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In simulation models of populations or communities, individual plants have often been

obfuscated in favor of aggregated vegetation. This simplification comes with a loss

of biological detail and a smoothing out of the demographic noise engendered by

stochastic individual-scale processes and heterogeneities, which is significant among

others when studying the viability of small populations facing challenging fluctuating

environmental conditions. This consideration has motivated the development of precise

plant-centered models. The accuracy gained in the representation of plant biology has

then, however, often been balanced by the disappearance in models of important

plant-soil interactions (esp. water dynamics) due to the inability of most individual-based

frameworks to simulate complex continuous processes. In this study, we used a hybrid

modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to

illustrate the importance of individual plant dynamics to explain spatial self-organization

of vegetation in arid environments. We analyzed the behavior of this model under

different parameter sets either related to individual plant properties (such as seed

dispersal distance and reproductive age) or the environment (such as intensity and yearly

distribution of precipitation events). While the results of this work confirmed the prevailing

theory on vegetation patterning, they also revealed the importance therein of plant-level

processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution

of plants, reproductive age, and average seed dispersal distance, by impacting patch size

and vegetation aggregation, affected pattern formation and population survival under

climatic variations. Besides, changes in precipitation regime altered the demographic

structure and spatial organization of vegetation patches by affecting plants differentially

depending on their age and biomass. Water availability influenced non-linearly total

biomass density. Remarkably, lower precipitation resulted in lower mean plant age yet

higher mean individual biomass. Moreover, seasonal variations in rainfall greater than a

threshold (here,±0.45mm from the 1.3mmbaseline) decreasedmean total biomass and
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generated limit cycles, which, in the case of large variations, were preceded by chaotic

demographic and spatial behavior. In some cases, peculiar spatial patterns (e.g., rings)

were also engendered. On a technical note, the shortcomings of the present model and

the benefit of hybrid modeling for virtual investigations in plant science are discussed.

Keywords: simulation, mechanistic, shift, climate, self-organization, spatial patterns, agent-based modeling,

stock-and-flow

INTRODUCTION

Vegetation and Plant Models
The modeling of vegetation dynamics has been an active topic
of research since the early days of computerized ecological
modeling and it has been undertaken using various techniques.
Markovmodels have been applied to the simulation of transitions
between vegetation states (e.g., Horn et al., 1975 for forest trees;
Gimingham et al., 1981 for heathland; Rego et al., 1993 for
mediterranean garrigue). However, as frequently pointed out,
vegetation growth is not Markovian (Usher, 1992), because past
and future states are dependent. As a consequence, the logical
evolution leads to more precise partial differential equations
models in which the dynamics of vegetation and its environment
could be rendered in an aggregated manner (Cartenì et al.,
2012). In these models, vegetation is considered as a whole entity
and the existence of the elementary organisms composing it,
namely plants, is ignored (Mazzoleni et al., 2013). In contrast, the
modern development of individual-based modeling gave birth in
parallel to a second approach of vegetation modeling considering
population-scale behavior as the sole product of interactions
between single plants. This reductionism engendered plant-
centered concepts often explaining vegetation dynamics only
as simplified direct competition between plants, which can be
aggregated in functional relationships calibrated by regression.
The ideas of fixed radius neighborhood (FRN) (Pacala and
Silander, 1985; Pacala, 1986, 1987), zone-of-influence (ZOI)
(Ford and Diggle, 1981; Weiner, 1982; Wyszomirski, 1983;
Czárán, 1984; Hara, 1988; Wyszomirski et al., 1999; Weiner
et al., 2001; Lin et al., 2014), and field of neighborhood (FON)
(Berger and Hildenbrandt, 2000; Grimm and Berger, 2003) are
some examples of this long-lasting tendency of compaction of
ecological processes into direct plant-to-plant interactions. Aside
from some notable exceptions such as in FORMIND (Köhler and
Huth, 1998), mechanisms of competition for resource (e.g., root
growth for groundwater uptake, rainfall interception, increase of
leaf height to enhance sunlight exposure, etc) are most often not
modeled explicitly. If the ZOIs of two plants overlap, they are
assumed to compete for resource, and this is simply rendered by
a reduction of their growth.

On the other hand, an extensive body of work, carried out
with different modeling approaches, has focused on the relation
between climate and vegetation. Several authors analyzed the
influence of environmental factors such as precipitation, air
temperature, soil water content, and wildfire on the emergence of
vegetation patterns and their structure, particularly in semi-arid
grazing systems (for a review, see Tietjen and Jeltsch, 2007).

As a result of the large availability of sometimes diverging
approaches, the modeler has been generally facing a dilemma:

either model at the vegetation level and integrate realistic
hydrologic processes, or reach finer plant-scale simulations but
to the price of sacrificing precision in the modeling of indirect
competition mechanisms.

Some models have tried to tackle this problem, but to
the price of some simplifications. The coupled vegetation-
grazing model by Paruelo et al. (2008), although very useful,
did not reproduce the colonization mechanisms of tussocks. It
approximated dispersal as spatially homogenous (i.e., it occurred
randomly across the plot) and directed (i.e., only empty cells
with given conditions were targeted) (cf. 2.2.3 in Paruelo et al.,
2008). Moreover, it simplified water dynamics in many aspects.
For instance, soil water content was reinitialized every year, there
was no runoff/runon, only simplified water diffusion and only
between parcels covered by tussocks and their direct neighbors,
no infiltration gain due to vegetation cover, etc. EcoHyD (Tietjen
et al., 2010; Lohmann et al., 2012) on the other hand is one
of the most integrated undertakings in this aspect and features
realistic hydrology in several soil layers within an IBM model.
Yet, aggregated vegetation is represented instead of individual
plants therein.

Modeling Vegetation Patterns
Intriguing vegetation patterns have been observed in different
regions of the world (Clos-Arceduc, 1956; Tongway and Ludwig,
1990; Rietkerk and Van De Koppel, 1997). This phenomenon
has motivated many research efforts to unveil the mechanisms
responsible for this spatial organization. Much field work relying
on aerial field observations, remote sensing and post-processing
in GIS have been taken on. These have been able to collect patch
size statistics and discover that these were following a power law
distribution, meaning that the probability of finding a vegetation
patch of size n is n−β (with n > 1) (Manor and Shnerb, 2008).
Further experiments gave estimations of the exponent, which
proved variable between regions (Kéfi et al., 2007; Scanlon et al.,
2007). In spite of these valuable results, no field experiment could
explain the underlying mechanisms, meaning, and significance
of this phenomenon. Confronted to the behavior of a highly
dynamic system, theoretical modeling has been used to study this
problem and has been fruitful in building explanative theories.
The representation of such complex systems in computer
models requires considerable simplification. Each model was
constructed based on a restricted set of aspects and processes
judged useful to try to reproduce vegetation patterns while
ignoring other potential facets. Lejeune and Lefever (Lefever
and Lejeune, 1997; Lefever et al., 2000; Lejeune et al., 2004)
and more recently Barbier et al. (2008) proposed to model this
system in terms of simplified direct facilitation-competition at
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the individual level. Scanlon et al. (2007) in parallel derived this
system through a cellular automaton expressing probabilistic
transitions depending on the biomass in the neighboring cells.
Even if this proved successful, it eclipsed ecological processes
by reducing the phenomenon to a matter of relative strength
between birth and death rates.

By the mid-90s, several cellular automata models were
formulated to simulate the formation of banded vegetation
structures driven by the relations between available water and
plants (Thiéry et al., 1995; Dunkerley, 1997, and for a review see
Mauchamp et al., 2001). Following the use this discrete approach,
several models were later presented based on an IBM paradigm,
simulating vegetation dynamics and structure as well as pattern
formation in different ecosystems (see Wiegand et al., 1995;
Peters, 2002; Cipriotti et al., 2012, 2014).

In contrast, the problem was tackled at the vegetation
scale by aggregated partial differential equations (PDE) models
coupling biomass and soil moisture dynamics (Klausmeier,
1999; Von Hardenberg et al., 2001). Following the latter trend,
Rietkerk et al. (2002) introduced an extension of the model
by adding surface water transport and were the first to allow
for an accurate study of the phenomenon by reproducing
realistic surface patterns. This modeling endeavor engendered
critical discoveries, namely that patterned vegetation represent
bistable systems that may undergo catastrophic ecosystem
shifts (Rietkerk et al., 2004) and may represent early warning
signals of critical vegetation transitions (Scheffer et al., 2009).
Although the relative simplicity of the model formulation
allowed gaining very interesting insights on the properties
of such systems, one of its major limitations is the use of
constant precipitation regimes that are especially unrealistic in
semi-arid environments. Moreover, the representation of plant
dispersal by diffusion driven only by concentration gradients
of biomass does not allow the simulation of the effects of
precipitation seasonality and droughts since biomass diffusion
would continue even in conditions of prolonged absence of
available water.

All in all, several models featuring different mechanisms have
provided possible explanations for vegetation spatial patterns.
Nonetheless, without trying to integrate all these processes
together in a single model, it will be difficult to falsify one
or the other theory. The difference between the level of
representation of vegetation—aggregated in Rietkerk et al. (2002)
and individual-based in Lefever and Lejeune (1997)—also makes
confrontations difficult.

In this paper we present a new hybrid model that integrates
the System Dynamics (SD) and Individual Based (IB) modeling
approaches. This work intends to illustrate the importance of the
dynamics of single plants to explain the spatial self-organization
of vegetation. To do so, we analyze the model behavior in
relation to plant-specific parameters (seed dispersal distance and
reproductive age) and climatic inputs (precipitation intensity and
seasonality). In fact, dispersal range has been shown to influence
the outcome of a spatially explicit population model (Johst and
Schöps, 2003), andmodeling applications have been investigating
how both patch distribution in the physical landscape and plant
dispersal capability can generate demographic noise that affects

the dynamics of vegetation (Higgins and Cain, 2002; Realpe-
Gomez et al., 2013; Sheffer et al., 2013). Therefore, the importance
of the representation of biological dispersal is also evaluated in
this study through a comparison with previous reaction-diffusion
models.

METHODS

Description of the Hybrid Plant Population
Model
For the sake of standardization, we follow hereafter the 7-points
Overview—Design concepts—Details (ODD) model description
protocol formulated by Grimm et al. (2006, 2010).

Purpose
The purpose of this model here is to better understand the
mechanisms of spatial pattern formation. It was designed to
reproduce vegetation-soil interactions with water transport and
individual plants in a spatially-explicit environment.

Entities, State Variables, and Scales
This model includes two entities: plants and soil parcels
(Figure 1). Soil properties are described by two state variables
keeping track of the volume of water flowing on the surface and
infiltrated in the soil. Water in both layers is diffused between
adjacent soil parcels. While water enters the system through
rainfall, it is released through evaporation and consumption by
plants. The latter are entities represented individually in an open-
ended space and defined mainly by their age and their biomass
(itself dependent on a growth and a senescence process). The life
cycle of plants is represented in a basic manner in the model.
Depending on their biomass, plants can disperse seeds to produce
offsprings. Finally, when some critical conditions are met (i.e.,
advanced age or low biomass), plants can die.

Plant individuals are this way not aggregated and are
instead modeled explicitly within parcels. Both plants and soil
parcels have bidimensional spatial coordinates positioning them
in two superimposed square spaces (continuous and discrete
respectively). Plot dimensions are set based on number of
soil parcels and their side length (e.g., the 400 × 400m plot
is simulated as 100 × 100 parcels, each covering 4 × 4m).
Simulations are run with a time step of 0.2 day (i.e., ca.
5 h) and render the evolution of the vegetation biomass over
years.

Process Overview and Scheduling
Processes take place in the following order inside of the
model: plant metabolism (water absorption, biomass growth,
and senescence), seed dispersal, water dynamics in the soil
(precipitation, infiltration, evaporation, and finally water
diffusion). The global model runs in hybrid time with plant
metabolism and water dynamics calculated in continuous
time, and seed dispersal and plant death happening as discrete
asynchronous events. Note that for continuous computations,
the classical Runge-Kutta 4 (RK4) method with an integration
step (1t) of 0.001 day was used to compute the results reported
in this study.
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FIGURE 1 | Schematic view of the model structure and featured processes. The hybrid model simulates plant agents (modeled with a combined

Individual-Based and System Dynamics approach) and surface and soil water dynamics (modeled with System Dynamics and Partial Differential Equations). The

combination of SD and IBM components follows a joint use of reference case 2a and 3a (Vincenot et al., 2011).

Design concepts

Basic principles
This study follows conceptually the work on vegetation modeling
by Realpe-Gomez et al. (2013). More precisely, it aims to merge
two concurrent modeling views and tactics. A first class of models
(e.g., Peters, 2002; Barbier et al., 2008 and following works) could
render vegetation patterns with an individual-based approach
simulating direct simplified competitions between plants, while
other projects could explain this phenomenon on the basis
of results from an aggregated approach featuring vegetation-
soil interactions expressed in the form of partial-differential
equations (PDE) (e.g., Rietkerk et al., 2002 and similar). The
will to fuse both approaches—an individual-based representation
of plants with plant-soil interactions—motivates the creation of
the model presented here. The individual-based dimension is
exploited here only for metabolism and dispersal, while direct
inter-individual competition, although attainable within this
framework, is not implemented.

Also, another fundamental principle that underlies this work
is the compliance with the temporal and spatial nature of the
processes featured. Particularly, plant metabolism and water
dynamics are computed in continuous time, while plant dispersal
and plant death take place as stochastic and discrete events.
Besides, an improved accuracy in the representation of the spatial
process of plant dispersal is sought. Instead of a physical diffusion
of vegetation, seed dispersal is explicitly modeled here.

For these matters, the implementation relies on the System
Dynamics (SD)—Individual-Based (IB) hybrid modeling
framework (Vincenot et al., 2011) offering the flexibility
necessary to realize the integration of these different aspects
inside of an individual-centered vegetation growth model and
allow for the concurrent use of discrete and continuous time
computation engines. This conceptual framework aims to

facilitate the accurate and understandable design of models in
ecology by relieving the modeling process from adverse technical
considerations (Vincenot and Moriya, 2011; Vincenot et al.,
2015).

Emergence: The demography of the plant population as well
as its spatial distribution are obviously emergent properties
of the interaction between plant individuals through indirect
competition for groundwater. As a result, soil water content is
also emerging from the same interplays.

Interaction: Soil parcels interact directly by exchanging surface
water and groundwater. This process follows the basic principle
of water diffusion. In a different manner, plants also interact, but
indirectly only through the competition for a mediating resource
(sc. water).

Stochasticity: Stochasticity is integrated in various processes
included in the simulation of plants. First, at initialization, plant
biomass are set randomly to avoid synchronicity. Furthermore,
death is stochastic. When the biomass of a plant falls under a
death threshold, the plant may die each day with a probability
equal to p = 1−Biomass/deathThreshold. Also, while the amount
of seeds dispersed is simply proportional to the plant’s biomass
for large plants, for low biomasses engendering an average of less
than 1 seed/timestep, it is determined probabilistically depending
on the plant’s biomass. The lower the biomass, the lower the
chance to disperse a seed. Ultimately, the location of seedlings
is also chosen randomly following a uniform direction from the
parent plant (sc. isotropic dispersal) and a distance drawn from a
lognormal dispersal kernel [cf. Section Plant Life Cycle and Seed
Dispersal (IB)].
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Observation: All the different state variables are considered
in the following experiments. However, the most reported
observation concerns the total vegetation biomass and its spatial
distribution.

Initialization
When a simulation starts, a grid of soil parcels, the number
of which depends on the resolution chosen, is created to cover
the bidimensional space. State variables representing surface
water and soil water are initialized with values for bare soil
conditions, that is to say R/(αW0) and R/rw, respectively. Plants
are then instantiated with an initial biomass between 1 and
2 g and an age drawn uniformly in the range 1 to l to avoid
artificial synchronicity within the population. The location and
number of plants depends on the experiment undertaken. In
some cases, plants are grouped in patches covering 1% of space
(i.e., “aggregated” initial distribution), while in others they are
spread randomly. Other exogenous parameter values used in the
hybrid model and their sources can be found in Table 1.

Input Data
No external input data are used in this study.

Submodels
The hybrid model can reproduce the dynamics of plant-soil
interaction by uniting a spatial water dynamics submodel (mainly
in SD, but with spatial localization and diffusion processes coded
in IB modeling), a plant metabolism submodel (in SD), and
a plant life cycle and dispersal submodel (in IB modeling)
(Figure 1). The combination of SD and IB components follows a
joint use of reference case 2a (“Independent dynamic individuals
with fixed spatial location”) to model plant metabolism and
reference case 3a (“One-to-one interaction between individuals
and a space of fixed SD submodels”) to render the interaction
between plants and soil hydrology as identified in Vincenot et al.
(2011). The description of these submodels is given hereafter,
while the values of parameters are given in Table 1.

Water infiltration (SD) and diffusion (IB)
This submodel is based on an adaptation of the equations by
HilleRisLambers et al. (2001) and Rietkerk et al. (2002). When
rain falls (i.e., the precipitation process symbolized by R), it
forms water on the surface of the soil (O). Part of it flows to
other parcels (i.e., the diffusion process, dependent on a surface
water diffusion coefficient DO), while a fraction of it follows
an infiltration process depending on properties of the soil (the
maximum infiltration rate α, infiltration saturation constant k2,
and infiltration rate on bare soil W0) and on the vegetation
biomass (

∑

i Bi, with i the index of the plant in the population),
which facilitates the percolation process (Rietkerk and van de
Koppel, 2008). Once in the soil, groundwater can leave the system
through evaporation and drainage (depending on the relevant
rate rw), diffusion to neighboring soil (relatively to a soil water
diffusion coefficient DW), or by being drawn by the overlying
vegetation. The diffusion process takes place in the form of a
transfer of water between individuals incarnating soil parcels.
Mathematically, simple diffusion is achieved by the solving of a
single Laplacian diffusion term (Dw ·△W andDO ·△O) as visible

in Equation (1). This is justified by hydrological mechanisms
involving a gradient of pressure between low and high water
densities (Bear and Verruijt, 1987; HilleRisLambers et al., 2001).

∂W

∂t
= α · O ·

∑

i Bi + k2 ·W0

W + k2
− gmax ·

W

W + k1
·

∑

i

Bi

− rw ·W + Dw · △W

∂O

∂t
= R− α · O ·

∑

i Bi + k2 ·W0

W+ k2
+ DO · △O (1)

Equation (1): Water dynamics and diffusion in the soil.
The non-linear system summarized by the set of differential

Equation (1) was translated into System Dynamics to allow
for a better visualization and an easier analysis of the system
(Datasheet S1.1). In SD terminology, each state variable is
symbolized by a stock, while the processes moving food or energy
between them correspond to flows linking together the previous
stocks.

Plant metabolism (SD)
Plant metabolism is integrated in the model in the form of a set
of simple processes. Basically, the only state variable—the plant’s
biomass—is decreased by a natural turnover rate d, while it is
increased by anabolic processes dependent on water uptake and a
water-to-biomass conversion rate b. Water uptake is a function of
plant biomass Bi (with i the index of the plant in the population),
soil water volume W, a half-saturation constant of plant growth
and water uptake k1, and a maximum water uptake gmax. The
plant’s biomass is also limited by a limiting factor Kp, here set
so that one plant cannot grow over ca. 120 g (Equation 2).

dBi

dt
= Bi · b · gmax · (1−

Bi

Kp
) ·

W

W + k1
− Bi · d (2)

Equation (2): Plant metabolism.
Aside from metabolic calculations, this submodel also

computes number of seeds to disperse. This is computed based
on the plant’s biomass P

(

disperse
)

= Bi · s · l/m · ∆ t, with
s being a biomass-to-seedlings factor, l the mean plant lifespan,
and m the age of reproductive maturity. If P(disperse) is superior
to one, it represents the numbers of seeds to disperse, otherwise
the probability to disperse a seed. As for the previous submodel,
all the equations were implemented in SD and were computed in
continuous time.

Plant life cycle and seed dispersal (IB)
Plants are autonomous entities possessing individuality. One
characteristic of these individuals is their coordinates in a
spatial environment in which water availability varies depending
on location, and another is their age, which is automatically
incremented at each timestep.

The life cycle of plants depends on these two fundamental
properties. In the submodel, when a seedling takes root, its
initial biomass is set to 1 g and its age to 0 day. When it
reaches maturity (m), the plant starts reproducing. During
its life, it can die from catabiosis as explained in Section
Design Concepts (“stochasticity”). Ahead of this programmed
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quietus, biomass decay is provoked by water stress. When
the relative decrease in plant biomass (Bi/Bmaxi, with Bmaxi
representing the largest biomass reached by the plant so
far) falls under the threshold value db, a stochastic death
process comes into effect (sc. death happens with a probability
1− Bi

Bmaxi · db
).

The active part of the plant’s life deals with metabolism [cf.
Section Plant Metabolism (SD)] and biological dispersal. The
latter is modeled in the present submodel in form of seed
dispersal. More precisely, following the results of Higgins et al.
(2003), seedling dispersal is represented here instead of propagule
dispersal. Seed loss (due to factors other than water stress or
random mortality; e.g., predation) is in part implicit. Based on
the production of seeds computed by the metabolic submodel,
the number and spatial location of seedlings to disperse is
calculated. For this purpose, a dispersal kernel was considered
as the best option. The literature has shown that the empirical

determination of the dispersal range is very difficult to obtain
due to the intersection of seed shadows as well as the trickiness
of field work methods (Clark et al., 1999). Incidentally, models
have been a major source of design and validation for dispersal
kernels. Here, we chose to rely on a lognormal distribution

ln N(µ, σ 2) , which proved to be the most fitting solution and the
only one validated on experimental data instead of simulations
(Greene and Johnson, 1989; Greene et al., 2004; Quinn et al.,
2011). Due to the lack of information about species subject to
vegetation patterning, the dispersal kernel could only be fitted
approximately based on an anterior study on grass species of the
Miscanthus genus (Quinn et al., 2011). Also, the design of the
shape of the distribution was based on a biological consideration.
Several studies have clearly shown that antitelechory and
atelechory are common among taxa living in arid regions (Ellner
and Shmida, 1981), which means that adaptation for long-range
dispersal is probably rare among vegetation subject to water stress

TABLE 1 | Default parameter values used in the hybrid model.

Aspects Parameter Symbol Value

Plant Metabolism Biomass B 1 g (initial value)

Water to biomass conversion rate b 10 g·mm−1 ·m2

Maximum water uptake gmax 0.05 mm−1 ·m2 · g−1·d−1

Half-saturation constant of plant growth and water uptake k1 3 mm−1 ·m2

Plant size limiting factor Kp 800 g†

Biomass s rate d 0.3 d−1

Plant life cycle and dispersal Age A [1, l] (initial value)

Mean life expectancy l 365 d

Death threshold (based on biomass ratio) db 0.8

Reproductive maturity m 0 d

Biomass-to-seedlings factor s 0.002 seeds · g−1·d−1

Mean dispersal distance (dispersal kernel) µ 10m

Shape (dispersal kernel) σ 1.5

Maximal plant density (for seedling establishment) Ka 30 g·m−2

Soil hydrology Surface water O R
αW0

mm−1 ·m2 (initial value)

Groundwater W R
rw

mm−1 ·m2 (initial value)

Precipitation R 0.3–2.1 mm ‡

Maximum infiltration rate α 0.1 g−1·d−1

Infiltration saturation constant k2 5g

Infiltration rate on bare soil W0 0.15

Evaporation and drainage rate rw 0.1 d−1

Water diffusion Surface water diffusion coefficient DO 10 m2·d−1

Groundwater diffusion coefficient DW 0.01 m2·d−1

Parcel side length ∆ x and ∆ y 4m

Simulation engine Delta time (DT) (time steps) ∆ t 0.2 d

When not specified otherwise, the parameters are dimensionless quantities. The SD equations were solved by the Runge-Kutta (RK4) integration method. Parameters of the soil

hydrology and water diffusion submodels values were kept in the range within which Rietkerk et al. (2002) performed sensitivity analysis. The dispersal kernel is inspired of Greene et al.

(2004) and Quinn et al. (2011), the death threshold of Hacker et al. (2006), while the metabolic submodel was parametered using data from the literature and “best guesses” (mainly

from Rietkerk and Van De Koppel, 1997).
†
Theoretical limit balanced by growth and biomass turnover variability. Set to have a maximal effective plant biomass of ∼120g.

‡
Precipitation is reported here in millimeters due to the classic measurement system. Nevertheless, strictly speaking, the dimension should be mm−1 ·m2 · d−1 for unit testing.
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and self-organization as studied here. The dispersal kernel was
then made leptokurtic to render this. A seed is then dispersed
in the submodel by selecting randomly a direction between 0
and 2π rad, and then drawing a distance using the dispersal
kernel. Note that to avoid inaccurate border effects, a location
attributed outside of the limits of space is ignored and the related
seed is lost. Also, seedling establishment is prevented if biomass
density in the area surrounding the dispersal point is greater
than Ka.

Practical implementation and fusion of the SD and IB model

components
All the submodels were implemented in XJTechnologies
AnyLogic 6.8.1. This framework relies entirely on the Java
object-oriented language and allowed for the SD and IB model
components to be integrated as Java classes. Conceptually, the
plant metabolism submodel and the life cycle and seed dispersal
submodel were virtually embedded inside of the class of agent
representing plants, while the water dynamics submodel was
integrated in the class of soil parcels. Instances of this class
were arranged at initialization in a static grid-like network to
exchange water and drive thereby the hydrological diffusion
process.

At several places in the submodels, so-called “hooks” allowing
for data exchange between the SD and IB model components
were placed. For instance, the life cycle and seed dispersal IB
submodel operating in discrete time had to be able to query
the values of the biomass stock and the seedlings production
computed continuously in the SD metabolic submodel. Likewise,
the synchronous exchange of information on water level between
IB soil parcel agents necessary to compute the spatial water flows
obviously required mutual interaction between the IB diffusion
algorithm and SD stocks (i.e., O andW).

Water density in the soil was also queried by plant agents,
which in return inform about their biomass for the calculation
of biomass density. In this manner, it should be noted that
plants do not really compete for water within the same parcel.
They all have access to the same water density, and each
plant consequently draws a volume of water proportional to its
biomass.

Simulation Experiments, Parameters, and
Analysis
Two main experiments were performed to study on one
hand the relationship in this individual-based model between
precipitation, pattern formation, and population structure, and,
on the other hand, the consequences of temporal variations in
rainfall on vegetation spatial organization. Parameters values
are given in Table 1, and only departures from this default
configuration are mentioned hereafter.

Experiment 1: The emergence of spatial self-organization in
an individual-based paradigm was analyzed.

(A) The model was run across a wide range of precipitation
(0.6–1.7mm) and two alternative conditions for initial plant

spatial distribution [either randomly scattered over the
map, or with plants grouped in patches covering 1% of
the plot as in Rietkerk et al. (2002)] to simulate a 400 ×

400m plot during 10 years. The spatial patterns obtained
were compared with known field observations as well as
results from previous diffusive models. Population structure
in terms of age and biomass was also observed. In this
case, the simulations were replicated 300 times per rainfall
configuration to get statistically significant results.

(B) The effects on vegetation pattern formation of plant-
level parameters, namely mean seed dispersal range and
reproductive age, were assessed through parameter
variations (in the range 1–100m, and 0–240 days
respectively, with s = 0.001, 70 runs for each parameter).
Plants were grouped as initial condition (IC) and we
checked the spatial distribution of the plant population after
5-year runs at a 200 × 200m scale. Note that initial patch
and plant number were decreased accordingly to simulate
a smaller area of the plot featured in Experiment 1A. For
each run, two indices of population spatial dispersion
were calculated using the software package PASSaGE v2
(Rosenberg and Anderson, 2011): the Index of Patchiness
(IP; Lloyd, 1967) and the Index of Cluster Size (ICS; David
and Moore, 1954).

Experiment 2: The effects of variations in the precipitation regime
were assessed. Two types of variations were investigated.

(A) A sudden shift toward drier climate was simulated. A
population (250 individuals, aggregated IC) was initialized
on a 200 × 200 m plot and allowed to grow under 1.3mm
precipitation during 1500 days, after which it was exposed
to a rainfall regime of 0.8mm. Mortality due to age was
turned off after the shift to remove natural death. The
effect of this shift on the population’s spatial organization
and mortality across age and biomass classes was studied
in 100 replicated runs. Furthermore, as in Experiment 1B,
patchiness and cluster size were measured before and after
the shift. For both indices, the significance of differences
between pre-shift and post-shift conditions was assessed
by non-parametric Wilcoxon test for paired samples, after
verifying the heteroscedasticity through Levene’s test. As a
side experiment, the viability of the population depending
on timing (either t = 1 or 1500 days) or amplitude
(down to –1.0mm) of the shift and on initial condition
in spatial distribution was explored in 40 replicated runs
per configuration with an initial population of 2000
individuals.

(B) Seasonal variations in water availability were introduced
in the model in the form of sinusoidal changes in
precipitation, which rendered two seasons–one dry, the
other rainy. Amplitudes up to 1.3mm ± 0.9mm were
investigated in 100 runs. The impact on plant spatial
organization on a 200 × 200 m plot was observed over
12 years.
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FIGURE 2 | Impact of precipitation and initial condition on pattern formation. (A) Observed and simulated patterns in different precipitation regimes. The first

row shows photographs of observed vegetation patterns. The second row shows results of the diffusive model by Rietkerk et al. (2002). Third and fourth rows refer to

5-year simulations of the presented hybrid SD-IB model with two different initial distribution of plants (Aggregated distribution: plants are grouped in 1% of the

available space; Random distribution: plants are randomly spread over the map). The simulated areas represent a 400× 400 m plot. Reproductive age was set to 0,

DO = 10, DW = 0.01, s = 0.002, Binit = 1, n = 1000 plants. Other parameter values are reported in Table 1. See also Video 1 included as Supplementary Material.

Photos illustrating the type of vegetation observed in the field for given precipitation ranges are included, with from left to right: (i) In New Mexico, Shrubland exhibiting

spotted patterns of vegetation with medium to large corridors of bare soil (32◦36’29.39”N 106◦49’4.81”W) (<200mm annual rainfall). Photograph: Brandon T.

Bestelmeyer. (ii) Labyrinth of perennial grass Paspalum vaginatum observed in the northern Negev (over 200mm annual rainfall). Reprinted with permission from Von

Hardenberg et al. (2001). Copyright (2001) by the American Physical Society. (iii) Aerial view of a gapped bush plateau dominated by Combretum micranthum and

Guiera senegalensis in the Nigerian part of the W regional park (12◦ 22’ 42.24” N, 2◦ 24’ 10.8? E) (ca. 600mm annual rainfall). Photograph by Nicolas Barbier

released under the Creative Commons Attribution-Share Alike 3.0 Unported license. (iv) Subalpine vegetation in the state of Victoria, Australia (over 700mm annual

rainfall). Photograph courtesy of the Biodiversity Branch, Department of Environment, Land, Water, and Planning, State of Victoria, Australia. (B) Structure of a

self-organized vegetation patch, with the individual-scale biomass (top half) and age (bottom half) of plants. On the left, the 2D biomass and age density is plotted in a

color gradient from blue to green to red for increasing values, and with the individual-scale biomass and age represented as the radius of the points representing

plants. On the right, a transect view of the patch is shown with plant biomass/age plotted against distance from the patch center, and a non-parametric local

regression (LOESS) provides a smooth average of biomass/age (red line). In the case of the biomass plot (top-right), biomass density is also provided (black line),

whereas in the age plot (bottom-right) individual biomass is concurrently represented in the form of point size.

RESULTS AND INTERPRETATIONS

Experiment 1: Spatial Self-Organization
Patterns Exhibited by the Hybrid Model under

Different Precipitation Regimes

Pattern formation
A range of spatial patterns emerged when running themodel with

different values of precipitations (Figure 2A). These mirrored

closely what could be observed in various regions of the world

for vegetation suffering from different degrees of water stress

(Figure 2A, upper row). When facing low precipitation, plants
grouped in high-density “spots.” With lower water shortage, they
formed a labyrinth pattern with corridors of bare soil exhibiting
a width inversely proportional to the average rainfall. With
medium precipitation, most of the surface was populated by
plants, except some empty “gaps.” As predictable, when large
scale competition for resource was inhibited by a widespread
availability of water; the model outputted a relatively uniform
coverage.

Interestingly, the patches of plants were slightly amorphous
and formed clear yet disordered patterns that demonstrated
some variability depending on initial conditions. When plants
were spread randomly at initialization, the population looked
disintegrated and composed of series of small dots or groups of
differing sizes (Figure 2A, fourth row). On the opposite, with an
“aggregated distribution” at initialization [i.e., plants grouped in
1% of the parcels as in Rietkerk et al. (2002)], vegetation grouped
in a smaller number of larger patches of variable shapes separated
by wide empty areas or corridors of bare soil (Figure 2A, third
row). The differences observed between random and aggregated
initial condition could be explained by the fact that the width of
the patches and of the corridors was also directly influenced by
the number of soil patches that were populated at initialization
(seeDatasheet S1.2).

On the whole, outputs from the hybrid model resembled
results from diffusive models, although a few significant
differences could be noted (see Section Importance of Climate
Variability).
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Patch spatial structure
Unlike diffusive models, the hybrid model produced irregular
patches, the biomass density of which was decreasing with
distance from the patch center but which was spatially distributed
over several hotspots of high biomass density (Figure 2B, top).
The average individual biomass was, however, increasing with
distance from the center (Figure 2B, top-right, red line), with
large plants on the periphery of the patch (Figure 2B, top-right)
and of hotspots (Figure 2B, top-left).

Spatially, older plants were present within the core of the
patch, with generally one area of particularly high density of
old plants in the center of the patch (Figure 2B, bottom-left).
The average age of plants proved to be decreasing with distance
from patch center (Figure 2B, bottom-right, red line). Unlike the
foregoing trends in biomass, which were lasting, these proved to
be fading with time, with the average plant age curve becoming
progressively flat with consecutive dispersal events. It is worth
noting that individual biomass proved to be limited by the
plant’s age but also concurrently by proximity to the patch center
(Figure 2B, bottom-right, see point size).

Effect on population age and biomass distribution
Higher water availability increased non-linearly the biomass
density supported by the plot (i.e., 0.4, 6.5, 10.3, and 13.8 g/m2 at

FIGURE 3 | Relative frequency of age and biomass under different

precipitation regimes (0.9, 1.3, 1.5, and 1.7mm). At initialization, 250

plants were grouped in 25 patches on the 200× 200 m plot. The experiment

was run over 5 years and replicated 300 times for each rainfall configuration.

(s = 0.001; other parameters, refer to Table 1).

0.9, 1.3, 1.5, and 1.7mm respectively). The effect of precipitation
was also visible in the age and biomass structure of the
population (Figure 3). The drier the climate, the lower the mean
age of the population (e.g., 200 vs. 228 g for 0.9 vs. 1.3mm
rainfall; mean confidence ±1.7 and ±0.6 g respectively) and the
higher the prevalence of young plants (less than a month old),
which ranged from 15% of the population at 1.7mm to 48%
at 0.9mm.

On the contrary, plants were on average significantly larger
the drier the climate, with mean plant biomass increasing from
24.4 g at 1.7mm to 26.3, 31.2, and 45.4 g (mean conf. < 0.3)
at 1.5, 1.3, and 0.9mm, respectively. The frequency distribution
of plant biomass was bimodal. The first peak, representing
seedlings, was fixed around 1 g and inversely proportional in
height to precipitation (e.g., 0.42 at 0.9mm vs. 0.08 at 1.7mm).
The second peak position varied. It shifted rightwards and
also increased in amplitude with decreasing precipitation. For
instance, under 1.7mm rainfall, it was barely noticeable at
30 g with a frequency of only 0.012 for the peak summit
(i.e., the 30-31 g category), whereas under 0.9mm rainfall,
it culminated at 103 g and represented a frequency twice as
important (i.e., 0.2 for the 103-104 g category). Under water
stress, plants were therefore on the whole conspicuously larger
albeit scarcer (e.g., 0.009 vs. 0.57 plant/m2 at 0.9 and 1.7mm,
respectively).

One explanation for this phenomenon may be that
precipitation is positively correlated with increase in total
biomass and mean patch size. The former is obvious, while
the latter comes from the biomass front progressing further
outwards when more water is available in the periphery of
the patch. As a consequence, the increase in total biomass
generates an increase in number of seeds dispersed, which
increases seedling density. The increase in patch size on
the other hand also contributes in increasing within-
patch dispersal. As a consequence of these processes, mean
individual biomass decreases (see Datasheet S1.3 for a detailed
explanation).

Influence of Plant-Scale Dynamics on Pattern

Formation
The appearance of spatial patterns was influenced by both
dispersal distance and reproductive age. Increasing the dispersal
distance globally tended to scatter plants (Figure 4A). While
this phenomenon was established quantitatively through a
continuous decrease of the IP over the whole parameter
range (Figure 4B), the ICS indicated that absolute clumping
actually increased until dispersal values of ca. 20 m, after
which it declined (Figure 4C). An intuitive explanation
for this observation is that, in the lower range, increased
dispersal distance enables plants to colonize neighboring areas
and thereby enlarge patches, whereas too long dispersal
distances do not benefit the source patches anymore,
resulting on the contrary in a disaggregation of patches.
Increasing reproductive age, on the other hand, resulted in a
monotonic spatial fragmentation of the population (see ICS in
Datasheet S1.4).
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FIGURE 4 | Influence of dispersal distance on vegetation patterns. The

top panel (A) illustrates typical spatial distributions at the end of simulations

with 1, 20, and 80m mean dispersal distance (from left to right). Each plot

represents the effect of dispersal distance on (B) the index of patchiness and

(C) the index of cluster size. At initialization, 250 plants were grouped in 25

patches on a 200× 200m plot and the experiment was run over 5 years

(Default parameter values).

Experiment 2: Resistance to Climatic
Changes
Precipitation Shift
Effects of a shift from 1.3 to 0.8mm rainfall were visible only
about 1 month after its occurrence during which soil water levels
could buffer to some extent the reduction in precipitation. The
post-shift mortality of plants (Figure 5A) revealed that surviving
plants were mainly individuals between 1 week and 1.5 months
old, and individuals with a biomass between 5 and 15 g before
the shift. Visually, this resulted in seedlings—isolated or on patch
edges—as well as plants located in small patches or in the core
area of larger patches to disappear (Figure 5B). The resulting
spatial distribution of plants then remained, as surviving plants
were mostly not able to recolonize the lost ground.

Compared to pre-shift conditions, population spatial
aggregation significantly changed in both patchiness and cluster
size. The simulated shift broke down existing patches, as visible
through a decrease in ICS (from 16.04 ± 6.10 to 10.89 ± 0.64,
Z = 3.51, p = 0.00045), yet reduced the scattering of plants (i.e.,

by removing fragile patches), as rendered by a significant albeit
slight increase in IP (from 7.07 ± 1.49 to 8.11 ± 0.45, Z = 3.40,
p = 0.00066, Wilcoxon test for paired samples). Interestingly, for
both patchiness and cluster size, the variability among simulation
runs was significantly higher in pre-shift conditions than after
the shift [IP: F(1, 58)= 45.7, p = 7.4 × 10−9, ICS:F(1, 58)= 70.9,
p = 1.2 × 10−11, Levene’s tests for homogeneity of variances],
indicating that stochastic effects on spatial patterns are less
pronounced under higher climatic severity.

Note that it could be argued that, in the particular case of
plants less than 1 g or less than a week old, it would not be possible
here to discern shift-related death from natural death (due to
the abundant dispersal of doomed seedlings). To address this
concern, we confirmed through a comparison with additional
runs without shift that even in this subpopulation post-shift
mortality was still higher than usual seedling death (0.97 vs. 0.77
for the 0–1 g biomass class, and 0.77 vs. 0.52 for the 1–7 days age
class).

While it was not the main focus of this experiment, shifts of
different intensities (up to 1.0mm negative change) and timing
were also tested to determine under different configurations
the lowest viable precipitation. The spatial distribution at
initialization (random or aggregated IC) influenced the
population structure before the shift, with random distribution
at initialization favoring a higher proportion of seedlings and
higher plant biomass. Random IC thereby decreased population
viability (i.e., its chances of survival in repeated simulations)
compared to aggregated IC. For instance, under the same
parameter set as in this experiment, a population initialized with
random IC had one chance out of three to go extinct after a
−0.78mm shift (and >90% chance after a shift of 0.82mm),
while under aggregated IC, it always survived down to−0.9mm.
An earlier timing of the shift exacerbated these differences.
Globally, if the shift was to occur at the beginning of the
simulation (t = 1), the viability of the population significantly
decreased whatever the IC (e.g., for aggregated IC, die outs then
happened from −0.82mm), indicating the beneficial effect of
vegetation self-organization into patterns in this aspect. The
negative effect was most important in the case of random IC
though, for which shifts of only −0.3mm already triggered
extinctions.

Seasonal Variations
The population reacted differently depending on the magnitude
of seasonal changes in precipitations (Figure 6). In consecutive
simulations featuring variations up to ±0.45mm, the mean total
biomass of the population (estimated during 4 years after a
8-year warm-up) remained remarkably unchanged, while the
amplitude of total biomass oscillations increased with the extent
of precipitation variations. This did not prevent the formation
of the same spatio-termporally stable labyrinth pattern observed
with constant water 1.3mm precipitation. However, the width
occupied by the vegetation bands was comparatively narrower in
the dry season and larger in the wet one.

Under such low seasonal variations (ca. ±0.3mm) and
only under advantageous stochasticity favoring the development
of a roughly circular shape, patch borders, while fluctuating

Frontiers in Plant Science | www.frontiersin.org 10 May 2016 | Volume 7 | Article 636

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Vincenot et al. SD-IB Hybrid Modeling of Plant Populations

FIGURE 5 | Effect of a shift in precipitation regime (1.3 –> 0.8mm) on vegetation. (A) Plant mortality depending on age and biomass averaged over 100

replicated runs. (B) Example of a simulated plot (200× 200m) right after the precipitation regime shift. The plot shows surviving individuals (green) and the death (red)

of old individuals in the central areas of the patches and young isolated individuals (Default parameter values).

with seasons, would keep extending. After 2 years, a clear
growing ring pattern would then appear (Figure 7). Following
the establishment of the ring, bands would start growing from
the latter, which would gradually expand into a helix-like pattern
(see Video 2). Understanding the triggers of this phenomenon,
which would require further analysis, was beyond the scope
of this paper. We conjecture here that this could perhaps
be linked with increasing water stress in the center of the
patch. This process was observed to follow the installation of
a soil water gradient inward the patch (see Datasheet S1.5),
and seemed to require that the patch size be large enough
comparatively to the surface water diffusion constant. Based
on the limited number of runs that were dedicated to the
study of this pattern, the ring formation process seemed to be
enhanced by a low DO/DW ratio (e.g., it was starker and faster
to appear with a ratio of 5/0.01 than 10/0.01 for instance).
While none of the runs that we performed with constant
rainfall gave rise to ring formation, a systematic exploration
of the whole parameter space would be required to rigorously
establish a solid link between rainfall variability and this
processs.

Subjected to more severe seasonal cycles (between ±0.45
and ±0.8mm), mean total biomass was negatively affected
by the intensity of precipitation variations (y = –801083x +

730639 R2 = 0.96). In simulations performed within this
range, the population underwent different dynamics starting
with an episode of chaotic demographic behavior in which
intense growth periods preceded near-extinction declines in
a series of periodic oscillations of unpredictable amplitudes.
Stable oscillations eventually could occur only after ca. 3000–
4000 days. At this point, total biomass and plant numbers
would oscillate in a regular fashion, with a low and high
season reflecting the seasonal changes in water availability. A 2-
year limit cycle then emerged in which the population’s spatial

FIGURE 6 | Effect of seasonal variations in precipitation. The mean

(continuous line), maximum (black dashed line) and minimum (gray dashed

line) value of the total population biomass were computed based on the last 4

years of each 12-year simulation run. The simulations were carried out with

changing amplitude of the seasonal rainfall regime (mean rainfall 1.3mm ±

amplitude). At initialization, 250 plants were grouped in 25 patches on a

200× 200 m space (Default parameter values).

distribution followed an alternating usage of the space. On
even years, one contiguous half of the plot would be occupied,
whereas on odd years, the other would be (see Video 3 of this
phenomenon).

Overall, due to the soil’s buffering capability, the total biomass
cycles were lagging shortly behind the rainfall changes as in
Experiment 2A. Seasonal variations in precipitation clearly
influenced total plant biomass as well as the shape and amplitude
of the peaks (Datasheet S1.6, bottom). Interestingly, it should be
noted that initial condition in plant distribution, which affected
the shape of patterns under constant rainfall (Figure 2), seemed
to have no effect under the cyclic rainfalls featured in Experiment
2B (Datasheet S1.7).
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DISCUSSION

Ecological Results
Patterns and Individual-Scale Processes
Simulations were capable of reproducing many patterns visible
in nature (Figure 2). They also made it possible to deduce
some characteristics of plant populations subject to self-
organization and spatial patterning. Plant attributes, which could
be studied with this hybrid approach, proved important drivers
of patterning. For instance, low seed dispersal distance favored
the appearance of clear patterns, whereas high reproductive age
aggregated plants in patches (Figure 4).

Spot patterns were known from previous studies to exhibit
decreasing biomass from the center of patches (Rietkerk
et al., 2002). This was confirmed by the present study, in
which plant age also proved to follow the same behavior
during the colonization phase (Figure 2B). However, the
model also showed that, contrary to biomass density, mean
plant biomass increased with distance from the patch center,
with the highest biomasses encountered on patch periphery.
In bi-dimensional space, biomass hotspots were also visible
within the patch, which strongly diverges from the uniform
biomass gradient reported with diffusive models (Rietkerk
et al., 2002). These actually represent colonization stepstones
that provide interesting information about the substructure
of vegetation spatial patterns and the dynamics of their
formation.

Importance of Climate Variability
The organization in patterns enabled plants to survive in
very dry areas, which would be fatal to randomly distributed
populations. This spatial organization also seemed to act as a
shieldingmechanism against disturbances in precipitation, which
are common in arid regions. A higher resistance to climate
shifts was demonstrated in self-organized populations (see
Section Precipitation Shift). In such cases, vegetation suffered
a demographic drop and a change of spatial pattern as already
hypothesized in a previous study (Rietkerk et al., 2004, seeTable 1
esp.). As long as this switch could occur in the short period before
total extinction of the vegetation, the population would survive.
Interestingly, the initial distribution of plants proved critical in its
ability to respond to environmental changes. More generally, as
described hereafter, the new precipitation regime imposed new
requirements in terms of patch size and population structure.
Therefore, all factors influencing patch size, and thereby its age
and biomass structure, influenced the population’s capacity to
react and adapt.

New insights could be gained on the internal structure at
the plant level of populations facing water stress. Populations
suffering from low rainfall exhibited a high number of
seedlings. Surprisingly though, mean individual biomass was also
significantly higher than in a populations subject to a more
humid environment (Figure 3). This could be explained by the
fact that under high water stress there are fewer individuals
resulting in a lower plant density. The individuals that survive
are thus bigger on average since they are less subject to inter-
individual competition (see Datasheet S1.3). Besides, brutal

droughts affected most strongly certain categories of plants (i.e.,
mid-aged plants and plants with medium biomass survived best;
Figure 5A). Spatially, isolated seedlings and, under low surface
water flow especially, plants in small patches or surrounded by
a large number were prone to elimination. This suggests that a
minimal patch size was necessary to survive the shift, yet overly
large patches would see their central plants most vulnerable.
Under seasonal variations and favorable stochastic conditions,
the same mechanism proved to lead to the formation of fairy
rings (or fairy circles, depending on hydrological parameters)
(Figure 7). This recalls results by Sheffer et al. (2011) with
a model of aggregated vegetation based on a system of non-
linear partial integro-differential equations, and provides an
alternative explanation for this spatial pattern, which has also
been conjectured to stem from destabilization of a vegetation spot
by outward clonal expansion (Sheffer et al., 2007), lateral root-
augmentation feedback (Getzin et al., 2015), top-down control
by the physical landscape template (Sheffer et al., 2013), and
recently, plant-soil negative feedback (Bonanomi et al., 2005;
Cartenì et al., 2012; Mazzoleni et al., 2015). Noteworthy is the
progression of the biomass front after the appearance of the ring
pattern, which has not been the focus of much attention. Instead
of simply growing while maintaining shape, or breaking into
waves (Cartenì et al., 2012; Marasco et al., 2014), we obtained
here a non-isotropic growth forming empty branches leading
ultimately to an unusual helix shape (Video 2).

Common Points and Divergences with Diffusive

Models
There were interrogations on whether anterior models able
to reproduce vegetation patterns were dependent on their
representation of biological dispersal as simplistic physical
diffusion (e.g., Okubo, 1980; Rietkerk et al., 2002). The theory
by which vegetation patterns could be explained by competition
for soil water relied on these models, and it was unclear
whether it would resist a more realistic implementation of plant
dispersal. The hybrid model confirmed that this behavior is not
an artifact of simplified biomass diffusion. The patterns output
by diffusive models were on the whole relatively close to the
hybrid model output. Consequently, it strengthens the idea that
the interplay between differential water availability and plant
turnover may represent a sensible cause for patterns reported in
the field.

The design of the model allowed for the reproduction of
patterns observed in nature while waving some assumptions
about the system inherent to previous models. For plant
diffusion, space was not considered to have reflecting boundary
conditions as in Rietkerk et al. (2002). Seeds dispersing outside
of the maps were simply lost, generating an outflow from the
system, which is normally not foreseen inmean fieldmodels (Kéfi
et al., 2007). Besides, the dispersal kernel here was isotropic (sc. it
spread seed in all directions equally). All neighbor parcels within
a given distance could then be colonized, and the biomass flow
was not confined and proportional to biomass deprivation in
neighboring cells. This confirms that the shapes of the patterns
are not dependent, at least for biomass diffusion, on Euclidean
neighborhood nor on directed and targeted colonization of
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FIGURE 7 | Spatial dynamics of vegetation under different precipitation regimes. One patch of 10 plants was simulated on a 50× 50m plot. Top: formation of

an aggregated patch under constant conditions. Bottom: emergence of a ring-shaped patch under variable precipitation (sine function varying between 1.0 and

1.6mm/day with a period of 1 year). (µ = 5m, ∆ x = 1m; other parameters see Table 1).

empty soil, which is considered in all the models following
Rietkerk et al. (2002). Moreover, no direct interaction happened
between plants, as well as no other indirect interaction than
competition for water. Especially, unlike in Manor and Shnerb
(2008), no density-dependent mortality was introduced in the
model. Although the former is an ecologically valid assumption
(Harms et al., 2000), considering it in a model that intends
to investigate the cause for pattern formation tends to cast
doubt on which negative feedback—competition for water or
density-dependent mortality—is the source of this phenomenon
in the simulations. For the sake of realism and performance,
we included a biomass density threshold Ka, yet it did not limit
total biomass but seedling establishment and was never necessary
to reproduce the results presented in this study. Simulations
presented in Figure 4 show that longer dispersal distances
seem to disrupt pattern formation, which is also consistent
with the behavior of reaction-diffusion models in which the
biomass diffusion coefficient must be significantly smaller than
the water diffusion coefficient to allow the emergence of spatial
patterns.

Divergences between the hybrid and diffusion model were
still noticeable in the simulation results. While the diffusion
models seem to reproduce perfectly the final equilibrium state
of the vegetation biomass, it remains questionable whether
they also render accurately the pattern formation process.
One apparent divergence concerns the patterns, which are
less smooth and orderly with the hybrid model. For example,
in the results reported in Figure 2, it is clear that patterns
are more disordered and less regular with the hybrid model.
This can be explained by the fact that when plants start
dispersing, they group in high-density patches before trying

to spread farther. This creates roughly concentric and then
directional dispersal fronts, which have to fight against the
increasing shortage of water on their edges when growing
in surface and penetrating into “isolated” areas. This differs
from the case of diffusion, in which the whole processes
are smoothed out by the fast and homogeneous balancing
performed by the continuous lateral flows of vegetation.
However, the general compatibility between this tendency to
osmosis among neighboring parcels, even though rudimentary
and questionable, and themechanisms involved in plant dispersal
also explains the relative success of the reaction-diffusion
approach.

Another important difference between the hybrid and classical
reaction-diffusion approach is that the latter does not allow to
properly simulate seasonal variability in rainfall. This comes from
the fact that biomass “diffusion” is not coupled with growth. For
this reason the diffusion process continues even in the absence
of available water. This assumption constitutes one of the main
limitations of the PDE models since precipitation events in arid
and semi-arid environments are far from being evenly distributed
throughout the year.

Unlike previous aggregated deterministic models, the
individual-scale stochastic hybrid model proved also very
sensitive to initial conditions. For instance, when it was run
with plants grouped in 1% of the parcels (i.e., “aggregated
distribution”), the population had higher chances of surviving
shifts in precipitation (cf. Section Precipitation Shift). The shape
of the final patterns varied also visibly between the runs starting
with the two initial conditions (Figure 2A). Most importantly,
plants were less sensitive to climatic shifts under aggregated
distribution.
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On the Modeling of Vegetation
Modeling Flexibility
The hybrid solution advanced here proved advantageous in
several aspects. It enabled the integration of various facets of
vegetation patterning after the first studies of Lefever and Lejeune
(1997); HilleRisLambers et al. (2001), and then Rietkerk et al.
(2002) increased accuracy of the models by considering more
realistic ecological and hydrological processes. The same line of
reasoning was followed here by improving the representation
of vegetation. In this aspect, the hybrid model allowed the
integration and study of plants instead of aggregated vegetation.
Plant life cycle could be simulated at the same time as plant-soil
interactions. Water dynamics inside the soil could be rendered in
an intuitive and exhaustive manner to gain understandability and
accuracy. Finally, biological dispersal was represented as realistic
seed dispersal instead of continuous diffusion. Practically, the
representation of the individuality of plants was critical and
made possible the collection of data that were obfuscated
by previous models. For instance, spatial patch structure and
population age/biomass structure could be analyzed (Figures 2B,
3 respectively). These measurements could allow for valuable
individual-scale comparison with data collected in the field.

The hybrid solution could reproduce this complex system
made of several components using a relatively simple modular
structure with communicating submodels based on an intuitive
conceptual framework (Vincenot et al., 2011) taking advantage
of the respective capabilities of the SD and IBM paradigms
(Figure 1). Plants with their individual characteristics (i.e.,
algorithmic life cycle based on metabolic processes with relevant
state variables such as age or biomass) were naturally integrated
inside of IB individuals. Likewise, the hydrology of soil parcels
was simulated. SD-IB hybrid modeling made it possible to
couple submodels computed in continuous time with other
submodels taking decisions in discrete time. This technical
capability increased the accuracy of the model by representing
processes more naturally. Metabolism and local water dynamics
are obviously biological and physical processes that happen
continuously. On the other hand, the plant’s life cycle and seed
dispersal include temporally punctual phenomena and should be
modeled in discrete time.

Lastly and perhaps most importantly, the hybrid approach

may benefit future works by allowing the fusion of two

working hypothesis about the origin of pattern formation
as direct inter-individual interactions (Lefever and Lejeune,
1997; D’Odorico et al., 2006) or vegetation-soil interactions
(HilleRisLambers et al., 2001; Rietkerk et al., 2002). The
present model features both plant individuals and simulates
competition for groundwater, making it possible to integrate
processes related to both aspects (e.g., seed dispersal and water
infiltration respectively). Performing such a task would be
challenging with an equation-based approach, due the lack of
notion of individual heterogeneity and discrete spatiotemporal
interaction. With agent/individual-based modeling, building and
analyzing such a model would have been equally hard. While
IBM has been extremely helpful in studying plant patterns
especially thanks to its ability to represent plant life cycles

(e.g., Wiegand et al., 1995; Peters, 2002; Cipriotti et al., 2012),
the absence of a way to represent continuous processes (e.g.,
metabolism, soil hydrology) in an understandable manner and
an appropriate computation engine push modelers toward
simplifications. Examples of these were given in the introduction
about Paruelo et al. (2008) and Lohmann et al. (2012). Cellular
automata (CA) approaches, which have been a popular tool
to study vegetation spatially (for reviews, see for example
Mauchamp et al., 2001; Thiéry et al., 2001), carry the same
limitations, and often supplementary ones in their reliance
on a fixed discrete grid to represent plants (or aggregated
vegetation, in which case individuality is lacking; e.g., the
TIGRFLUX model in Thiéry et al., 2001), the static nature of
cell interconnections (Hogeweg, 1988), and the synchronicity
of cell update (except in asynchronous cellular automata; Fatès,
2013).

The hybrid approach therefore carries the potential for
valuable developments in the integration of both ecohydrological
dynamics as well as plant-scale mechanisms involved in intra-
and interspecific interactions.

Model Limitations and Caveats
The model introduced here allowed for the inclusion of
individual plants in simulations. Nonetheless, some limitations
remained in the modeling of plant-soil interactions. Plants only
draw water on the parcel on which they lie. In high-resolution
simulations with small parcels (e.g., 1 × 1 m), it would not be
possible to account for root growth on neighboring parcels. It
is probably marginal in the case of pattern-forming vegetation
like shrubs withal. Future evolutions of the current model could
rely on the application of reference case 3b (cf. Section 5.3.2
in Vincenot et al., 2011) for this purpose. Also, while the
uptake of water and the increase in biomass could be modeled
for each plant, we followed a generic description for these
processes, omitting for example root-shoot allocation and other
precise biological mechanisms. The same happened for plant
dispersal, which was rendered as a single process aggregating seed
production, biological dispersal (ballistic, by animals, or other
vectors), seed development, seedling viability. All these aspects
are not present in the models described so far, but could be well
integrated in the frame of the SD-IB hybrid approach.

The added flexibility provided by hybrid modeling comes with
a need for greater caution during the design and implementation
phases. The description of hybrid models in general is non-
trivial because they couple contrasted paradigms. The ODD
protocol (Grimm et al., 2010) offers a descriptive framework for
agent/individual-based models, which can be easily adapted to
hybrid models as done in the present paper with the addition
of information on the modeling paradigms used (e.g., time
clock type), the implementation platforms for the various
submodels, and the mechanisms used to link them (cf. Section
Practical Implementation and Fusion of the SD and IB Model
Components). Points of linkage between submodels (what we
called “hooks” here) should especially be correctly mentioned
and discussed. Still, unspoken implementation details may
affect model coupling, and we therefore recommend for model
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descriptions used during the design phase to be very exhaustive
and leave as little room as possible for implementation freedom.
In most cases, implementation of hybrid models is not a user-
friendly process because it consists in the interfacing between
existing dissimilar systems. A good perception of program
flow and possible coding traps (e.g., race conditions, numerical
approximations, defect criticality) is required and this task
should therefore better be trusted to seasoned programmers.
Modelers should also be aware that different modeling paradigms
may come with different representations of time and space.
Differences in the former that are not properly handled
can generate timing or synchronization issues, numerical
inaccuracies, lags and hysteresis, and pathological oscillations.
Numerical errors can also come along with divergent spatial
resolutions that are not accounted for by design. An interesting
example could take place in the present model, in which the
soil layer is discretized in a grid of parcels. If the resolution
were extremely fine-grained, a single seedling, which is here a
discrete point in space, would translate into an exaggeratedly
high biomass density on the parcel that it occupies, thereby
impacting negatively its own growth through the water uptake
process. This would indeed result in an underestimation
of the plant’s growth rate due to unrealistic water
stress.

A simplification potentially detrimental to all individual-
based plant models in general as regards seed dispersal was
discovered while working with this model. For performance
reasons, it may seem appropriate to preemptively not establish
a seedling in a parcel whose conditions (here, water availability)
would not support its growth. This approach was chosen by
Paruelo et al. (2008) among others. We tested the effect of
this shortcut by calculating the expected growth rate of the
seedling at the time of dispersal and implanting it only if this
rate was positive. This approach indeed significantly sped up the
simulations by limiting the high number of doomed seedlings
that need to be instantiated and thereby require computational
resources in vain. However, it also affected to some extent
pattern formation (see Datasheet S1.8). This can be explained
simply by the fact that, while the estimation of the growth
rate at time t may indicate that the seedling won’t be able
to grow, it ignores future conditions at time t+1 onwards,
which can be changed by abiotic (e.g., water diffusion) or biotic
(e.g., concurrent establishment of other plants favoring higher
water infiltration) factors. Therefore, we recommend caution
when choosing whether and with which threshold to implement
preemptive seedling removal.

Implications for Future Research
The results obtained second the hypothesis that plant-soil
dynamics and differential water availability in the soil can be
the cause of vegetation patterns. Favoring explicit plant dispersal
over a physical biomass diffusion process did not engender
significantly discrepant observations (e.g., absence or temporal
instability of patterns within the same parameter space, radically
different biomass density distribution within patches) that could
have cast a doubt on this theory. Still, some divergences could
be noticed in the way plant formation took place. The stochastic

nature of plant growth and dispersal generated more disordered
patterns than what was previously observed with diffusive
models. The colonization process also was different. This suggests
that interesting behaviors may surface in follow-up studies.
Seed dispersal for instance has already proven to be critical
to explain peculiar vegetation dynamics in field experiments
(Aguiar and Sala, 1997). The hybrid model presented here could
be useful in supporting future virtual investigations on the
effect of this process (e.g., impact of dispersal kernel shape).
Additionally, this model made the collection of data about
individual plants achievable. This is a definitive asset, which
can certainly give rise to new types of experiments to relate
simulations to field data at the individual-scale, and permit
ultimately to further substantiate, fine-tune, or on the contrary
perhaps falsify the working theory of Rietkerk et al. (2002). Other
concurrent hypotheses explaining the formation of vegetation
patterns (e.g., particular rainfall regime; Ursino and Contarini,
2006) could also be tested as well, since deterministic or
stochastic process related to plant or water dynamics—including
direct competition—can be implemented inside of a hybrid
model.

As pointed out by Xu et al. (2013), models currently have
a “limited ability to predict vegetation dynamics under water
stress.” This was rigorously demonstrated through a comparison
between model output and empirical data (Powell et al., 2013).
Xu et al. (2013) pushed the analysis further and stressed
the modeling limitations that would need to be addressed to
improve models. The four key components that they highlighted
related to plant biophysics, namely the effects of drought on
photosynthesis, on plant functionality, on respiration, and on
the timing and extent of plant death/regrowth. These aspects,
especially the latter one, act at a fine scale and their accurate
modeling would therefore benefit from an individual-based
hybrid approach capable of integrating plant biophysics with
spatial diffusion of water and nutrients. Moreover, the usefulness
of having mechanistic processes integrated into physiology
models has already been demonstrated (McDowell et al.,
2013).

For the sake of illustrating the use of SD-IB hybrid modeling,
some assumptions and best guesses were made in this study
especially about biology of the plant taxa present at the different
locations in which pattern formation occurs. Collecting more
precise information on the vegetation type subject to this
phenomenon (as done in Barbier et al., 2008) and validating
model results against field data (as done in Powell et al., 2013),
would allow producing specific simulations for localized cases.
This could lead to interesting comparative studies, which could
assess through the model potential differences between each case
and hopefully thereby contribute to the validation of a governing
theory.
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NOTES

For demonstration purpose, a simplified version of the model
presented in this paper has been released online at the following
address: http://christian.vincenot.biz/models.html.
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Datasheet S1 | Supplementary data (Figures 1–8).

Video 1 | Simulation showing the formation of a labyrinth pattern.

Plants were initially scattered randomly in space, and precipitation

remained constant at 1.3mm. Water density in the soil is visible in the

background through a color gradient (black to white for increasing

values).

Video 2 | Simulation showing the formation of a vegetation ring, ultimately

resulting in an expansion into elongated empty branches forming a

star/helix pattern. Plants were initially grouped in a single patch, and

precipitation varied seasonally (See Section Seasonal Variations for details).

Video 3 | Simulation showing the limit cycle reached by vegetation when

facing high seasonal variations in precipitation (between 0.5 and 2.1mm).
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