsis induced the upregulation of
several important stress responsive genes, including RD29A and
DREB1A/CBF3, and ABA biosynthetic genes, such as ABA1,
under normal conditions (Umezawa et al., 2004; Zhang et al.,
2011), suggesting that early and quick stress responses supported
by the expression of such key genes may enhance stress tolerance
in Arabidopsis. The rice SAPK4 overexpressor showed increased
salt tolerance, and major aspects of its tolerance were explained
by changes in the expression of genes related to ion homeostasis
and oxidative stress responses (Diédhiou et al., 2008). In the
cases of SnRK2 overexpressors, the results clearly indicated

that SnRK2 can function in abiotic stress responses in plant
cells, through the modulation of stress response-related gene
expression.

Comparative genomics studies have demonstrated that the
core components of ABA signaling, PYR/PYL/RCAR, SnRK2,
and PP2C, are well-conserved in land plant species (Umezawa
et al., 2010), suggesting the evolutionary conservation of a
molecular system involving these proteins in land plants. Indeed,
the conserved molecular characteristics of SnRK2, such as
transcriptional induction by abiotic stresses and activation by
stress and/or ABA, have been reported for SnRK2 genes not only
in Arabidopsis and rice, but also in other crop plants: maize
(Huai et al., 2008; Vilela et al., 2012) and wheat (Holappa and
Walker-Simmons, 1995; Gómez-Cadenas et al., 1999; Mao et al.,
2010; Zhang et al., 2010, 2011; Tian et al., 2013). Additionally, we
recently confirmed the physical interaction between SnRK2 and
PP2C in a model tree Populus trichocarpa (poplar), and proposed
the possibility that a similar molecular module containing SnRK2
and PP2C is involved in the ABA signaling pathway in trees
(Song et al., 2015). However, information about the molecular
functions of the poplar SnRK2 proteins is still limited. Recently,
we evaluated the transcriptional regulation of PtSnRK2 genes and
found that some of them are upregulated by abiotic stresses in
organ-specific manners, suggesting the involvement of PtSnRK2
in ABA-dependent and/or ABA-independent regulation of stress
responses (Yu et al., unpublished data.).

In this study, to obtain further clues as to the molecular
functions of PtSnRK2 proteins, we heterologously overexpressed
the PtSnRK2 genes in Arabidopsis. Our data indicated that poplar
subclass II PtSnRK2 genes can enhance the salt stress tolerance
of Arabidopsis, and that poplar PtSnRK2 overexpression would
activate cellular signaling and stress response pathways in
Arabidopsis in a different manner than that by the herbal subclass
II SnRK2 genes.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Young shoots of black cottonwood, P. trichocarpa Torr. & A.
Gray (poplar), grown in 15-cm-high plant pots, were used for
the cloning of PtSnRK2 cDNA. For the overexpression analysis,
A. thaliana (Arabidopsis) plants (Columbia strain) were used.
The growth conditions were described in Ohtani et al. (2011) for
poplar and in Ohtani et al. (2013) for Arabidopsis.

Plasmid Construction and Transformation
The coding sequences of PtSnRK2 genes were cloned into the
Gateway entry vector pENTR/D-TOPO or pCR8/GW/TOPO
(Invitrogen), as described by Song et al. (2015), and were
transferred to the destination vector pH35GS (Kubo et al.,
2005) by the LR reaction using LR clonase II (Invitrogen).
In the resulting plasmids, the PtSnRK2 cDNA was expressed
under the control of the cauliflower mosaic virus (CaMV)
35S promoter. The plasmids were electroporated into the
Agrobacterium tumefaciens strain GV3101 (pMP90). A simplified
version of the floral dip method was used for the transformation
of Arabidopsis plants (Clough and Bent, 1998).
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Establishment of Transgenic Lines
For the screening of transgenic lines carrying the empty vector
(vector controls) and 35S::PtSnRK2 (PtSnRK2 overexpressors),
T1 seedlings were grown in germination Murashige and Skoog
(MS) medium containing 50 µg mL−1 hygromycin for 2 weeks,
and the positive plants were transferred to soil for further growth.
Although we failed to generate overexpressors of PtSnRK2.2,
PtSnRK2.6, and PtSnRK2.8, more than 16 independent T2 lines
were established for every other PtSnRK2 genes.

To evaluate the expression levels of the introduced PtSnRK2,
total RNAs were prepared from 7-day-old seedlings of the wild
type, vector controls, and PtSnRK2 overexpressors at the T2

generation using the RNeasy Mini kit (Qiagen). The first-strand
cDNAs were synthesized using SuperScript III (Invitrogen) and
subjected to RT-PCR analysis. The RT reaction was performed
on a 20-µL scale, with 1 µL first-strand cDNA as a template
for PCR, along with 0.5 µM of each gene-specific primer (see
Table S2) and Ex Taq polymerase (TaKaRa). The PCR conditions
were as follows: for the internal control gene Ubp10, 95◦C for
5min, followed by 35 cycles of 94◦C for 20 s, 60◦C for 30 s, and
72◦C for 15 s, followed by 72◦C for 7 min; for PtSnRK2 genes
(target genes), 95◦C for 5min, followed by 35 cycles of 94◦C for
20 s, 60◦C for 30 s, and 72◦C for 1min 15 s, and followed by 72◦C
for 7min. The amplified PCR products were electrophoresed in
3 and 2% (w/v) agarose gels for the Ubp10 and PtSnRK2 genes,
respectively, and gel images were analyzed using the AE-9020 E-
shot II (ATTO; Figure S1). Information about the primer sets is
provided in Table S11.

Salt Stress Treatment
It is generally known that the expression level of 35S promoter-
driven genes would be decreased in T3 homozygous lines, so
we decided to use T2 lines that were confirmed to show high
expression levels of inserted PtSnRK genes as described above, for
the salt stress treatment. Wild-type and transgenic T2 plants were
grown at 22◦C under LD conditions (16 h light/8 h dark) on 1/2-
strength MS medium, after incubation at 4◦C for 3 days. Then,
7-day-old plants were transferred to 1/2-MS medium plates with
or without NaCl. For the survival rates and chlorophyll contents,
200mM NaCl was included in the medium, and for the root
growth phenotype, 100mMNaCl was used. After an additional 4-
day incubation, the numbers of surviving seedlings were counted
to obtain survival rates (n = 20), and chlorophyll contents were
measured as described below (n = 10). The primary root length
was measured before and after a 5-day incubation on the NaCl
plate, to calculate primary root elongation during salt stress
treatment (n = 10). The treatments were repeated three times
for survival rates and root length and six times for chlorophyll
contents.

Chlorophyll Quantitation
Ten seedlings treated with 200mMNaCl for 4 days were sampled
in 3mL (N,N-dimethylformamide, DMF). After incubation in
DMF overnight at 4◦C in the dark, A646.8, A663.8, and A750

were measured using the iMark Microplate Absorbance Reader
(Bio-Rad). The chlorophyll quantitation was calculated by the
formula:

[8.05 × (A663.8-A750) + 19.43 × (A646.8-A750) (µM) / the
quantity of seedlings (mg)] (µM/mg) (Porra et al., 1989).

In silico Prediction of the
Three-Dimensional Structures of PtSnRK2
Proteins
The amino acid sequences of PtSnRK2.5, PtSnRK2.7, and
PtSnRK2.9 were submitted to the web-based SWISS-MODEL
service (http://swissmodel.expasy.org/workspace/; Arnold et al.,
2006), to build protein structure homology models using
information on the crystal structure of the recombinant
AtSnRK2.6 protein as a template (Ng et al., 2011).

Microarray Analysis
Seedlings of the wild-type and PtSnRK2.7 overexpressor line
20 treated with or without 200 mM NaCl for 2 days were
sampled for total RNA extraction. Microarray analysis was
performed using ATH1 GeneChips (Affymetrix) according to
the manufacturer’s instructions on three independent biological
replicates. Subsequent procedures of quality control, statistical
analysis, and filtering were carried out using GeneSpring
GX software (ver. 13.1; Agilent Technologies). Then, p-values
were calculated for each probe using Welch’s t-test (n = 3)
for differences between the treated seedlings and the control
seedlings, as well as between the wild-type and PtSnRK2.7
overexpressor incubated without salt treatment. We used the
Benjamin-Hochberg FDR method to control for false positives.
A p-value cut-off of 0.01 was used to select genes whose
expression changed with salt treatment. Fold-change values were
also computed using GeneSpring GX, and we targeted those
probes in which the change was upregulated or downregulated by
more than 3-fold. Microarray data presented in this study were
submitted to NCBI GEO (www.ncbi.nlm.nih.gov/geo/) and can
be retrieved via accession number GSE79997.

Gene Ontology (GO) Term Analysis
Gene ontology (GO) term analysis was performed using
the PANTHER classification system (Overrepresentation Test,
release 20150430; Mi et al., 2013).

Quantitative RT-PCR Analysis
To evaluate the enhanced upregulation of salt stress response
genes in PtSnRK2.7 overexpressors, quantitative RT-PCR
analysis was performed. Total RNAs were isolated from the
seedlings treated with or without 200mM NaCl for 2 days using
Plant RNA Isolation Reagent (Invitrogen) and then purified
using the RNeasy Mini Kit (QIAGEN). The first-strand cDNAs
were synthesized as described above, and aliquots of the cDNA
solution (0.5 µL for each gene) were used as templates for
subsequent PCR amplification. The quantitative PCR analysis
was performed using the LightCycler 480 System II (Roche) and
LightCycler 480 SYBR Green I Master reagents (Roche). As an
internal control, the Ubc9 gene was used. Information on the
primer sets is provided in Table S11.
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RESULTS AND DISCUSSION

Overexpression of PtSnRK2.5 and
PtSnRK2.7 Improved Salt Stress Tolerance
in Arabidopsis
In the genome of P. trichocarpa (poplar), 12 PtSnRK2 genes
have been identified (Song et al., 2015). For molecular
functional analysis of PtSnRK2, we generated transgenic plants
of A. thaliana (Arabidopsis) carrying the chimeric gene
35S::PtSnRK2, in which the cDNA regions of PtSnRK2 genes
were regulated by the CaMV 35S promoter sequence, to
overexpress poplar PtSnRK2 genes in Arabidopsis. Unfortunately
we could not obtain transgenic plants for PtSnRK2.2, PtSnRK2.6,
and PtSnRK2.8 overexpression; however, overexpressors of the
other nine PtSnRK2 genes were established successfully. It has
been reported that overexpression of SnRK2 genes enhances
abiotic stress tolerance (Umezawa et al., 2004; Diédhiou et al.,
2008; Mao et al., 2010; Zhang et al., 2010, 2011; Tian et al.,
2013). Thus, we examined salt stress tolerance in the PtSnRK2
overexpressors.

First, 7-day-old seedlings from 16 independent T2 lines
for each PtSnRK2 overexpressor were transferred to medium
containing 200 mM NaCl, and incubated for 4 days. The prr9-
11 prr7-10 prr5-10 triple mutant (d975) plant, which showed
high salinity tolerance because of high expression of salt stress
response genes (Nakamichi et al., 2009), was used as a positive
control (Figure S2). The survival rates of seedlings after salt
treatment demonstrated that the overexpressors of PtSnRK2.5
and PtSnRK2.7 showed relatively high survival rates among the
PtSnRK2 overexpressors. These two genes encode the subclass
2 PtSnRK2 proteins (Song et al., 2015). We further performed
a detailed analysis of salt stress tolerance in the PtSnRK2.5
and PtSnRK2.7 overexpressors, using the wild-type and vector
control plants as negative controls (Figures 2, 3). For the
PtSnRK2.5 and PtSnRK2.7 overexpressors, three independent
lines were selected based on the expression levels of the
introduced PtSnRK2 genes (Figure S1). In the case of the
negative controls, the seedling survival rates after 200 mM
NaCl treatment were less than 20%, and the living seedlings
exhibited yellowed leaves (Figure 2). In contrast, the PtSnRK2.5
and PtSnRK2.7 transgenic seedlings showed significantly higher
survival rates (∼55%) than those of the controls (Figure 2). All
three independent PtSnRK2.7 lines showed increased survival
rates, whereas the PtSnRK2.5 line 6 did not show a significantly
enhanced survival rate (Figure 2B).

Next, the chlorophyll contents of 10 seedlings treated with
salt stress were analyzed. The salt treatment greatly decreased
chlorophyll contents in all plants; however, the chlorophyll
contents of PtSnRK2.5 lines 16 and 20, and all of the PtSnRK2.7
lines were significantly higher than those of the wild-type and
vector control (Figure 2C), in accordance with the survival rates.
These results suggested that salt stress tolerance was more stable
in the PtSnRK2.7 overexpressors. Moreover, it was notable that
although the chlorophyll contents in the absence of salt stress
were at almost the same levels among the wild-type, vector
control, and PtSnRK2.7 lines, but the PtSnRK2.5 lines 16 and
20 showed lower amounts of chlorophyll under normal growth

conditions (Figure 2C). Thus, PtSnRK2.5 overexpression may
have affected chlorophyll biosynthesis continuously.

In addition to the increased survival rates and chlorophyll
contents, the living seedlings of the PtSnRK2.5 and PtSnRK2.7
transgenic lines seemed to be larger than those of the negative
controls under salt stress conditions (Figure 2A). To clarify
the effects of PtSnRK2 overexpression on seedling growth, we
checked the growth of primary roots after salt treatment. Because
the 200mMNaCl treatment almost completely inhibited primary
root elongation in both the overexpressors and negative controls,
we used 100mM NaCl conditions to observe primary root
elongation. Our data demonstrated no difference in primary root
elongation in the mock-treated seedlings (Figure 3), indicating
that these two PtSnRK2 genes are not involved in root elongation
regulation, unlike the Arabidopsis subclass II AtSRK2C/SnRK2.8
gene, overexpression of which was reported to enhance seedling
root growth (Shin et al., 2007). However, after a 5-day incubation
with 100mM NaCl, the primary roots of PtSnRK2.5 line 20
and all of the PtSnRK2.7 lines elongated significantly more than
did those of the negative controls; the negative controls showed
elongation of less than 20mm, whereas the elongated lengths of
PtSnRK2.5 line 20 and all of the PtSnRK2.7 lines were∼25mm (p
< 0.01, t-test). These observations indicated that overexpression
of PtSnRK2.7, and possibly also PtSnRK2.5, can suppress the
inhibition of root elongation by high salinity stress.

Our data on the PtSnRK2.5 and PtSnRK2.7 transgenic
lines demonstrated different phenotypic characteristics between
the PtSnRK2.5 and PtSnRK2.7 lines. Thus, it was suspected
that the molecular basis for the enhancement of salt stress
tolerance would be different between the PtSnRK2.5 and
PtSnRK2.7 transgenic lines. In particular, the PtSnRK2.5 lines
showed unstable salt stress tolerance (Figures 2, 3) and defects
in chlorophyll content even under normal growth condition
(Figure 2C). The subclass 2 PtSnRK2 proteins have highly
similar amino acid sequences (Figure 1A), and the amino acid
sequences of PtSnRK2.5 (unstable, but significantly enhanced
salinity tolerance), PtSnRK2.7 (stable and high tolerance), and
PtSnRK2.9 (no obviously increased tolerance) did not show
major differences between them (Figure 1A). In silico modeling
of the three-dimensional structures of these proteins, based on
the crystal structure of AtSnRK2.6 (Ng et al., 2011), revealed that
some of the differences in amino acid sequences among these
PtSnRK2 proteins could correspond to the molecular surface
regions of these proteins (Figure 1B), possibly leading to changes
in the molecular activities of the SnRK2 proteins. The different
SnRK2 protein activities due to subtle substitutions of amino
acids could result in the different strengths of salt stress tolerance
among the overexpressors.

PtSnRK2.7 Overexpression Widely and
Largely Influenced the Transcriptome in
Response to Salt Stress
We next performed transcriptomic analyses of the wild-type
and overexpressors during salt stress treatment. Based on the
data described above (Figures 2, 3), we selected PtSnRK2.7
line 20, which showed stable and strong salt stress tolerance

Frontiers in Plant Science | www.frontiersin.org 4 May 2016 | Volume 7 | Article 612

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Song et al. PtSnRK2 Overexpression Enhanced Salt Tolerance

FIGURE 1 | SnRK2 proteins of Populus trichocarpa (poplar, Pt), and Arabidopsis thaliana (Arabidopsis, At). (A) Amino acid sequence alignment of subclass

2 PtSnRK2 proteins with AtSnRK2.8. The residues putatively corresponding to the α-helix, β-sheet, PP2C-interaction residues, and the entire ABA box are marked by

bars, arrows, asterisks, and the box, respectively. (B) In silico modeling of the three-dimensional structures of PtSnRK2.5, PtSnRK2.7, and PtSnRK2.9 proteins.

Homology modeling was performed based on the crystal structure of AtSnRK2.6 using the web-based SWISS-MODEL service (http://swissmodel.expasy.org/

workspace/; Arnold et al., 2006). Thick and narrow arrows indicate regions presumed to differ in their three-dimensional architecture among the PtSnRK2 proteins

because of differences in amino acid sequences.

among the transgenic lines, for the gene chip analysis. Then,
7-day-old seedlings of the wild-type and PtSnRK2.7 line 20
were treated with or without 200 mM NaCl for 2 days
and then sampled to extract total RNA. The extracted total
RNA samples were subjected to microarray analysis using
Affymetrix ATH1 GeneChips (Figure 4A). First, we compared

transcriptomic data between the wild-type and PtSnRK2.7
overexpressor, which were mock-treated, to examine the effects
of PtSnRK2.7 overexpression on gene expression under normal
growth conditions. Thirty and 79 genes were shown to be
upregulated and downregulated in the PtSnRK2.7 overexpressor,
respectively (FC > 2, p < 0.05; Table S1). It has been reported
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FIGURE 2 | High salinity tolerance phenotype of transgenic Arabidopsis overexpressing PtSnRK2.5 and PtSnRK7. (A) Seedlings of the wild-type, vector

control, and overexpressors of PtSnRK2.5 and PtSnRK2.7 treated with 200 mM NaCl for 4 days. (B) Survival rates determined by observations after a 4-day salt

stress treatment. The green seedlings were counted as living seedlings, and the percentages of live seedlings were calculated using 20 seedlings for each line.

(C) Chlorophyll contents determined from 20 seedlings after a 4-day salt stress treatment. Results are means ± SE (n = 3). Asterisks indicate statistically significant

differences between transgenic and wild-type plants (Student’s t-test; *p < 0.05; **p < 0.01).

that in AtSRK2C/SnRK2.6 and TaSnRK2.8 overexpressors, stress
response-related genes including RD29A and DREB1A/CBF3,
and ABA biosynthetic genes are upregulated continuously
(Umezawa et al., 2004; Zhang et al., 2011). However, these genes
were not changed by PtSnRK2.7 overexpression (Table S1). The
gene ontology (GO) term analysis revealed that stress-related
metabolic genes, including lipid metabolism and flavonoid
metabolism, were significantly downregulated in the PtSnRK2.7
overexpressor (Table 1). These results suggest that PtSnRK2.7
overexpression could continuously affect specific ranges of gene
expression regulation, which do not overlap with the primary
targets of AtSRK2C/SnRK2.6 and TaSnRK2.8 in Arabidopsis.

To examine the impact of PtSnRK2.7 overexpression on the
salt stress response, the genes upregulated or downregulated
by salt treatment were compared between the wild-type and
PtSnRK2.7 overexpressor. In the wild-type, 337 and 120
genes were upregulated and downregulated by salt treatment,
respectively (FC > 3, p < 0.01; Figure 4B and Tables S2,
S3). Notably, the PtSnRK2.7 overexpressor showed greater
numbers of genes whose expression was changed by salt
treatment compared with the wild-type; 631 and 698 genes were
upregulated and downregulated in the PtSnRK2.7 overexpressor,

respectively (FC > 3, p < 0.01; Figure 4B and Tables S4,
S5), suggesting that PtSnRK2.7 overexpression affected the
expression of a wide range of genes during salt stress
responses in Arabidopsis. The GO analysis indicated that the
genes functioning in stress responses, including the signaling
pathway of stress-related phytohormones (ABA, ethylene,
jasmonic acid, and salicylic acid) and in signal transduction
by protein phosphorylation, were commonly upregulated
between the wild-type and PtSnRK2.7 overexpressor (Figure 4B
and Tables S6–S8). Additionally, developmental process-related
genes were commonly downregulated in the wild-type and
PtSnRK2.7 overexpressor (Figure 4B and Table S10).

We also found that some GO terms were enriched in
the upregulated genes in genotype-dependent manners, such
as “respiratory burst” and “ethylene biosynthetic process”
found only in the wild-type (Figure 4B and Table S6) and
“purine nucleoside transmembrane transport,” “amino acid
transport,” “anion transmembrane transport,” and “nucleic acid
metabolic process” found only in the PtSnRK2.7 overexpressor
(Figure 4B and Table S7). The overrepresentation of the GO
terms related to “anion transmembrane transport” in the
PtSnRK2.7 overexpressor would suggest the enhancement of ion
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FIGURE 3 | Primary root elongation of transgenic Arabidopsis overexpressing PtSnRK2.5 and PtSnRK2.7 during salt treatment. (A) Seedlings of the

wild-type, vector control, and overexpressors of PtSnRK2.5 and PtSnRK2.7 treated with 100 mM NaCl for 5 days. The positions of the edges of the root tips before

salt treatment are indicated by the white dotted lines. Bar = 20mm. (B) Increase in root length after salt stress treatment. Results are means ± SE (n = 15). Asterisks

indicate statistically significant differences between transgenic plants and the wild-type (Student’s t-test; *p < 0.05; **p < 0.01).

FIGURE 4 | Microarray analysis of the wild-type and PtSnRK2.7

overexpressor line 20. (A) Overview of sample preparation for microarray

analysis. (B) Venn diagram of upregulated and downregulated genes after salt

stress treatment in the wild-type and PtSnRK2.7 overexpressor.

homeostasis activity as a result of PtSnRK2.7 overexpression,
possibly leading to higher salt stress tolerance. Our results also
showed wild-type-specific enrichment of the term “ethylene
biosynthetic process” in upregulated genes (Figure 4B and
Table S6). It has been reported that crosstalk between ABA and
ethylene is a critical factor in determining salt stress tolerance in
Arabidopsis (Dong et al., 2011); thus, PtSnRK2.7 overexpression
may influence the phytohormonal modulating system of abiotic
stress responses. Moreover, in the PtSnRK2.7 overexpressor,
more than 5-fold more genes were downregulated by salt
treatment than those in the wild type. These downregulated genes
are involved in a wide range of molecular functions, including
metabolic regulation and responses to stimuli (Figure 4B and
Table S9), indicating that the reason for the high salt stress
tolerance in the PtSnRK2.7 overexpressor may be, at least
partially, attributed to its significant impact on metabolic
regulation.

Comparison of transcriptomic data also suggested that the
altered expression levels of upregulated genes were greater in the
PtSnRK2.7 overexpressor than in the wild-type (Tables S2, S4).
To confirm this, we selected six genes from the functional
categories of stress response (COR15A, Artus et al., 1996),
phytohormonal signaling (GASA3, Herzog et al., 1995), cell
wall-related proteins (AT1G52690 and AtCWINV5, Sherson
et al., 2003), and lipid metabolism (AT4G33550), based on
the transcriptomic data, and subjected them to quantitative
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FIGURE 5 | Quantitative RT-PCR analysis of transcript levels of COR15A, GASA3, At4G33550, AtCWINV5 , At1G52690, and At4G18280 in the wild-type,

vector control, and overexpressors of PtSnRK2.5 and PtSnRK2.7. Seedlings treated with or without 200 mM NaCl for 2 days were analyzed. Results are means

± SE (n = 3).

RT-PCR analysis. AT4G18280, which was upregulated only in
the PtSnRK2.7 overexpressor, was also tested to evaluate the
consistency of the results between the gene chip analysis and
quantitative RT-PCR analysis. Indeed, AT4G18280 expression

was not induced by salt stress in the wild-type or vector control,
whereas it was highly upregulated in the PtSnRK2.7 line 20 in
accordance to the results of gene chip analysis (Figure 5 and
Table S4). The results showed that the tested genes were actively
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TABLE 1 | GO term analysis of the differentially expressed genes between

the wild-type and PtSnRK2.7 overexpressor grown in the absence of salt

stress treatment.

GO biological process complete Fold

Enrichment

p-value

Anthocyanin-containing compound

biosynthetic process

44.44 4.52E-03

Anthocyanin-containing compound

metabolic process

40.00 7.29E-03

Cellular response to phosphate

starvation

33.33 1.12E-09

Galactolipid biosynthetic process 33.33 2.61E-07

Galactolipid metabolic process 33.33 2.61E-07

Glycolipid biosynthetic process 28.57 1.06E-06

Flavonoid biosynthetic process 26.09 2.69E-04

Flavonoid metabolic process 24.00 4.11E-04

Liposaccharide metabolic process 23.53 4.26E-06

Glycolipid metabolic process 23.53 4.26E-06

Membrane lipid biosynthetic

process

22.22 6.69E-06

Response to UV-B 20.83 9.49E-03

Cellular response to starvation 18.18 6.92E-09

Cellular response to nutrient levels 17.65 8.89E-09

Membrane lipid metabolic process 17.39 4.15E-05

Response to starvation 17.39 1.08E-08

Cellular response to extracellular

stimulus

16.88 1.88E-09

Cellular response to external

stimulus

16.67 2.26E-09

Response to nutrient levels 16.67 1.82E-08

Response to extracellular stimulus 16.05 3.73E-09

Pigment biosynthetic process 13.73 1.65E-03

Pigment metabolic process 10.94 7.65E-03

Negative regulation of transcription,

DNA-templated

8.43 3.85E-02

Negative regulation of RNA

biosynthetic process

8.43 3.94E-02

Negative regulation of nucleic

acid-templated transcription

8.43 3.94E-02

Negative regulation of RNA

metabolic process

8.43 4.03E-02

Cellular response to stress 5.62 1.09E-04

Response to external stimulus 3.65 2.57E-03

Single-organism biosynthetic

process

2.99 6.83E-03

upregulated by salt treatment in the PtSnRK2.7 overexpressors
compared with the wild-type and vector control (Figure 5).
Our data also demonstrated that PtSnRK2.5 overexpression
had similar effects on the expression of these genes. Thus,
it is supposed that PtSnRK2.5 overexpression affected the
transcriptome in a similar fashion to PtSnRK2.7 overexpression.

It has been reported that the overexpression of Arabidopsis
AtSnRK2.8 enhanced the stress tolerance of Arabidopsis,
probably through the continuous upregulation of key genes
for stress responses, such as RD29A, COR15A, AtGolS3,
DREB1A, and PKS18 (Umezawa et al., 2004). However, our

results showed that overexpression of poplar SnRK2 genes did
not constitutively induce these well-known stress responsive
genes. Rather, the high salt stress tolerance of the PtSnRK2
overexpressors may be explained by changes in transcriptomic
regulation for a wide range of metabolic regulatory genes
(Figures 4, 5; Table 1 and Tables S1–S10). It is notable that the
genes related to anion transport activity were upregulated in
the PtSnRK2.7 overexpressor specifically, because similar effects
on ion homeostasis-related genes were reported in the case of
overexpression of rice SAPK4 (Diédhiou et al., 2008). Moreover,
a comparative transcriptomic analysis using salt-tolerant and
non-tolerant species of poplar indicated that prominent factors
for high salt tolerance were not overexpression of the stress
responsive pathway, but rather enhanced activities for osmotic
adjustment, ion compartmentalization, and detoxification of
reactive oxygen species in poplar (Chen and Polle, 2010). Thus,
our results may reflect differences in the regulatory targets of
SnRK2 proteins between AtSnRK2 and PtSnRK2, which could
be related to diversified molecular strategies of stress adaption in
each plant species, as suggested by Zhang et al. (2014). Future
comparative analyses on the mode of actions of SnRK2 proteins
derived from different plant species may provide important
information on novel strategies to improve stress tolerance of
crops and other useful plants.
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Figure S1 | RT-PCR analysis of seedlings of the wild-type, vector control,

and overexpressors of PtSnRK2.5 and PtSnRK2.7.

Figure S2 | Primary screening of transgenic Arabidopsis overexpressing

PtSnRK2 genes for the salt tolerance. Seedlings of the d975 (positive control),

vector control, and overexpressors of PtSnRK2 genes were treated with 200mM

NaCl, and checked their survival rates after 3, 4, and 5 days of NaCl treatment. A
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part of results for the transgenic lines of PtSnRK2.5 (A) and PtSnRK2.9 (B) treated

with 200mM NaCl for 4 days were shown.

Table S1 | Differentially expressed genes between the wild type and

PtSnRK2.7 overexpressor (FC>2, p < 0.05).

Table S2 | Upregulated 337 genes in the wild type by the salt treatment

(FC>3, p < 0.01).

Table S3 | Downregulated 120 genes in the wild type by the salt treatment

(FC>3, p < 0.01).

Table S4 | Upregulated 631 genes in the PtSnRK2.7 overexpressor by the

salt treatment (FC>3, p < 0.01).

Table S5 | Downregulated 698 genes in the PtSnRK2.7 overexpressor by

the salt treatment (FC>3, p < 0.01).

Table S6 | GO term analysis on wild-type-specific upregulated genes by

salt treatment.

Table S7 | GO term analysis on PrSnRK2.7 overexpressor-specific

upregulated genes by salt treatment.

Table S8 | GO term analysis on commonly upregulated genes

between the wild type and PtSnRK2.7 overexpressor by salt

treatment.

Table S9 | GO term analysis on PrSnRK2.7 overexpressor-specific

downregulated genes by salt treatment.

Table S10 | GO term analysis on commonly downregulated genes between

the wild type and PtSnRK2.7 overexpressor by salt treatment.

Table S11 | Oligonucleotides used in this paper.
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