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Maize crop production is constrained worldwide by nitrogen (N) availability and

particularly in poor tropical and subtropical soils. The development of affordable

high-throughput crop monitoring and phenotyping techniques is key to improving maize

cultivation under low-N fertilization. In this study several vegetation indices (VIs) derived

from Red-Green-Blue (RGB) digital images at the leaf and canopy levels are proposed

as low-cost tools for plant breeding and fertilization management. They were compared

with the performance of the normalized difference vegetation index (NDVI) measured

at ground level and from an aerial platform, as well as with leaf chlorophyll content

(LCC) and other leaf composition and structural parameters at flowering stage. A set

of 10 hybrids grown under five different nitrogen regimes and adequate water conditions

were tested at the CIMMYT station of Harare (Zimbabwe). Grain yield and leaf N

concentration across N fertilization levels were strongly predicted by most of these

RGB indices (with R2
∼ 0.7), outperforming the prediction power of the NDVI and

LCC. RGB indices also outperformed the NDVI when assessing genotypic differences

in grain yield and leaf N concentration within a given level of N fertilization. The best

predictor of leaf N concentration across the five N regimes was LCC but its performance

within N treatments was inefficient. The leaf traits evaluated also seemed inefficient as

phenotyping parameters. It is concluded that the adoption of RGB-based phenotyping

techniques may significantly contribute to the progress of plant breeding and the

appropriate management of fertilization.

Keywords: breeding, crop management, field phenotyping, maize, nitrogen fertilization, NDVI, RGB indices

INTRODUCTION

Low soil fertility, alongside drought and heat, is a major stress factor limiting crop productivity on
a world scale (Stewart et al., 2005). In the case of sub-Saharan Africa, the lack of nitrogen (N) is the
main constraint on cereal yields in areas with more than 400mm average annual rainfall (Buerkert
et al., 2001). Therefore, an optimization of N use is critical for increased grain production, especially
in the low productive regions. On the other hand, on the basis of environmental and economic
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sustainability, a more restricted and reasonable use of fertilizers is
necessary. Plant scientists, especially breeders and agronomists,
face the challenge of solving these limitations while taking into
account the additional implications of climate change on food
security (Cairns et al., 2012, 2013).

Maize is the second most cultivated cereal worldwide and
the most commonly cultivated cereal in Africa in terms of land
area and production (FAO, 2013). In particular, agricultural
productivity of sub-Saharan Africa remains the lowest in the
world partly due to low soil fertility (Cairns et al., 2013; Fischer
et al., 2014). Therefore, improving tolerance of maize to low N
will increase yields and impact positively on livelihoods and food
security (Masuka et al., 2012).

In this sense, two strategies are considered paramount for
crop scientists: (i) breeding to improve varieties toward higher
nutrient use efficiency and tolerance to nutrient-deficiency (ii)
and appropriate fertilization management (Wezel et al., 2014),
including precision agriculture (PA; Hatfield, 2000; Chen et al.,
2014). Thereby, the implementation of such improvements may
increase farmers’ profits by maintaining crop yield and reducing
the use of resources while preventing further degradation to the
environment (Hergert et al., 1996; Delgado et al., 2001; Roberts
et al., 2001; Wang et al., 2003). In that sense, technologies for
crop monitoring and breeding must be high performing, broad-
use and affordable, particularly (but not only) when national
agricultural systems, seed companies, or small farmers from
developing countries are the targets. Moreover, in the case
of breeding, improvements are needed to overcome the field
phenotyping bottleneck that limits breeding and advances in PA
(Araus et al., 2008; Furbank and Tester, 2011; Araus and Cairns,
2014).

Remote proximal sensing technologies are being used
currently for precise management of crops, whereas its potential
application for field high throughput phenotyping has gathered
increasing interest in recent years (Araus and Cairns, 2014;
Liebisch et al., 2015). The classical approach has involved the
use of multispectral sensors and the development of numerous
vegetation indices associated with vegetation parameters such as
above-ground biomass, water and nutrient-deficiency and crop
yield (Petropoulos and Kalaitzidisz, 2012). Among the indices,
the Normalized Difference Vegetation Index (NDVI) is the most
widely used. Concerning crop N performance, several studies
have shown that it is possible to quantify it satisfactorily using
multispectral data at both the aerial and ground levels (Barnes
et al., 2000; Boegh et al., 2002). However, multi and hyper-
spectral imagers are relatively expensive and complex from the
operational point of view.

As a low-cost alternative, vegetation indices derived from
Red-Green-Blue (RGB) cameras have been employed for remote
sensing assessment in field conditions, providing a wide-range
of phenomic data about genotypic performance under different
stress conditions and species, including water stress and foliar
diseases in bread wheat, durum wheat and tritordeum and
triticale (Casadesus et al., 2007; Casadesús and Villegas, 2014;
Vergara-Diaz et al., 2015; Zhou et al., 2015). Moreover, digital
sensors have been successfully integrated on board unmanned
aerial vehicles (UAV) to assess crop vigor, vegetation coverage,
and greenness (White et al., 2012; Andrade-Sanchez et al., 2014;

Svensgaard et al., 2014). For example, digital indices derived from
RGB images have been proposed for grain yield (GY) assessment
in water limiting conditions (Casadesus et al., 2007) and for
quantifying leaf N concentration (Rorie et al., 2011). However,
the use of RGB images to assess genotypic performance in terms
of yield and cropN accumulation in response to different levels of
soil fertility has not yet been assessed. RGB images may represent
a proper alternative to spectroradiometric approaches at different
levels: at the whole trial level from aerial platforms, at the plot
level from ground-based measurements or even at the single leaf
level replacing leaf chlorophyll meters.

Information derived from plant samples may also be relevant
for crop monitoring and phenotyping (Araus and Cairns, 2014).
For example the stable isotope composition in plant matter
constitutes an integrative selection criterion because it can
describe the behavior of the crop under stress (Masuka et al.,
2012). Nitrogen isotope composition (δ15N) can be employed
to characterize the efficiency in using N fertilizers (Evans, 2001;
Serret et al., 2008). For its part, implementing carbon isotope
composition (δ13C) in maize is not clear for assessing genotypic
differences due to the C4-photosynthetic metabolism of this
species, but still appears responsive to differences in growing
conditions (Monneveux et al., 2007; Araus et al., 2010). Finally,
some other morphological and compositional traits such as the
specific leaf area (SLA), N concentration, N per unit leaf area
(N/LA), and carbon to nitrogen ratio (C/N), which are in turn
related to nitrogen use efficiency, leaf construction, and primary
metabolism (Poorter and Evans, 1998; Feng et al., 2008), have
the potential to be useful for breeding, but knowledge about their
association with crop yield is scarce.

Themain goal of this study is to develop affordable easy-to-use
new phenotyping tools that increase selection efficiency for grain
yield and leaf N concentration under different N fertilization
conditions in maize. To accomplish this objective, we compared
the accuracy of field-spectroradiometer data vs. RGB-derived
vegetation indices assessing GY and leaf N concentration in a
set of ten maize hybrids grown in the field under five N-fertilizer
levels. Firstly, we assessed the performance of these parameters
for all the N-treatments together, and subsequently we dissected
the correlations within each N-level for further discussion of
phenotyping. Additionally, simple regression models were made
for GY prediction and these models were tested and validated
against the experimental yield of another trial. The performance
of the leaf parameters N/LA, C/N, SLA, and δ

13C and δ
15N

were also studied with the aim of relating these structural
and compositional leaf properties with crop performance and
phenotyping data. All RGB and UAV imagery were obtained
at flowering stage in order to integrate the differences in crop
performance from plant emergence to flowering stage, when the
number of kernels per ear is determined.

MATERIALS AND METHODS

Experimental Design and Growing
Conditions
Field trials were carried out at the Southern Africa regional
station of CIMMYT (International Maize and Wheat
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Improvement Center) located in Harare (17◦43′32′′S,
31◦00′59′′E) where two field experiments were studied.
Before sowing, soil pH, total soluble salts (TSS), nitrogen as
nitrate (NO−

3 ) and phosphorus (P2O5) were analyzed in three
soil depth ranges (0–30, 30–60, and 60–90 cm) and six replicates
for each depth range were produced. Mean values for the full soil
profile were pH= 5.8, TSS= 240.9 ppm, NO−

3 = 4.12 ppm, and
P2O5 = 18.93 ppm.

Ten maize hybrids were sown, three of them were commercial
hybrids (PAN7M-81, SC635, SC537) and the other seven were
maize hybrids developed at CIMMYT (TH11894, TH127591,
TH127053, TH127618, TH13466, CZHH1155, TH127004).
These maize hybrids cover a big range of agronomical sensitivity
to low nitrogen conditions. A split-plot arrangement in a
randomized block design was set up and five nitrogen fertilization
levels (0, 10, 20, 80, and 160 kg·ha−1 NH4NO3) were applied in
both trials. Two and three replicates were set for the first and
second trials, with 100 and 150 being the respective number of
plots in each trial (trials S and P, respectively). A two-row border
was sown between fertilization treatments and on the edges of the
trial to prevent spatial variability.

Seeds were sown during the wet season, on December 23th
2013, in two rows per plot; rows were 4m long and 75 cm
apart (6 m2/plot), with 17 planting points per row and 25 cm
between plants within a row. All trials were homogeneously
fertilized with 400 kg·ha−1 of super-phosphate and potassium
oxide fertilizer (P2O5 14% and K2O 7%). Weather conditions
throughout growing season were recorded with a weather station.
The mean temperature was 18.9◦C, mean humidity 81.2 and
total rainfall during the crop period was 563.1mm, therefore,
preventing the water deficit in these rainfed conditions.

The trials were harvested onMay 20th 2014. The central 3.5m
of each row was harvested discarding 2 plants at each end, thus
the collected weight corresponded to 5.25 m2 (0.75m apart × 2
rows× 3.5m long). The cobs were threshed and the grains dried
until they reached around 12%moisture, and then the grain from
each plot was weighed. Grain yield (GY, Mg·ha−1) was calculated
as follows: (X kg plot−1

× 10)/5.25 where X is the grain weight
per plot.

NDVI Calculation
The normalized difference vegetation index (NDVI) was
calculated using the equation:

NDVI = (NIR − R)/(NIR+ R)

where R is the reflectance in the red band and NIR is the
reflectance in the near-infrared band. NDVI was obtained around
the flowering stage by using two different approaches: using
ground measurements and from aerial multispectral images
(Figure 1).

The NDVI of individual plots at ground level (NDVIground)
was determined with a ground-based portable spectroradiometer
with an active sensor (GreenSeeker handheld crop sensor,
Trimble, USA). This equipment uses the spectral wavelengths
650–670 nm as the red band and 765–795 nm as the near infrared.
The distance between the sensor and the plots was kept constant

FIGURE 1 | (A) The unmanned aerial vehicle flying over the maize crops; (B)

Multispectral false-color image at the aerial level showing near infrared

(800 nm) as red, green (550 nm) as blue and red (670 nm) as green, spatial

resolution of 10 cm/px; (C) RGB digital image from the high-nitrogen

fertilization treatment at the canopy level; (D) and its resulting processed

image with BreedPix; (E) RGB image from the low-nitrogen treatment and (F)

its respective processed image.

using a ladder, around 0.5–0.6m above and perpendicular to the
canopy. The whole areas of the two trials were measured from 12
to 14 h on March 3rd and 4th, 2014.

The aerial NDVI index (NDVIaerial) was obtained using a
UAV-based remote sensing platform developed by Airelectronics
(Montegancedo campus, Spain) in collaboration with the Crop
Breeding Institute-Zimbabwe, CIMMYT, QuantaLab at the
Institute for Sustainable Agriculture (IAS-CSIC, Spain) and the
University of Barcelona. This aerial platform was equipped with
a multispectral camera (ADC-Lite, Tetracam, Inc., Chatsworth,
CA, US), which provides spectral images on the green, the red
and the near-infrared bands, with a final ground resolution of
10 cm per pixel when flying at an object distance of 150 m.
These bands are approximately equal to the Landsat Thematic
Mapper (TM) bands TM2, TM3, and TM4, respectively, so
that the spectral wavelengths from 630 to 690 nm represent
the red band and 760 to 920 nm the near infrared band. The
flight was conducted at an altitude of 150m at midday on
a sunny day when crops were around the flowering stage.
The collected images covered 220 out of the total 250 plots,
completely covering the block S trial (100 plots) and partially
covering block P (120 of the total of 150 plots). Aerial
images were subsequently corrected and calibrated with ImapQ
(QuantaLab-IAS-CSIC, Cordoba, Spain) which converts images
to radiance. Mosaicking and rectifying processes were applied
with Autopano (Kolor SARL, Francin, France) by applying
the image stitching technique (SIFT algorithm) in addition to
a manual orthorectification from several checkpoints selected.
NDVI values were finally extracted from the images using
ENVI software (Exelis Visual Information Solutions, Boulder,
Colorado, USA).
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RGB Indices
Vegetation indices derived from red-green-blue (RGB) images
were evaluated at the plot and the single leaf level (RGBcanopy
and RGBleaf indices, respectively; Figure 1). In the case of
RGBcanopy, one digital RGB picture was taken per plot by
holding the camera about 0.8–1.0m above the canopy, in a
zenithal plane and focusing near the center of each plot. Plot
images were taken on the same days as the measurements with
the ground spectroradiometer using a Nikon COOLPIX S8000
digital compact camera without flash and with a focal length of
54mm and were saved in a 4288×2848 pixel JPEG format. Later,
six leaves per plot were taken from the S trial (100 plots) and were
subsequently scanned with a Dell 2155 cdn multifunction color
printer (Round Rock, TX, USA). Finally, scanned images were
saved in the same format with a resolution of 2338× 1653 pixels
and RGBleaf indices calculated as below.

Subsequently, images were analyzed with the open source
Breedpix 0.2 software (Casadesus et al., 2007) designed to process
digital images. This software enables calculation of several RGB
vegetation indices based on the different properties of color
inherent in RGB images. RGB VIs were obtained either from
the average color of the whole image or from the hue histogram
in each image. BreedPix produces several automatic conversions
of the original RGB image to other color spaces (i.e., each
model that numerically represents the color in terms of different
coordinates). Four VIs (a∗, b∗, u∗, and v∗) belonging to CIE
(from the French abbreviation of International Commission
on Illumination) color spaces were calculated and used in this
study. The software require the use of Java Advanced Imaging
(JAI) for the conversion of RGB color space to CIE-XYZ color
space and the resulting coordinates are subsequently converted
to other color spaces. First, the VIs a∗ and b∗ belong to CIE-
Lab color space, being L∗ the lightness dimension and a∗

and b∗ the color-opponent coordinates. Red/green opponent-
colors are represented along a∗ axis, whereas b∗ axis represent
the yellow/blue opponent colors. Similarly, u∗ and v∗ indices
represent the axis in the chromaticity diagram of CIE-Luv color
space. Thereby the software obtains the average values of these
components of color for each one of the processed images.
Hue component is calculated using the JAI functions which
employ the formulae described in Seul et al. (2000) whereas the
components of CIE-Lab and CIE-Luv color spaces are calculated
as described in Trussell et al. (2005). The relative green area (GA)
and the relative “greener area” (GGA) are based on the sum of
frequencies of the histogram classes included in a certain range
of hue in the image. GA is the percentage of pixels in the image
in the hue range from 60 to 180◦, that is, from yellow to bluish
green. On the other hand GGA is somewhat more restrictive
since the range of hue considered by this index is from 80 to 180◦,
excluding yellowish-green tones and therefore, it more accurately
describes the amount of photosynthetically active biomass and
leaf senescence.

Analysis of Leaf Parameters
The leaf portions in the RGBleaf indices were also used the
subsequent measures. Firstly, immediately before being scanned,
a handheld spectroradiometer developed for leaf chlorophyll

measurements (Minolta SPAD-502, Spectrum Technologies Inc,
Plainfield, IL, USA) was used to measure the index related to leaf
chlorophyll content (LCC). Four measurements were made for
each leaf segment. Secondly, the leaves were oven dried at 70◦C
for 24 h and the dry weight was measured. Then the specific leaf
area (SLA) was calculated using the equation

SLA= LA / DW

where LA is the total leaf area (m2) measured previously from
the scanned images using the open-source Java-based software
ImageJ (http://rsb.info.nih.gov.sire.ub.edu/ij/) and DW is the
corresponding dry weight (kg).

Finally, dry leaves were ground to a fine powder and 0.7–
0.9mg of leaf dry matter from each plot was weighed and sealed
into tin capsules. Stable carbon (13C/12C) and nitrogen (15N/14N)
isotope ratios as well as the leaf N and C concentrations (%) were
measured using an elemental analyser (Flash 1112 EA; Thermo
Finnigan, Bremen, Germany) coupled with an isotope ratio mass
spectrometer (Delta C IRMS, Thermo Finnigan) operating in
a continuous flow mode. Samples were loaded into a sampler
and analyzed. Measurements were conducted at the Scientific
Facilities of the University of Barcelona. Isotopic values were
expressed as a composition notation (δ) as follow:

δ (‰)= (13C/12C)sample/ (
13C/12C) standard − 1

where “sample” refers to plant material and “standard” to
international secondary standards of known 13C/12C ratios
(IAEA CH7 polyethylene foil, IAEA CH6 sucrose and USGS 40
L-glutamic acid) calibrated against Vienna Pee Dee Belemnite
calcium carbonate with an analytical precision (standard
deviation) of 0.15‰. The same δ notation was used for the
15N/14N ratio expression but with the standard referring to air.
For nitrogen, international isotope secondary standards IAEA
N1, IAEA N2, IAEA NO3, and USGS 40 were used with a
precision of 0.3‰. Further, the C/N ratio was obtained from
these analyses and total nitrogen concentration per unit leaf area
(N/LA) was calculated with the formula:

N /LA=

(

DW

LA

)

x N

where LA is the total leaf area (m2), DW is the corresponding dry
weight (g) and N is its nitrogen concentration (in % dry matter).

Statistical Analysis
Statistical analyses were conducted using SPSS 21 (IBM SPSS
Statistics 21, Inc., Chicago, IL, USA). Multiple variance analyses,
the multiple comparison Duncan post-hoc test and bivariate
correlations were performed. The presented leaf parameters
(LCC, N, δ

15N, N/LA, SLA, δ
13C, C/N) and RGBleaf indices

from scanned leaves were only analyzed for the S trial, whereas
the NDVIground, NDVIaerial, and RGBcanopy indices were studied
for both trials. The determination coefficients of the linear
relationships of GY and leaf N concentration with the vegetation
indices NDVI and RGB were calculated for the entire trials
and within each N fertilization treatment. All graphs were
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performed with SigmaPlot 10.0 (Systat Software Inc., San Jose,
California, US).

RESULTS

Significant differences in GY between genotypes and nitrogen-
fertilization levels were observed in this study (Table 1) with GY
increasing in response to N fertilization (Table 2). Differences
within nitrogen-input levels were also detected with both
(ground and aerial) NDVI approaches and with all RGBcanopy
indices except by a∗. Genotypic differences were detected by the
RGBcanopy indices GGA, GA, a∗, u∗, and hue, whereas among
the spectroradiometric indices only the NDVI at the ground level
detected genotypic differences.

Leaf N concentration varied significantly between genotypes
and the effect of N-fertilization levels was highly significant

TABLE 1 | P-values from multivariate analysis of variance with two fixed

factors: genotype and nitrogen level and its interaction (GxN).

Genotype Nitrogen level G × N

GY < 0.001 < 0.001 0.884

SPECTRAL INDICES

NDVIaerial 0.509 < 0.001 0.745

NDVIground < 0.001 < 0.001 0.500

RGBcanopy INDICES

hue 0.032 < 0.001 0.997

a* 0.006 0.125 0.727

b* 0.590 < 0.001 0.997

u* 0.012 < 0.001 0.801

v* 0.567 < 0.001 0.993

GA 0.002 < 0.001 0.708

GGA < 0.001 < 0.001 0.564

RGBleaf INDICES

hue 0.412 < 0.001 0.817

a* 0.364 < 0.001 0.882

b* 0.580 < 0.001 0.999

u* 0.310 < 0.001 0.687

v* 0.787 < 0.001 0.999

GA 0.042 < 0.001 0.604

GGA 0.289 < 0.001 0.225

LCC 0.939 < 0.001 0.973

ANALYZED PARAMETERS

Leaf %N 0.026 < 0.001 0.999

N/LA 0.347 < 0.001 0.972

C/N 0.120 < 0.001 1.000

δ
15N 0.375 < 0.001 1.000

δ
13C < 0.001 < 0.001 0.937

SLA 0.822 0.004 0.89

As dependent variables, grain yield (GY), leaf nitrogen concentration (%N), NDVI at aerial

and ground levels, RGB indices from canopy images and scanned leaves, leaf chlorophyll

content (LCC), nitrogen per unit area (N/area), the stable carbon (δ13C), and nitrogen

(δ15N) isotope composition, carbon nitrogen ratio (C/N) and specific leaf area (SLA).

(Table 1) with values increasing as N fertilization increased
(Table 2). All the RGBleaf indices detected very significant
differences between nitrogen treatments and genotypic
differences were also found with GA (Table 1). At the same
time, LCC also indicated highly significant differences between
N fertilization levels but not genotypic differences.

All the analyzed leaf parameters (N, N/LA, SLA, δ15N, δ13C,
C/N) were highly sensitive to variations in N fertilizer levels
(Table 1). In contrast, apart from leaf N concentration, genotypic
differences were only detected for δ

13C. Increasing N fertilization
caused significant increases in leaf N, N/LA and SLA while δ

15N
and the C/N ratio decreased (Table 2). Additionally, differences
among N fertilization levels were also found in δ

13C but its trend
was somewhat different: in the low-N levels δ

13Cwas quite steady
and then it decreased at 80–160N, whereas leaf-N concentration
increased.

Additionally, the effect of changing light in outdoor
conditions was evaluated in RGB indices obtained from canopy
images (Table S1). For this purpose, 57 plots were photographed
twice in nearly consecutive days, firstly in a sunny day and
secondly in a partly cloudy day. All indices were strongly
correlated between replicates (p < 0.001), particularly the indices
GA, GGA, u∗, a∗ (R2 > 0.72).

Grain Yield Assessment across Nitrogen
Regimes and Genotypes
All vegetation indices (either ground and aerial NDVI,
RGBcanopy, or LCC) were strongly correlated with GY variation
across the whole set of plots of the two trials. The best
results were obtained by using the RGB-indices GA and
GGA at the canopy level, which showed an exponential
regression model and explained 70–72% of GY variability
(Figure 2). Meanwhile, the RGBcanopy indices u

∗ and a∗ evolved
inversely with increasing GY and demonstrated lower accuracy
(R2 = 0.326 and R2 = 0.302, respectively, data not
shown). In contrast, LCC evolved linearly with increases in
GY and explained 69% of GY variation (Figure 2). Finally,
both NDVI approaches followed a power regression model
and their determination coefficients were moderate and similar
(NDVIground at Figure 2; NDVIaerial R2 = 0.293, data not
shown).

Additionally, simple regression models from the P trial
that explained GY across the different N fertilization levels
were obtained by using the different VIs and validated
for their accuracy in estimating the GY of the S trial
(Table 3). The estimated GY from all VIs always fitted
satisfactorily with the experimental GY for the entire trial. The
determination coefficients increased further when six hybrids
contrasting in their grain yield were selected, with three
of them being high-yielding and the remaining ones low-
yielding. Genotypic differences were found in the estimated
GY from GGA, NDVIaerial and NDVIground between the
six selected hybrids and the experimental GY was also
significantly different. Moreover, in all models, differences
between N fertilization levels were always detected by the
estimated GY.
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TABLE 2 | Means of grain yield (GY) (Mg·ha−1) from the two trials, leaf nitrogen concentration (%N), nitrogen per unit leaf area (N/LA), specific leaf area

(SLA), the stable carbon (δ13C), and nitrogen (δ15N) isotope composition and the leaf C/N ratio according to the ten hybrids and the five nitrogen levels.

GY (Mg·ha−1) %N N/LA (g/m2) SLA (m2
·kg) C/N ratio δ

15N (‰) δ
13C (‰) LCC (u)

GENOTYPE

PAN 7M-81 5.03b 2.203ab 111.24ab 20.23a 21.07b 4.53b −11.7ab 41.53a

TH11894 5.12b 2.196ab 101.75a 21.48a 20.77b 3.78ab −11.49cd 42.02a

TH127591 5.14b 2.312abc 117.87ab 20.41a 19.75ab 4.04ab −11.79a 43.06a

TH127053 5.7bc 2.32abc 118.29ab 19.56a 19.75ab 4.18ab −11.55bcd 41.13a

SC635 3.52a 2.506bc 125.31ab 19.98a 18.38ab 3.66ab −11.77a 41.84a

TH127618 5.38b 2.621c 130.12ab 20.54a 17.27a 3.64ab −11.63abc 43.56a

TH13466 5.75bc 2.4abc 117.62ab 20.91a 18.96ab 3.76ab −11.45d 42.57a

CZH1155 4.63b 2.526bc 133.84b 18.9a 18.48ab 3.19a −11.64abc 42.28a

TH127004 6.49c 2.138a 113.71ab 19.05a 21.35b 3.87ab −11.71ab 41.76a

SC537 4.67b 2.38abc 121.71ab 20.32a 19.65ab 3.79ab −11.7ab 42.39a

NITROGEN LEVEL

0 3.13a 1.887a 107.62a 17.82a 23.75d 5.612e −11.584bc 32.5a

10 3.9b 1.881a 92.78a 20.6b 23.43d 4.613d −11.59bc 33.4a

20 4.61c 2.089a 107.09a 19.91ab 21.01c 3.877c −11.512cd 40.4b

80 6.48d 2.739b 138.68b 20.14b 16 b 2.898b −11.652b 50.9c

160 7.59e 3.206c 149.56b 22.22b 13.54a 2.218a −11.869a 53.8d

Letters are significantly different according to Duncan’s multiple range test (P < 0.05).

Grain Yield Assessment across Genotypes
within Each N Regime
To further assess the accuracy of these indices, the determination
coefficients for GY prediction within each N-input level across
genotypic means were performed (Table 4). GGA, GA, u*, and
a* indices were correlated significantly to GY variation within
all N levels, whereas both NDVI approaches were correlated
significantly to GY only for some of the studied N levels. By
contrast, LCC did not correlate with GY across plots within any
of the N levels.

Leaf Nitrogen Assessment across N
Regimes and Genotypes
LCC was the best predictor of leaf N concentration across
the entire trial, explaining more than 80% of N variability,
moderately surpassing the fitting accuracy of the RGBleaf indices
(Figure 3). Thus, the RGBleaf index a∗ explained about 69% of
leaf N variation across N fertilization treatments (Figure 3) and
u∗, b∗, and v∗ were quite similar (R2 = 0.682, R2 = 0.643,
and R2 = 0.621, respectively, data not shown). For its part,
NDVIaerial was also a good predictor of leaf N (Figure 3), whereas
NDVIgroundwas less accurate in its prediction (R2 = 0.116, data
not shown). Finally, the RGB index v∗ at the canopy level was
more related to leaf N than it was to GY, and it was shown to
be a reasonably good predictor of leaf N across the whole trial
(Figure 3).

Leaf Nitrogen Assessment across
Genotypes within Each N Regime
A table depicting the determination coefficient between the
RGBleaf indices, NDVIaerial, NDVIground, and LCC against leaf

N across genotypic means within each of the N fertilization
levels is presented (Table 5). In the low-N treatments (0N to
20N) the best determination coefficients were provided by the
RGBleaf indices b

∗, v∗, u∗, and a∗. In addition, most of the RGBleaf
indices were also sensitive to leaf N variation at the 80N level but
none of them related significantly at the 160N level. For its part,
LCC showed a quite similar accuracy compared with the RGBleaf
indices in their predictions of leaf N within the low-N levels, but
it was not significantly correlated in the high-N fertilization levels
(Table 5). Finally, NDVIaerial was especially sensitive to leaf N
variations in the high-N and 0N treatments, whereas NDVIground
was generally unrelated to leaf N within each N treatment.

Leaf Parameters Performance and
Relationships with VIs and Yield
Leaf N was strongly negatively correlated across N levels with
δ
15N and the C/N ratio and to a lesser extent with δ

13C and SLA
(Table S2). Correlations of these traits with GY were also negative
but weaker, except for SLA which did not correlate.

Most of the RGB indices (both at the leaf and canopy scales),
the LCC and the NDVI correlated with N/LA across N regimes,
but always more moderately than they correlated with leaf N
concentration (Table S2). The association of δ

15N with NDVI,
LCC, and RGB indices (at the both scales) was highly significant
and in some cases their correlation coefficients were higher than
the respective coefficients between δ

15N and leaf N. Similarly,
δ
13C was fairly well correlated with most of the RGB indices
(especially at the leaf scale) and LCC. Regarding the C/N ratio,
LCC was the best predictor but this correlation was smaller than
with leaf N concentration. However, most of the RGBleaf indices
(a∗, b∗ u∗, v∗, GA), the RGBcanopy indices (hue, u

∗, GA, GGA) as
well as NDVIground and NDVIaerial correlated more strongly with
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FIGURE 2 | Correlations between grain yield (GY) and leaf chlorophyll content (LCC), the RGB indices GA and GGA at the canopy level and NDVI at the

ground level. R2, determination coefficient; **P < 0.001.

the leaf C/N ratio than they did with leaf N (Table S1). Finally,
SLA correlated strongly with the RGBleaf indices GA and GGA,
and slightly with both NDVIs.

The relationships between leaf N, N/LA, C/N, δ13C, δ15N, and
SLA with GY across genotypes within N fertilization treatments
were almost all non-significant except for leaf N in the 160N
treatment (Table 4). Regarding the genotypic correlations within
each N fertilization level of these leaf traits with leaf N, only the
leaf N derived parameters (C/N and N/LA) were significantly
correlated (Table 5).

DISCUSSION

Crop Monitoring and Phenotyping
Parameters for GY Estimation
As previously found in other studies in wheat grown under
different stress conditions (Casadesus et al., 2007; Morgounov
et al., 2014; Vergara-Diaz et al., 2015), the RGBcanopy indices
(from BreedPix software) measured at flowering were strongly
correlated with GY. RGB-based indices may perform far better
than NDVI for GY prediction, which has been recently described
under water and biotic stresses in wheat (Elazab et al., 2015;
Vergara-Diaz et al., 2015; Zhou et al., 2015). The lower
accuracy of NDVI in comparison to digital-based RGB indices
can be explained in several ways. On the one hand, graphs
clearly highlight (Figure 2) that the variability in the canopy
NDVIvalues at ground level is small, with more than 90%
of values being in the range 0.5–0.8 and with the NDVI

values in the low N treatments being already relatively high
(e.g., average of NDVIground = 0.57 in the 0N treatment).
Therefore, the NDVI values remained almost unchanged as
GY increased from 4 to 13 Mg ha−1. These results support
the previously reported saturation of reflectance spectra in the
red and near-infrared regions, such that increasing leaf area
does not involve a parallel increase in NDVI values (Hobbs,
1995; Elazab et al., 2015). Thus, the relationship between NDVI
and aerial biomass saturates as canopies become denser (i.e.,
LAI > 4) and as a consequence the relationship between the
NDVI and GY also worsened as GY increased. Moreover near-
infrared reflectance is sensitive to canopy architecture variations
(Gitelson et al., 2002) which surely affected NDVI measurements
in maize canopies. The use of multi-angular spectral data may
solve these problems by capturing the scattering of sunlight by
vegetation, which enables to assess three-dimensional vegetation
structures (Hasegawa et al., 2010). Whereas this approach may
improve the estimation of NDVI (and other spectral indices)
for phenotyping, the increasing complexity (i.e., more time and
resources needed) of the method makes it less feasible as low-cost
alternative.

For its part, the range of variability in the RGBcanopy index,
GA, was much wider (only 63% of values were in the range of
0.5–0.8) and GA values in the low N treatments were somewhat
smaller (average GA = 0.46 in the 0N treatment) than those of
the NDVI, and in fact GY correlated much better with GA than
with the NDVI. Even so, the RGBcanopy indices also seemed to
saturate for high GY but to a lesser extent than the NDVI because
theymainly depend on changes in pigment concentration and the

Frontiers in Plant Science | www.frontiersin.org 7 May 2016 | Volume 7 | Article 666

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Vergara-Díaz et al. RGB vs. Spectral Indices in Maize

TABLE 3 | Simple regression models obtained with different Vegetation Indices (the spectroradiometric indices NDVIaerial, NDVIground, and the RGBcanopy

indices GA and GGA) in the P trial, explaining Grain Yield (GY) variation across nitrogen fertilization levels, were used for GY estimation in the S trial.

GY exp. vs. GY est.

Predictors Simple Regression models R2 for all trial R2 for 6 hybrids Genotype N-level

GY est. GA GY = e ((GA − 0.195)/0.24) 0.674** 0.711** 0.054 < 0.001

GGA GY = e ((GGA − 0.151)/0.248) 0.684** 0.719** 0.040 < 0.001

NDVIaerial GY = e ((NDVIaerial − 0.192)/0.094) 0.452** 0.543** 0.002 < 0.001

NDVIground GY = e ((NDVIground − 0.461)/0.109) 0.231** 0.324** 0.001 < 0.001

GY exp. GY 3-3 hybrids – – 0.044 < 0.001

The fit of the estimated Grain Yield (GY est.) to the experimental Grain Yield (GY exp.) was tested with the determination coefficient (R2 ) for the entire trial and for six yield-contrasting

hybrids. P-values were analyzed for all estimated GYs and for the experimental GY using the six selected hybrids. **P < 0.001.

TABLE 4 | Determination coefficients (R2) of RGB-indices from canopy images (RGBcanopy), aerial NDVI, ground NDVI, leaf chlorophyll content (LCC), the

leaf nitrogen concentration on a dry matter basis (Leaf %N), the nitrogen concentration on a leaf area basis (N/LA), the ratio of carbon to nitrogen

concentration (C/N), the stable carbon (δ13C) and nitrogen (δ15N) isotope composition and the specific leaf area (SLA) predicting grain yield in the five N

levels separately (0, 10, 20, 80, and 160kg·ha−1 NH4NO3) following linear regression models.

0N 10N 20N 80N 160N

SPECTRAL INDICES

NDVIaerial 0.019 ns 0.415* 0.092 ns 0.074 ns 0.621**

NDVIground 0.741** 0.381 ns 0.421* 0.212 ns 0.289 ns

RGBcanopy INDICES

hue 0.632** 0.653** 0.717** 0.364 ns 0.729**

a* 0.706** 0.634** 0.627** 0.524* 0.464*

b* 0.040 ns 0.160 ns 0.046 ns 0.056 ns 0.889**

u* 0.709** 0.608** 0.666** 0.491* 0.569*

v* 0.079 ns 0.239 ns 0.001 ns 0.120 ns 0.798 **

GA 0.771** 0.659** 0.704** 0.501** 0.764**

GGA 0.872** 0.664** 0.774** 0.555* 0.748**

LCC 0.148 ns 0.163 ns 0.076 ns 0.021 ns 0.004 ns

Leaf %N 0.059 ns 0.100 ns 0.014 ns 0.001 ns 0.504*

N/LA 0.037 ns 0.046 ns 0.006 ns 0.014 ns 0.189 ns

C/N 0.085 ns 0.069 ns 0.006 ns 0.009 ns 0.365 ns

δ
13C 0.002 ns 0.353 ns 0.019 ns 0.073 ns 0.001 ns

δ
15N <0.001 ns 0.007 ns 0.005 ns 0.025 ns 0.065 ns

SLA 0.004 ns 0.002 ns 0.026 ns 0.008 ns 0.030 ns

*P < 0.05; **P < 0.001; ns, non-significant.

canopy LAI is less affected in the visible region than in the NIR
region (Casadesus et al., 2007; Elazab et al., 2015).

In the case of the airborne NDVI data, the correlation with
GY was also much lower than with GA taken on individual plots
with GY. In fact, the images from the ADC multispectral camera
have around four-fold less resolution than current digital camera
technology (3.2 vs. 12 MP in our study, respectively). Although
many ADC images were employed to obtain mosaics of the entire
field trials, the resolution obtained at the flight altitude generated
pixels which were mixed between pure vegetation, shadows and
soil components. Such effects were successfully separated in
the imagery collected at the near-canopy level with the RGB
camera due to the higher resolution obtained. Altogether, the
NDVIaerial provides a much lower amount of information than

the GA and other VIs derived from RGB images taken at the plot
level.

In the case of the LCC, it correlated strongly and linearly
with grain yield across fertilization levels (Figure 2). In fact
the leaf chlorophyll meters calculate a spectral ratio of the leaf
transmittance to the near-infrared and red bands and they were
primarily developed to assess N fertilization levels (Fox et al.,
1994; Markwell et al., 1995). LCC indirectly predicts GY when
a wide range of N conditions are considered and this is probably
due to the relationship between chlorophyll content, leaf N and
yield (Argenta et al., 2004).

Concerning the applications in breeding, the determination
coefficients within N levels across genotypic means (Table 4)
support the strength of RGBcanopy indices as phenotyping
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FIGURE 3 | Correlations between leaf nitrogen concentration (%N) and leaf chlorophyll content (LCC), the RGB index a* at the leaf level, the NDVI at

the ground level, and the RGB index v* at the canopy level. R2, determination coefficient; **P < 0.001.

parameters. Thus, these indices were able to indicate the most
efficient genotypes in terms of grain yield within each N
fertilization level, whereas the NDVI performed much worse
as a phenotyping parameter. Although genetic variability in
maize hybrids in response to low N doses is high (Wang et al,
1999; Zaman-Allah et al., 2015) it has been scarcely exploited
by breeding programs since they mainly focus on breeding
for maize performance under favorable conditions (Machado
and Fernandes, 2001). In this sense, the proposed phenotyping
parameters herein, based on the use of RGB images, can
significantly contribute to selection of maize hybrids resilient
to low N as well as being more responsive to increases in N
fertilization. For its part, LCC was unrelated to genotypic GY
variation at any of the N-levels tested (Table 4), and this is
in agreement with previous reports in maize that have noted
LCC as not always being significantly correlated with genotypic
differences in GY (Gallais and Coque, 2005).

Crop Monitoring and Phenotyping
Parameters for Leaf N Assessment
The importance of leaf N concentration for N management and
breeding lies not only in its potential contribution to grain N
(Gallais and Coque, 2005) but is also due to it being a component
of the nitrogen uptake efficiency (Serret et al., 2008). Moreover,
leaf N is an indicator of leaf photosynthetic capacity contributing
to grain yield (Richards, 2000) as well as a key fodder trait
(Van der Wal et al., 2000). Therefore, the estimation of leaf
N concentration within a given N fertilization treatment may

provide valuable information about the genotypic efficiency for
the uptake of N.

Our study highlights the potential of RGB indices for precise
cropNmanagement and for phenotyping genotypic performance
under a wide-range of N conditions. As widely reported, LCC
proved to be a very good indicator of leaf N concentration
across nitrogen fertilization levels, therefore enabling monitoring
of N application (Hirel et al., 2007). However, LCC failed to
be effective as a phenotyping parameter, especially at high N-
fertilization levels (Table 5). In contrast, the RGBleaf indices
demonstrated that they were the best genotypic predictors for
leaf N concentration in the 0 to 80 kg·ha−1 N range. Thus,
RGB indices at the leaf level have the potential to inform
breeding programs about tolerance to N-deficiency stress in
maize. This is a helpful insight because selection experiments
have shown that the maximum genetic advance for low N is
achieved when selecting in suchN conditions (Gallais and Coque,
2005).

By contrast, in the highest N-fertilization level (160 kg ha−1)
the RGBleaf indices and LCC were probably saturated because
they did not correlate with variations in leaf N concentration.
For its part, the NDVIaerial had an irregular trend as it was
significantly correlated to changes in leaf N concentration at
three of the five N fertilization levels (0, 80, and 160 kg ha−1)
and these correlations were especially strong in the high N
levels. As discussed above, besides of some plot variability and
soil exposure, the poorer performance of the NDVIaerial may
be mainly explained by the relatively poor spectral resolution
at the single plot level of the multispectral aerial images. Even
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TABLE 5 | Determination coefficients (R2) of RGB-indices from scanned leaves (RGBleaf), leaf chlorophyll content (LCC), ground NDVI, aerial NDVI, the

nitrogen concentration on a leaf area basis (N/LA), the ratio of carbon to nitrogen (C/N), leaf stable carbon (δ13C) and nitrogen (δ15N) isotopic

composition and specific leaf area (SLA) predicting leaf nitrogen concentration on a dry matter basis separately in the five N fertilization levels (0, 10, 20,

80, and 160kg·ha−1 NH4NO3).

0N 10N 20N 80N 160N

SPECTRAL INDICES

NDVIaerial 0.545* 0.242 ns 0.352 ns 0.755** 0.650**

NDVIground 0.113 ns 0.223 ns 0.285 ns 0.403* 0.057 ns

RGBleaf INDICES

hue 0.081 ns 0.155 ns 0.188 ns 0.094 ns 0.012 ns

a* 0.588* 0.261 ns 0.567* 0.500* 0.149 ns

b* 0.526* 0.489* 0.566* 0.437* 0.265 ns

u* 0.607** 0.171 ns 0.534* 0.507* 0.073 ns

v* 0.581* 0.546* 0.429* 0.316 ns 0.192 ns

GA 0.097 ns 0.013 ns 0.185 ns 0.517* 0.222 ns

GGA 0.261 ns 0.026 ns 0.229 ns 0.359 ns 0.026 ns

LEAF PARAMETERS

LCC 0.587* 0.426* 0.401* 0.168 ns 0.005 ns

N/LA 0.810** 0.127 ns 0.643** 0.496** 0.552**

C/N 0.973** 0.947** 0.918** 0.980** 0.939**

δ
13C 0.318 ns 0.083 ns 0.069 ns 0.158 ns 0.073 ns

δ
15N 0.006 ns 0.004 ns 0.167 ns 0.183 ns 0.295 ns

SLA 0.167 ns 0.069 ns 0.219 ns 0.022 ns 0.121 ns

*P < 0.05; **P < 0.001; ns, non-significant.

so, according to our results this approach seems efficient for its
implementation in aerial platforms.

Use of Leaf Analytical Parameters for Crop
Management and Phenotyping
Besides the leaf N concentration discussed above, other leaf N
parameters like the N concentration on an area basis (N/LA)
and the C/N ratio were strongly associated with GY across
N fertilization levels. In the case of the leaf δ

15N, its value
gradually decreased as the N application rate increased. This
trend is due to the absorption of N from chemical fertilizers
that are highly depleted in 15N, whereas in the low N treatments
plants absorb the N available in the soil, which is usually 15N-
enriched (Bateman et al., 2005; Masuka et al., 2012). However,
the genotypic effect was not significant for δ

15N, which does not
support the use of this isotopic signature for maize phenotyping
under low N stress. These results disagree with previous studies
in wheat where genotypic differences were found under N stress
conditions (Araus et al., 2013).

In agreement with previous studies (Dercon et al., 2006), low
N induced higher δ

13C in maize, whereas it decreased in the
high N fertilization treatments. This pattern of response appears
related to the occurrence of some degree of water stress associated
with a larger transpiring area due to nitrogen fertilization. In
agreement with previous studies in maize, genotypic differences
in leaf δ

13C may be attributed to differences in transpiration
efficiency, but the variation in δ

13C was unrelated to GY within
treatments (Cabrera-Bosquet et al., 2009).

Previous studies noted the relevance of SLA for the
compositional and ecophysiological characterization of plants
(Reich et al., 1998; Nautiyal et al., 2002). Several authors (Poorter
and Evans, 1998; Meziane and Shipley, 2001) have reported
a positive relationship between leaf N and SLA (Table 2). In
turn, changes in SLA may be due to variations in leaf thickness
and/or leaf density (Witkowski and Lamont, 1991). Increasing
leaf density in low N conditions may be attributed to the
increased synthesis of dense tissues such as sclerenchyma and
vascular tissues that are rich in nitrogen-free substances (Garnier
et al., 1997), whereas leaf thickness seems to have a minor
role (Arendonk and Poorter, 1994). However, concerning its
phenotyping use, SLA was shown to be homogeneous among the
studied maize hybrids and unrelated to GY, as well as within a
given N fertilization level, which excludes SLA as a phenotyping
trait.

Regarding the relationship between VIs and the C/N ratio,
most of the RGB indices (at the canopy and leaf levels) and
both NDVI approaches were demonstrated as being even better
correlated to the leaf C/N ratio than to leaf N concentration
(Table S2). This finding may have considerable economic
implications as the C/N ratio informs not only about the crop
N status but also about the aerial biomass quality, including
digestibility and nutritional quality (Van der Wal et al., 2000).
Finally, all VIs and the LCC were better at capturing the
differences in leaf N concentration than the amount of N
concentration per unit leaf area (Table S2), thus avoiding the
effect of leaf thickness or density. This evidence is enhanced by
the weak relationship of the digital and spectral indices to SLA.
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This finding is particularly interesting in the case of LCC (SPAD
readings), which has been previously positively correlated with
leaf thickness and negatively correlated with SLA in other species
(Marenco et al., 2009).

Implications for Breeding and Crop
Management
The tested vegetation indices based on RGB images and to a
lesser extent the NDVI demonstrated a high-throughput for
the accurate prediction of several traits that are highly valuable
for maize breeders and agronomists such as grain yield, leaf N
concentration and the ratio of carbon to nitrogen under a wide
range of N fertilization levels. Proper N fertilization management
may be assisted considerably by using these parameters as
decision criteria controlling the expected production and the
uptake of N by the above-ground biomass. Beyond this, maize
breeding programsmay benefit from these findings through their
application during the characterization of genotypic performance
within N fertilization levels. In this way the selection of the most
efficient genotypes in terms of grain production and/or N uptake
may respond to the needs of low N stress tolerant maize varieties.

Vegetation indices derived from RGB images proved to be
broad-use because they were previously employed satisfactorily
in other crops under biotic and water stress conditions
(Casadesus et al., 2007; Vergara-Diaz et al., 2015). Therefore,
since this technique has proven its efficiency for the evaluation
of plant growth and leaf color, it may be probably applicable
to a wide range of biotic and abiotic stresses and crop species.
Moreover our study also supports the use of this technique
to assess genotypic differences in grain yield under good
agronomical conditions.

Although the performance of the RGB indices (obtained from
JPEG images) worked well in this study, future research may
address the possibility of further improve their accuracy by using
input images saved in a lossless compression format as TIFF or
PNG. Despite of storage inconvenient, their larger capability (16
bit per pixel instead of 8 bit) may maintain higher quality detail
from the visible spectrum. Another important consideration
is the effect of changing light conditions when making these

outdoor measurements. Despite of the good strength and
repeatability of the results (Table S1) fluctuating ambient lighting
should be considered as a possible source of error. Further
research should also be targeted toward implementation and
evaluation of similar RGB phenotyping methods in remotely
piloted aerial platforms (Elazab et al., 2016; Rasmussen et al.,
2016).
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