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As a well-known animal hormone, melatonin (N-acetyl-5-methoxytryptamine) is also
involved in multiple plant biological processes, especially in various stress responses.
Rice is one of the most important crops, and melatonin is taken in by many people
everyday from rice. However, the transcriptional profiling of melatonin-related genes in
rice is largely unknown. In this study, the expression patterns of 11 melatonin related
genes in rice in different periods, tissues, in response to different treatments were
synthetically analyzed using published microarray data. These results suggest that the
melatonin-related genes may play important and dual roles in rice developmental stages.
We highlight the commonly regulation of rice melatonin-related genes by abscisic acid
(ABA), jasmonic acid (JA), various abiotic stresses and pathogen infection, indicating
the possible role of these genes in multiple stress responses and underlying crosstalks
of plant hormones, especially ABA and JA. Taken together, this study may provide
insight into the association among melatonin biosynthesis and catabolic pathway, plant
development and stress responses in rice. The profile analysis identified candidate
genes for further functional characterization in circadian rhythm and specific stress
responses.

Keywords: melatonin, rice, gene expression, circadian rhythm, development, immunity, stress response

INTRODUCTION

Melatonin (N-acetyl-5-methoxytryptamine) was first discovered in the cow’s pineal gland (Lerner
et al., 1958). Dubbels et al. (1995) and Hattori et al. (1995), melatonin was identified in plants by two
research groups. Until now, melatonin has been found in multiple plant species, including alfalfa,
almond, anise, apples,Arabidopsis, banana, beetroot, bermudagrass, black mustard, cabbage, celery,

Abbreviations: 2-ODD, 2-oxoglutarate-dependent dioxygenase; AANAT, arylalkylamine N-acetyltransferase; ABA, abscisic
acid; ASMT, N-aceylserotonin methyltransferase; AXR3, Auxin Resistant 3; BL, indole-3-acetic acid; DAT, days after
transplanting; GA, gibberellic acid; GEO, Gene Expression Omnibus; hpi, hour post inoculation; IAA, indole-3-acetic acid;
JA, jasmonic acid; M2H, melatonin 2-hydroxylase; SNAT, serotonin N-acetyltransferase; T3S, type III secretion system; T5H,
tryptamine 5-hydroxylase; TDC, tryptophan decarboxylase; tZ, trans-zeatin; Xoo, Xanthomonas oryzae pv. oryzae.
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cherry, coriander, cucumber, fennel, fenugreek, flax, green
cardamom, milk thistle, oranges, poppy, potato, rice, sunflower,
tobacco, tomato, white mustard, wolf berry, etc. (Manchester
et al., 2000; Zhao et al., 2013; Shi and Chan, 2014). In addition,
the endogenous melatonin concentration can also be modulated
through genetic transformation in tomato and rice (Okazaki and
Ezura, 2009; Okazaki et al., 2009, 2010; Byeon et al., 2012, 2013,
2014; Byeon and Back, 2014a,b).

To date, the biosynthesis and metabolic pathways of melatonin
in plants have been established (Figure 1). Melatonin in
plants can be synthesized by four sequential enzymes from
tryptophan (Kang et al., 2011), including TDC, T5H, SNAT,
and N-aceylserotonin O-methyltransferase (ASMT) (Arnao and
Hernández-Ruiz, 2014, 2015; Zuo et al., 2014). Thereafter,
melatonin is catabolized by M2H into 2-hydroxymelatonin
(Byeon and Back, 2015). In rice, gene families of TDC, T5H,
SNAT, and ASMT contain 3, 1, 1, and 3 known members,
respectively (Kang et al., 2007; Fujiwara et al., 2010; Kang et al.,
2013; Park et al., 2013a). However, OsASMT3 is barely detectable
in any of the plant organs (Park et al., 2013b). OsM2H genes
belong to 2-ODD family and at least 4 of 2-ODD genes show
M2H activities in rice (Byeon and Back, 2015).

Solid evidence implicates that melatonin is involved in
multiple plant biological processes and various stress responses
(Hardeland, 2015; Zhan et al., 2015), including circadian rhythm
(Kolár and Machácková, 2005; Arnao and Hernández-Ruiz,
2015), delayed senescence of leaves (Byeon et al., 2012; Wang
et al., 2012, 2013a,b), leaf morphology (Okazaki et al., 2010), root
development (Hernández-Ruiz et al., 2005; Pelagio-Flores et al.,
2012; Zhang N. et al., 2014), coleoptile growth (Hernández-Ruiz
et al., 2004, 2005), grain yield (Byeon and Back, 2014a), fruit
ripening (Sun et al., 2015), drought stress (Wang et al., 2013a,
2014; Zhang et al., 2013; Meng et al., 2014; Zuo et al., 2014;
Shi et al., 2015b), salt stress (Wei et al., 2014; Zhang H.J. et al.,

2014; Liang et al., 2015; Shi et al., 2015b), cold stress (Posmyk
et al., 2009a; Arnao and Hernández-Ruiz, 2014; Bajwa et al., 2014;
Shi and Chan, 2014; Turk et al., 2014; Shi et al., 2015b), high
temperature (Tiryaki and Keles, 2012), copper stress (Posmyk
et al., 2008, 2009b), oxidative stress (Park et al., 2013b; Shi
et al., 2015d), cadmium stress (Byeon et al., 2015) and pathogen
infection (Yin et al., 2013; Lee et al., 2014, 2015; Reiter et al., 2015;
Shi et al., 2015a; Zhao et al., 2015).

Melatonin plays protective roles in the regulation of plant
tolerance to abiotic stress and biotic stress (Yin et al., 2013;
Lee et al., 2014, 2015; Zhan et al., 2015). Overexpression of
OsTDC increases endogenous melatonin level and delays leaf
senescence in rice (Kang et al., 2007, 2009; Byeon et al., 2014).
The transcript of OsT5H can be induced by Magnaporthe
grisea infection (Fujiwara et al., 2010). Exogenous application of
serotonin, the penultimate substrate for melatonin biosynthesis,
induces defense gene expression and increases resistance to rice
blast infection (Fujiwara et al., 2010). Transgenic rice plants
ectopically expressing the AANAT regulates cold stress resistance
(Kang et al., 2010), seminal root elongation (Park and Back,
2012), oxidative stress resistance (Park et al., 2013b), and seedling
growth (Byeon and Back, 2014a). The transcript of OsASMT can
be induced by ABA and methyl JA treatments, and OsASMT
overexpressing plants result in higher level of melatonin (Park
et al., 2013b). Exogenous application of melatonin improved
apple resistance to Marssonina apple blotch (Diplocarpon mali)
(Yin et al., 2013), enhanced disease defense against Pseudomonas
syringae DC3000 in Arabidopsis and tobacco (Lee et al., 2014; Shi
et al., 2015a).

Rice is one of the most important crops around the world,
and melatonin is also taken in from rice by many people
everyday. Thus, it is very useful and important to dissect the
distribution and regulation of endogenous melatonin in rice.
Melatonin is widely involved in plant development, multiple

FIGURE 1 | The genes responsible for melatonin synthesis from tryptophan and melatonin degradation in rice.
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abiotic and biotic stress responses in Arabidopsis (Shi and
Chan, 2014), and Bermudagrass (Shi et al., 2015b). However,
transcriptional profiling of rice melatonin synthesis and catabolic
genes has not been systematically carried out. In this study, we
analyzed the expression profiling of 11 rice melatonin synthesis
and catabolic genes in development, various tissues, and in
response to hormone, pathogen infection, drought, salt, and
cold stresses. These results may provide insight into the link
among melatonin biosynthesis and catabolic pathway, plant
development and stress responses in rice. Further functional
characterization of identified candidate genes with potential
involvement in circadian rhythm and stress responses through
overexpressing, knocking down or knocking out will give more
clues to melatonin-mediated signaling as well as underlying
molecular mechanism.

MATERIALS AND METHODS

Plant materials and Growth Conditions
Rice (Oryza sativa L. ssp. japonica cv. Nipponbare) seeds were
sown in germinating boxes. At 30 days after germination, the
seedlings were transplanted in a paddy field under normal
conditions of the cultivation season. Thereafter, 56 DAT, 58 DAT,
and 90 DAT were considered as the stage of panicle initiation,
the early stage of panicle development indicating a complete
reproductive transition, the stages of flowering and early stages of
seed development corresponding to the ripening-stage transition,
respectively.

For hormone treatments, rice seeds were germinated, and
grown hydroponically in a growth chamber at 28◦C under
continuous light. Seven-day old seedlings were transferred in
culture solution containing 50 µM ABA, or 10 µM GA, or 10 µM
IAA, or 1 µM brassinolide (BL), or 1 µM tZ, or 100 µM JA, or
in culture solution without hormone to serve as control (mock
treatment). Samples were collected after 0, 0.25, 0.5, 1, 3, and 6 h
incubation for root, and after 0, 1, 3, 6, and 12 h incubation for
shoot.

Pathogen Infection
Rice (O. sativa cv Nipponbare) plants grown in the greenhouse
for 42 days were inoculated with Xoo T7174R, a wild-type
strain, and 74HrcV::Km, a T3S-defective mutant by the leaf-
clipping method. Plants treated with water were used as
control. Leaf sections (3–5 mm) that included the inoculation
site were collected at 3, 6, and 12 hpi and 1, 2, 4,
6 dpi.

For the blast fungus infection, three lines of rice cultivar
Nipponbare carrying the blast resistance genes (Pia, Pish) were
inoculated with two strains of Magnaporthe oryzae harboring
AVR-Pia and AVR-Pish. Rice seedlings at the 4-leaf stage
were placed in moist chamber and sprayed with a conidial
suspension of M. oryzae (1 × 106 conidia/ml). The seedlings
were incubated in a moist chamber at 25◦C for 24 h under dark
condition, then grown in hydroponic culture under 14 h light
(28◦C) and 10 h dark (24◦C). Leaf samples (4th leaf) from 3
individual experiments were harvested at 1, 2, 3, and 5 days post

inoculation (dpi). Rice seedlings sprayed with water were used as
control.

Development- and Pathogen
Infection-Related Data Analysis
The data of spatio-temporal transcript levels in various tissues
or organs (RXP_0001), leaf and root transcriptional profile
in light (RXP_003 and RXP_007) and dark (RXP_004 and
RXP_008) throughout entire growth in the field, diurnal, and
circadian leaf (RXP_002) and root (RXP_009) transcriptional
profile throughout entire growth, plant hormone profile
(RXP_001 to RXP_012), Xoo-treated profile (RXP_3002), and
M. oryzae-treated profile (RXP_3001) were downloaded from
RiceXPro1 (Sato et al., 2011a,b, 2013). All samples were used
for hybridization using the Agilent one-color (Cy3) microarray-
based gene analysis system. As detailed described in Sato et al.
(2013), all the above data were deposited in GEO through the
following accession numbers: GSE21396, GSE21397, GSE36040,
GSE36042, GSE36043, GSE36044, GSE39423, GSE39424,
GSE39425, GSE39426, GSE39427, GSE39429, and GSE39432.
All the raw data were downloaded and re-analyzed for cluster
analysis of expression profile that shown as normalized data
(log2).

Abiotic Stress-Related Data Analysis
As described in Jain et al. (2007), 7-day-old light-grown rice
seedlings were transferred to control condition and 200 mM
NaCl solution as salt stress for 3 h, were dried on tissue paper
as dehydration stress for 3 h, and were kept at 4◦C as cold stress
for 3 h. Then the seedlings were sampled in triplicate. GEO series
accession no. GPL2025 were used for microarray analysis as Jain
et al. (2007) described. All the normalized data were obtained
from Rice eFP Browser2 (Jain et al., 2007).

Cluster Analysis
The original data from RiceXPro and Rice eFP Browser were
listed in Supplementary Table S1. Hierarchical cluster analysis of
transcriptional profile was performed using CLUSTER program3

(Larkin et al., 2007), and the heatmap was obtained using Java
Treeview4 (Saldanha, 2004) according to the instructions.

RESULTS

The Spatio-Temporal Transcript Levels of
Rice Melatonin Synthesis and Catabolic
Genes in Various Tissues or Organs
To investigate the expression profiles of rice melatonin synthesis
and catabolic genes in various tissues or organs, we analyzed
the expression of these genes using published microarray data
(Sato et al., 2013). Eleven of rice melatonin-related genes have the

1http://ricexpro.dna.affrc.go.jp/
2http://bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi
3http://bonsai.hgc.jp/∼mdehoon/software/cluster/software.htm
4http://jtreeview.sourceforge.net/
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FIGURE 2 | The spatio-temporal transcript levels of rice melatonin synthesis and catabolic genes in various tissues or organs. The transcriptional
expression data were obtained from The Rice Expression Profile Database (RiceXPro) (http://ricexpro.dna.affrc.go.jp/). Rice (O. sativa L. ssp. japonica cv.
Nipponbare) seeds were sown in germinating boxes. At 30 days after germination, the seedlings were transplanted in a paddy field under normal conditions during
the cultivation season. Thereafter, 56 DAT, 58 DAT and 90 DAT were considered as the stage of panicle initiation, the early stage of panicle development indicating a
complete reproductive transition, the stages of flowering and early stages of seed development corresponding to the ripening-stage transition, respectively. In
various tissues or organs at different stages, a total of 48 samples in three replicates were used for hybridization using the Agilent one-color (Cy3) microarray-based
gene analysis system. The cluster analysis of expression profile for each gene in various tissues is shown as normalized data (log2).

corresponding probe sets in the dataset (Figure 1). As shown in
Figure 2, all genes showed different expression pattern in various
tissues, indicating that these genes may play different roles in
plant growth and development. Interestingly, the expression
patterns of melatonin-related genes could be divided into two
groups (Figure 2). One group contained six genes (OsT5H,
Os2-ODD11, −19, −21,−33, and OsTDC1), and most of them
showed high expression levels in endosperm tissues. The other
group contained five genes (OsASMT1, −2, OsTDC2, −3, and
OsSNAT), and most of them showed high expression levels in
leaf blade and leaf sheath tissues. Moreover, Os2-ODD19 showed
high expression level in four time points of anther, while other
four genes (OsTDC1, −3, Os2-ODD11, and OsASMT1) exhibited
lower expression level. Similarly, six genes (Os2-ODD11, −19,
−21,−33, OsTDC1, and OsASMT1) showed high expression level
in five time points of endosperm, while two genes (OsASMT2 and
OsSNAT) with a relative low level of expression. These melatonin-
related genes showed high expression levels in a special tissue
indicated their possible roles of melatonin in special tissue.

Moreover, three genes (Os2-ODD19, −21, and OsTDC2)
showed different expression level in day and night at 9 tissues (leaf
blade-vegetative, leaf blade-reproductive, leaf blade-ripening, leaf
sheath-vegetative, leaf sheath-reproductive, root-vegetative, root-
reproductive, stem-reproductive, and stem-ripening). The results
indicate that Os2-ODD19, −21, and OsTDC2 may play some
roles in circadian rhythm and may be used in further functional
characterization.

Transcriptional Profile of Rice Melatonin
Synthesis and Catabolic Genes
throughout Entire Growth in the Field
In rice leaves at day, the transcript levels of OsTDC3 and
OsASMT2 were increased at vegetative stages, while that of
OsT5H was decreased (Figure 3A). At reproductive stages,
the transcripts of seven genes (OsTDC1, −3, OsASMT1, −2,
Os2-ODD11, −33, and OsSNAT) and two genes (OsTDC2
and Os2-ODD21) showed up-regulation and down-regulation,
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FIGURE 3 | Leaf transcriptional profile of rice melatonin synthesis and catabolic genes in light (A) and dark (B) throughout entire growth in the field.
The transcriptional expression data were obtained from RiceXPro (http://ricexpro.dna.affrc.go.jp/). Rice (Oryza sativa L. ssp. japonica cv. Nipponbare) seeds were
sown in germinating boxes. At 30 days after germination, the seedlings were transplanted in a paddy field under normal conditions during the cultivation season.
Samples corresponding to the uppermost fully expanded leaves were collected every 12:00 PM at weekly intervals from 13 to 125 DAT and every 0:00 AM at weekly
intervals from 14 to 126 DAT. A total of 51 samples at 12:00 PM in three replicates and 34 samples at 0:00 AM in two replicates were used for hybridization using the
Agilent one-color (Cy3) microarray-based gene analysis system. The cluster analysis of expression profile for each gene in various tissues is shown as normalized
data (log2).

respectively (Figure 3A). At ripening stages, the transcripts of
three genes (Os2-ODD11, −33, and OsASMT1) and two genes
(OsTDC2 and Os2-ODD21) showed up-regulation and down-
regulation, respectively (Figure 3A). In the leaves at night,
the transcript of Os2-ODD11 showed up-regulation at all time
points, while the transcripts of OsTDC2 and Os2-ODD19 were
obviously down-regulated (Figure 3B). At vegetative stages, the
transcripts of three genes (OsTDC3, OsT5H, and Os2-ODD11)
and two genes (OsTDC2 and Os2-ODD19) showed up-regulation
and down-regulation, respectively (Figure 3B). At reproductive
stages, the transcripts of four genes (OsTDC3, OsT5H, Os2-
ODD11,−33) and two genes (OsTDC2 and Os2-ODD19) showed
up-regulation and down-regulation, respectively (Figure 3B).
At ripening stages, the transcripts of two genes (Os2-ODD11,
−33) and five genes (OsTDC1, −2, Os2-ODD19, OsSNAT,
and OsASMT2) showed up-regulation and down-regulation,
respectively (Figure 3B).

In rice roots at day, transcript of OsASMT2 increased in
the entire growth stages in the field (Figure 4A). At vegetative
stages, the transcripts of eight genes (Os2-ODD11, −19,−33,
OsTDC1, −2, OsT5H, OsSNAT, and OsASMT2) showed up-
regulation (Figure 4A). At reproductive stages, the transcripts
of two genes (OsASMT1, −2) and four genes (OsTDC1, −3,
Os2-ODD11,−21) showed up-regulation and down-regulation,
respectively (Figure 4A). At ripening stages, the transcripts
of two genes (OsASMT1 and −2) and eight genes (OsTDC1,
−2,−3, Os2-ODD19, −21,−33, OsT5H and OsSNAT) showed
up-regulation and down-regulation, respectively (Figure 4A).
Interestingly, the transcripts of six genes (OsTDC1, −2,
Os2-ODD19,−33, OsT5H, and OsSNAT) were obviously up-
regulated at vegetative stages, but down-regulated at ripening
stages (Figure 4A). In the roots at night, transcript of Os2-
ODD21 decreased throughout entire growth stages in the field
(Figure 4B). At vegetative stages, the transcripts of six genes
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FIGURE 4 | Root transcriptional profile of rice melatonin synthesis and catabolic genes in light (A) and dark (B) throughout entire growth in the field.
The transcriptional expression data were obtained from RiceXPro (http://ricexpro.dna.affrc.go.jp/). Rice (O. sativa L. ssp. japonica cv. Nipponbare) seeds were sown
in germinating boxes. At 30 days after germination, the seedlings were transplanted in a paddy field under normal conditions during the cultivation season. Root
samples at various growth stages encompassing the vegetative, reproductive, and ripening stages were collected every 12:00 PM at weekly intervals from 13 to 104
DAT and every 0:00 AM at weekly intervals from 14 to 105 DAT. The cluster analysis of expression profile for each gene in various tissues is shown as normalized
data (log2).

(OsTDC1, −2, OsT5H, OsSNAT, Os2-ODD33, and OsASMT2)
and two genes (Os2-ODD11, −21) showed up-regulation and
down-regulation, respectively (Figure 4B). Additionally, the
transcripts of two genes (OsTDC3 and Os2-ODD21) and five
genes (Os2-ODD11, −21,−33, OsTDC2, and OsT5H) showed
down-regulation at reproductive and ripening stages, respectively
(Figure 4B). The transcripts of three genes (OsTDC2, OsT5H,
and Os2-ODD33) showed up-regulation at vegetative stages, but
down-regulation at ripening stages (Figure 4B).

Some genes shared similar expression patterns at day and
night at the same stage (Figures 3 and 4). The transcripts of
Os2-ODD11 and -33 showed up-regulation at reproductive and
ripening stages in leaves, the transcripts of six genes (OsTDC1,
−2, OsT5H, OsSNAT, OsASMT2, and Os2-ODD33) showed up-
regulation at vegetative stages in roots, the transcripts of OsTDC1
and Os2-ODD21 shared down-regulation at reproductive and
ripening stages of roots. However, there were also some genes

shared different expression patterns. For example, the transcript
of OsT5H shared down-regulation in day at vegetative stages
in leaves, but showed up-regulation in night. Moreover, some
genes also shared similar expression patterns in different tissues
at the same stage. At day, the transcripts of OsASMT2 and
OsASMT1 showed up-regulation at vegetative and ripening stages
in leaves and roots, respectively, while the transcript of Os2-
ODD21 shared down-regulation at reproductive and ripening
stages. On the contrary, some genes shared different expression
patterns in different tissues at the same stage. The transcripts
of OsT5H showed down-regulation in day at vegetative stages
in leaves, but showed up-regulation in roots. The transcripts of
Os2-ODD11 and Os2-ODD33 showed up-regulation at ripening
stages of leaves, but showed down-regulation at roots. These
results suggest that the melatonin-related genes as well as
endogenous melatonin may play important and dual roles in rice
developmental stages.
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Diurnal and Circadian Transcriptional
Profile of Rice Melatonin Synthesis and
Catabolic Genes throughout Entire
Growth
As shown in Figure 5A, Os2-ODD11 expression was induced
throughout entire growth stages, and the transcripts of four
genes (OsASMT1,−2 OsTDC1 and Os2-ODD33) were induced at
most time points of growth stages, while those of Os2-ODD19
and Os2-ODD21 were intermittent. Before reproductive 1 stage,
Os2-ODD21 showed significant induction at night. On the
contrary, Os2-ODD19 was obviously down-regulated. This result
suggested that Os2-ODD19 and Os2-ODD21 may play dual and

important roles in the regulation of circadian rhythm. Moreover,
the transcripts of four genes (Os2-ODD11, −33, OsASMT1,
and −2) and two genes (OsASMT1 and Os2-ODD11) displayed
significant up-regulation at four stages (vegetative 3, vegetative-
reproductive, reproductive 1, and reproductive-ripening stages)
and two stages (ripening 1 and 2 stages), respectively. However,
OsTDC2, OsTDC3, and OsSNAT expressions were repressed
during ripening 1 and 2 stages. Additionally, the transcripts
of most genes were induced during reproductive 1 and
reproductive-ripening stages. At the last two stages (ripening 1
and 2 stages), most of genes were obviously down-regulated.
Interestingly, the transcripts of five genes (OsTDC2, −3, OsT5H,
OsSNAT, andOsASMT2) were induced during reproductive 1 and

FIGURE 5 | Diurnal and circadian leaf transcriptional profile of rice melatonin synthesis and catabolic genes throughout entire growth as shown by
heatmap (A) and line chart (B). The transcriptional expression data were obtained from RiceXPro (http://ricexpro.dna.affrc.go.jp/). Rice (O. sativa L. ssp. japonica
cv. Nipponbare) seeds were sown in germinating boxes. Gene expression profile of rice plants grown under natural field conditions based on microarray analysis of
leaf samples at various growth stages encompassing the vegetative, reproductive and ripening stages. Samples corresponding to the uppermost fully expanded
leaves were collected in a 48-h period at 2-h intervals at eight different growth stages. The cluster analysis and normalized signal of expression profile for each gene
in various tissues is shown as normalized data (log2).
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reproductive-ripening stages, but exhibited down-regulation at
ripening 1 and 2 stages. As shown in Figure 5B, the expression of
Os2-ODD19 and Os2-ODD21 displayed obviously regular change
throughout entire growth.

In roots, the transcript of Os2-ODD11 was up-regulated at all
time-points, while those of OsTDC3, Os2-ODD21, and OsTDC2
were down-regulated (Figure 6). The transcriptional profile of
Os2-ODD19 was intermittent, which was consistent with the
result in leaves. During 15–17 DAT, the expressions of Os2-
ODD21, OsTDC2, and OsASMT2 were repressed. The transcript
of Os2-ODD11 was significantly induced during 43–45 DAT,
whereas the transcripts of OsTDC1, −2, −3, OsT5H, and Os2-
ODD21 were repressed.

The Transcriptional Profile of Rice
Melatonin Synthesis and Catabolic
Genes in Response to Plant Hormones
In response to ABA and JA treatments, the transcripts of
OsT5H, OsTDC2, −3, and Os2-ODD19 displayed significantly
up-regulation in root or shoot (Figure 7). The transcript of
Os2-ODD11 was significant up-regulated after IAA, BL, and JA
treatments in root, but was strongly down-regulated after IAA,
BL, and tZ treatments in shoot. The transcripts of OsTDC1 and
OsASMT1 showed up-regulation after ABA, GA3, IAA, BL, and
tZ treatments in shoot, while OsTDC3 expression was induced
after ABA, IAA, BL, tZ, and JA treatments in shoot (Figure 7).

Generally, melatonin-related genes showed different
expression profiles in root or shoot tissues for the same
treatment (Figure 7). The transcripts of OsTDC1, -3, Os2-
ODD33, and OsASMT1 were up-regulated in the shoots, but
were not significantly regulated or down-regulated in the roots
after ABA and tZ treatments. The expression of Os2-ODD11
was increased in roots, but was decreased in shoots after ABA
and BL treatments. Although some melatonin-related genes
were from the same family, they exhibited different responses
to plant hormones treatments, such as OsTDC2 and OsTDC3
in roots, Os2-ODD11 and Os2-ODD21 in roots, OsASMT1
and OsASMT2 in shoots. Thus, the transcriptional response of
melatonin-related genes to plant hormones treatments in roots
and shoots may provide new insight into crosstalk between
melatonin and plant hormones, as well as mechanism underlying
melatonin-mediated signaling in rice.

Gene Expression Profile in Whole Leaf of
Rice Melatonin Synthesis and Catabolic
Genes Inoculated with Pathogen
Infection
Because melatonin plays important roles in response to pathogen
infection (Yin et al., 2013; Lee et al., 2014, 2015; Reiter et al.,
2015; Shi et al., 2015a; Zhao et al., 2015), so we analyzed the
expression profile of rice melatonin synthesis and catabolic genes
in response to pathogen inoculation to identify the candidate
genes for further analysis.

After inoculation with Xoo, OsASMT2 expression was induced
during almost all the time-points, while OsASMT1 transcript was
decreased at these time points (Figure 8). The transcripts of

OsT5H and Os2-ODD19 were induced during 1 to 6 dpi and 6
to 12 hpi, respectively (Figure 8). OsTDC1, −2, −3, Os2-ODD11,
−21,−33, and OsSNAT, expressions were decreased during all
the treated time points (Figure 8). Interestingly, the transcripts
of OsASMT1 and OsASMT2 were increased after 6 dpi of wild-
type strain T7114R, but were decreased after 6 dpi of 1ahrcV(III)
strain. T3S is essential for XooT7174R conferred plant disease,
and 1ahrcV(III) resulted in less plant disease in rice leaves (Sato
et al., 2011b, 2013). Thus, the results indicate the possible role of
OsASMT1 and OsASMT2 in immune response to Xoo.

After inoculation with the blast fungus (M. oryzae), the
transcript levels of three genes (OsT5H, OsASMT1, and Os2-
ODD11) showed up-regulation at most treated time points,
while those of four genes (OsTDC1, −3, OsSNAT, and
Os2-ODD21) showed down-regulation (Supplementary Figure
S1). In response to inoculation with the three strains of
M. oryzae harboring AVR-Pia and AVR-Pish (Pia/Pish × P91-
15B, Pish × P91-15B, and Pish × Kyu77-07A), the transcript
levels of OsASMT1, Os2-ODD11, −19, −33, and OsT5H showed
significant up-regulation, while those of OsTDC3, OsSNAT, and
Os2-ODD21 were seriously down-regulated at all time points
(Supplementary Figure S1). OsASMT2 expression showed
no obvious trends in response to inoculation with the two
former, while was induced at all the treated time-points after
inoculation with Pish × Kyu77-07A strain (Supplementary
Figure S1). In response to inoculation with the pish mutant
of M. oryzae (1Pish × Kyu77-07A), the expressions of six
genes (OsTDC1, OsT5H, OsASMT1, −2, Os2-ODD11, and 19)
were significantly induced at all time points, while four genes
(OsTDC2, −3, OsSNAT, and Os2-ODD33) were seriously down-
regulated (Supplementary Figure S1). Os2-ODD21 expression
was strongly repressed at 2 dpi. Notably, Os2-ODD33 expression
was induced at all the treated time-points after inoculation
with the three strains of M. oryzae harboring AVR-Pia and
AVR-Pish, but was repressed in response to inoculation with
1Pish × Kyu77-07A strain (Supplementary Figure S1).

The Transcriptional Profile of Rice
Melatonin Synthesis and Catabolic
Genes in Response to Abiotic Stress
Treatments
Melatonin is widely involved in plant stress responses (Shi
et al., 2015b,d). Thus, investigation of the expression profiles of
melatonin-related genes of rice in response to various abiotic
stresses is needed. After drought treatment, the transcripts of
OsTDC1, OsASMT1, and Os2-ODD19 were found to be up-
regulated between 1.2 and 1.8-folds, whereas those of OsTDC2,
−3, Os2-ODD11, −21, OsT5H, and OsSNAT were strongly
repressed in comparison to the control (Figure 9). After salt
treatment, the transcripts of OsTDC1, −3, OsASMT1, and
Os2-ODD19 were increased between 1.3 and 4.5-fold, whereas
NaCl strongly repressed OsTDC2, OsT5H, OsSNAT, and Os2-
ODD11 expressions (Figure 9). After 4◦C treatment, OsTDC1
and OsASMT1 transcript levels were slightly increased, whereas
the expressions of six genes (Os2-ODD11, −19, −21, OsTDC3,
OsT5H, and OsSNAT) were obviously down-regulated (Figure 9).
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FIGURE 6 | Diurnal and circadian root transcriptional profile of rice melatonin synthesis and catabolic genes throughout entire growth. The
transcriptional expression data were obtained from RiceXPro (http://ricexpro.dna.affrc.go.jp/). Rice (O. sativa L. ssp. japonica cv. Nipponbare) seeds were sown in
germinating boxes. Root samples corresponding were collected in a 48-h period at 2-h intervals at two different growth stages. The cluster analysis of expression
profile for each gene in various tissues is shown as normalized data (log2).

FIGURE 7 | The transcriptional profile of rice melatonin synthesis and catabolic genes in root (A) and shoot (B) in response to plant hormones. The
transcriptional expression data were obtained from RiceXPro (http://ricexpro.dna.affrc.go.jp/). The cluster analysis of expression profile for each gene in various
tissues is shown as normalized data (log2) in relative to the 0 h of treatment which was set as 0.
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FIGURE 8 | Gene expression profile in whole leaf of rice melatonin synthesis and catabolic genes inoculated with Xoo, the causal agent of bacterial
blight disease. The transcriptional expression data were obtained from RiceXPro (http://ricexpro.dna.affrc.go.jp/). Rice leaves inoculated with T7114R, a wild-type
strain, or 74HrcV::Km, ahrcV mutant deficient in type III secretion (T3S) system, were harvested at 3 hpi, 6 hpi, 12 hpi, 1 dpi, 2 dpi, 4 dpi, and 6 dpi. The expression
profile for each gene in various tissues is shown as normalized data (log2).

Notably, the transcript of OsTDC3 was significantly increased
after salt treatment, but was seriously decreased in response to
drought and cold treatments (Figure 9). The result indicated that
OsTDC1 and OsTDC3 may be involved in salt stress response.

DISCUSSION

To our knowledge, this is the first study systematically analyzed
the diurnal and circadian transcriptional profile of melatonin

synthesis and catabolic genes throughout the entire growth
stages in rice. Our study confirmed that OsTDCs showed higher
expression level at reproductive 1 and reproductive ripening
stages then other stages (Figure 5). In cherry fruit (Prunus
avium), the expression level of PaTDC was positively correlated
to melatonin concentration throughout the entire period, and
showed regularly circadian rhythm during a 24 h period with
two peaks at 5:00 and 14:00 (Zhao et al., 2013), indicating that
the melatonin concentration was higher in that two stages then
others. The expression pattern of OsTDC3 also showed circadian
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FIGURE 9 | The transcriptional profile of rice melatonin synthesis and catabolic genes in response to abiotic stress treatments. The transcriptional
expression data were obtained from Rice eFP Browser (http://bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi).

rhythm on 16 DAT (Figure 6). Similarly, this expression pattern
was also existed at Os2-ODD19 during the entire development
(Figure 5). These results suggested thatOsTDC3 andOs2-ODD19
may be involved in modulating endogenous during the entire
development in rice.

Melatonin is widely involved in plant growth and
development, as well as stress responses (Bajwa et al., 2014;
Meng et al., 2014; Wang et al., 2014; Zuo et al., 2014; Liang
et al., 2015; Shi et al., 2015b). In apple (Malus prunifolia), the
transcripts of melatonin synthesis genes (MdTDC1, MdAANAT2,
MdT5H4, and MdASMT1) was induced after drought treatment
(Li et al., 2014). The concentration of melatonin was increased
in barley roots and lupin after cold, drought and salt treatments
(Arnao and Hernández-Ruiz, 2009, 2013). Consistently, OsTDC1
and OsASMT1 transcript levels were increased after drought,
salt and cold treatments (Figure 9), indicating their possible
involvement in abiotic stress response.

Recently, melatonin was shown to function as positive
modulator against plant pathogen infection (Yin et al., 2013;
Lee et al., 2014, 2015; Reiter et al., 2015; Shi et al., 2015a;
Zhao et al., 2015). Exogenous application of melatonin improved
apple resistance to D. mali, the pathogen of Marssonina
apple blotch (Yin et al., 2013), enhanced Arabidopsis and
tobacco defense against P. syringae pv. tomato DC3000 (Lee
et al., 2014). Moreover, Arabidopsis snat knockout mutants
exhibited increased susceptibility to the avirulent pathogen
P. syringae pv. tomato DC3000 with decreased SA levels and
reduced defense genes expression compared with wild-type (Lee
et al., 2015). However, whether OsSNAT also involves in the

regulation of plant immunity remains unknown. Treatments
with melatonin significantly enhanced antioxidant protection in
rice, suggesting that melatonin plays a major role in regulating
pathogen infection (Liang et al., 2015). In response to bacterial
pathogen infection, some genes showed similar expression
profiles (Figure 8). The differential response of melatonin-
related genes to pathogen infection in different kinds implied the
dual mechanisms underlying melatonin-related genes mediated
pathogens responses.

Previous studies have revealed that melatonin had significant
effect in regulating ABA and GA4 in plant response to
salinity and drought stress (Li et al., 2014; Zhang H.J. et al.,
2014). Additionally, melatonin shared the common substrate
(tryptophan) with IAA (Arnao and Hernández-Ruiz, 2014), and
AXR3/IAA17 is involved in Arabidopsis melatonin signaling
underlying senescence (Shi et al., 2015c). Thus, genome-wide
expression analysis of melatonin-related genes in response to
plant hormones may provide new insight into crosstalk between
melatonin and plant hormones. Plant hormones, such as ABA,
SA, and GA, related with most of the plant physiological
responses, including water logging, drought and salt stress
responses (Yang et al., 2004; Kim et al., 2011, 2014; Shimamura
et al., 2014). Melatonin is also a regulator of ABA and GA4 in
plant response to salinity and drought stress (Li et al., 2014;
Zhang H.J. et al., 2014). Moreover, the expression of OsASMT2
and OsASMT3 were induced after ABA and JA treatments at
1-month-old detached rice leaves, while were down-regulated
in response to ethephone, zeatin, and SA stress. OsASMT1 also
showed up-regulation upon ABA and JA stress treatment, but
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did not display obvious trends during ethephone, zeatin, and SA
treatments (Park et al., 2013a). In this study, the transcripts of
four genes (Os2-ODD11,−19, OsASMT2, and OsT5H) and five
genes (OsASMT1, −2, OsT5H, Os2-ODD19, and OsTDC3) were
increased in response to ABA stress during 3 h to 6 h treatment
in root and during 3 to 12 h in shoot, respectively. Under JA
stress, the transcripts of three genes (OsASMT2, OsT5H, and Os2-
ODD11) and three genes (OsASMT1, −2, and Os2-ODD11) were
significantly increased during 0.25 to 6 h in root and 3 h to 12 h
in shoot, respectively. Thus, different transcriptional responses of
melatonin-related genes in hormone specific manners, suggested
the dual role and crosstalk between melatonin and various
hormones.

It is widely known that ABA is the most important regulator
of abiotic stress (Kim et al., 2011, 2014; Shimamura et al.,
2014), and JA serves as the major defense hormone that are
associated with pathogen infection (Van der Ent et al., 2009;
Ballaré, 2011; Xie et al., 2011; Yamada et al., 2012; Yang et al.,
2013; Campos et al., 2014). More recently, the crucial role of ABA
in virulence of rice blast fungus M. oryzae is confirmed (Spence
et al., 2015), the involvement of JA in abiotic stress response is
also largely confirmed (Riemann et al., 2015; Wasternack and
Strnad, 2016). We highlight the commonly regulation of rice
melatonin-related genes by ABA, JA, pathogen infection and
various abiotic stresses (Figures 7–9), indicating the possible
role of these genes in multiple stress responses and underlying
crosstalks of plant hormones, especially ABA and JA. Weeda
et al. (2014) identified 1308 differentially expressed genes (566
up-regulated genes and 742 down-regulated genes) exhibiting at
least of twofold change by exogenous melatonin treatment in
Arabidopsis, and many of them are enriched in plant hormone
signaling. These differentially expressed genes include 52 genes
in auxin signaling, 50 genes in ABA signaling, 67 genes in JA
pathway, and 42 genes in ET pathway. Our studies together with
the data of Weeda et al. (2014) further indicate the interaction
among melatonin, ABA and JA pathways.

We have to pointed out the possible limitation of this
study, since the different changes in expression levels
of the various genes do not always explain in a simple
way why melatonin concentrations increase or decrease
under the different conditions. On one hand, there may be
difference between expression level and enzyme activity,
such as the posttranslational regulation of AANAT in
primates via phosphorylation/dephosphorylation and
association/dissociation of a 14-3-3 protein, which is decisive for
the melatonin rhythm in those organisms (Ganguly et al., 2001,
2005). On the other hand, incomplete knowledge of rate-limiting
enzymes or isoenzymes may also lead to the difference. Further
studies by other methods may give more clues.

Taken together, the expression patterns of 11 melatonin
related genes from rice were synthetically analyzed at different
periods and after different treatments in this study. These
information may provide abundant resources for functional
characterization of melatonin related genes. The differential
expression patterns of melatonin related genes in different
tissues throughout entire growth stages and stress responses
will be useful to investigate in vivo role of specific gene in

rice development and circadian rhythm. Thus, this study will
contribute to better understand the melatonin biosynthesis
and catabolic pathway as well as their association with
development and stress responses in rice. Further functional
analysis of identified candidate genes with potential involvement
in circadian rhythm and stress responses will give shed more
lights in melatonin-mediated signaling as well as underlying
molecular mechanism.
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TABLE S1 | The detailed data used for Figures 3–7 and Figure 9. The original
data were obtained from RiceXPro (http://ricexpro.dna.affrc.go.jp/) and Rice eFP
Browser (http://bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi).

FIGURE S1 | Gene expression profile in whole leaf of rice melatonin
synthetic and degradated genes inoculated with the blast fungus,
M. oryzae. The transcriptional expression data were obtained from RiceXPro
(http://ricexpro.dna.affrc.go.jp/). Three lines of rice cultivar Nipponbare carrying
the blast resistance genes (Pia, Pish) were inoculated with two strains of M. oryzae
harboring AVR-Pia and AVR-Pish. Rice seedlings at the 4-leaf stage were
inoculated with the conidial suspension of M. oryzae and the leaves were
harvested at 1, 2, 3, and 5 dpi. The expression profile for each gene in various
tissues is shown as normalized data (log2).
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