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One of the major limitations to plant growth and yield in acidic soils is the prevalence
of soluble aluminum ions (Al3+) in the soil solution, which can irreversible damage the
root apex cells. Nonetheless, many Al-tolerant species overcome Al toxicity and are
well-adapted to acidic soils, being able to complete their life cycle under such stressful
conditions. At this point, the complex physiological and biochemical processes inherent
to Al tolerance remain unclear, especially in what concerns the behavior of antioxidant
enzymes and stress indicators at early plant development. Since rye (Secale cereale
L.), is considered the most Al-tolerant cereal, in this study we resort to seedlings
of two genotypes with different Al sensitivities in order to evaluate their oxidative
metabolism after short term Al exposure. Al-induced toxicity and antioxidant responses
were dependent on rye genotype, organ and exposure period. Al affected biomass
production and membrane integrity in roots and leaves of the sensitive (RioDeva)
genotype. Catalase was the primary enzyme involved in H2O2 detoxification in the
tolerant (Beira) genotype, while in RioDeva this task was mainly performed by GPX and
POX. Evaluation of the enzymatic and non-enzymatic components of the ascorbate–
glutathione cycle, as well the oxalate content, revealed that Beira genotype coped
with Al stress by converting DHA into oxalate and tartarate, which posteriorly may
bind to Al forming non-toxic chelates. In contrast, RioDeva genotype used a much
more ineffective strategy which passed through ascorbate regeneration. So, remarkable
differences between MDHAR and DHAR activities appear to be the key for a higher Al
tolerance.

Keywords: aluminum, Secale cereale L., oxidative metabolism, ascorbate–glutathione cycle, Al short-term
exposure, antioxidant response

Frontiers in Plant Science | www.frontiersin.org 1 May 2016 | Volume 7 | Article 685

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.00685
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2016.00685
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.00685&domain=pdf&date_stamp=2016-05-24
http://journal.frontiersin.org/article/10.3389/fpls.2016.00685/abstract
http://loop.frontiersin.org/people/332407/overview
http://loop.frontiersin.org/people/298023/overview
http://loop.frontiersin.org/people/227280/overview
http://loop.frontiersin.org/people/348236/overview
http://loop.frontiersin.org/people/173238/overview
http://loop.frontiersin.org/people/298242/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00685 May 21, 2016 Time: 13:40 # 2

de Sousa et al. Oxidative Metabolism under Al Short Exposure

HIGHLIGHT

At early development stages the underling physiological
and biochemical mechanisms to tolerate Al passes through
modulation of ascorbate–glutathione enzymes, essentially
MDHAR and DHAR in a genotype-dependent manner.

INTRODUCTION

Approximately 30–40% of the world’s potentially arable lands
are acidic soils, on which Al is the main factor that limits
plant growth and crop production (Kochian et al., 2004). Soils
acidification worldwide results from natural and anthropogenic
inputs. When soil pH is below 5.0, the phytotoxic ion Al3+ is
released into the soil solution resulting in both impaired root
growth and early seedling development (Sasaki et al., 2002).
Diverse management strategies were used by seed companies and
farmers’ associations over the last decades to increase soil pH
and reduce Al toxicity. Direct application of lime was the most
common method employed. However, disadvantages inherited to
this method prompted producers to seek a viable and sustainable
solution for this problem (Cassiolato et al., 2000). Observing
that some plant species exhibited natural tolerance to Al toxicity
in fields, producers started to ask for the development of new
crop varieties with similar characteristics that would allow them
to direct future agricultural expansion onto acid soils. Since a
great inter- and intraspecific variability has been observed for Al
tolerance, several efforts are in progress in order to identify major
genes and associated biochemical and physiological processes
underlying Al resistance in Al-tolerant genotypes. This will
provide important resources for further improvement of crop
resistance for Al toxicity trough breeding programs. Thus, it is
crucial to thoroughly exploit tolerance mechanisms that operate
in early stages of seedling development of Al-tolerant genotypes
that lately are able to complete their life cycle under Al stress
conditions. Rye (Secale cereale) is considered the most Al-
tolerant species among Triticeae, but research concerning rye’s Al
tolerance is extremely limited (Aniol and Gustafson, 1984; Ryan
et al., 2011). Uncovering the genetic, molecular and physiological
mechanisms involved in rye Al tolerance will provide vital
information that can be used to increase Al tolerance in other
cereals, such as wheat and Triticale.

Several mechanisms involved in the external and/ or internal
Al tolerance have been proposed (Huang et al., 2009; Brunner and
Sperisen, 2013). However, root exudation of organic acids under
Al stress seems to play a central role in Al detoxification in several
plant species or cultivars, since they can form stable, non-toxic
complexes with Al3+ at the rizhosphere. In fact, several genes
controlling this trait were identified among cereals, including
rye (Ma et al., 2001; Hede et al., 2002; Fontecha et al., 2007;

Abbreviation: Al, aluminum; APX, ascorbate peroxidase; ASC, ascorbate; CAT,
catalase; Cys, cysteine; DHAR, dehydroascorbate reductase; EL, electrolyte
leakage; Glu, glutamate; Gly, glycine; GPX, guaiacol peroxidase; GR, gluthatione
reductase; GSH, glutathione; H2O2, hydrogen peroxide; LOX, lipoxygenase; MDA,
malondialdehyde; MDHAR, monodehydroascorbate reductase; POX, phenol
peroxidase; Ser, serine; TAC, total antioxidant capacity.

Yokosho et al., 2010; Ryan et al., 2011). Organic acids, namely
oxalic acid have also been implicated in internal Al3+ tolerance
once it has entered into root and shoot symplast (Brunner and
Sperisen, 2013). Al detoxification is achieved by complexation
with oxalate in a 1:1, 1:2, or 1:3 molar ratios, followed by
sequestration into vacuoles (Ma, 2000). It’s a well-known fact
that plant exposure to environmental stresses, including metal
toxicity, leads to the formation of peroxides and free radicals that
cause damage to proteins, lipids and carbohydrates (Sharma et al.,
2012). There has been increasing evidence that Al affects ROS
homeostasis in several plant species. Al triggered ROS production
in potato (Tabaldi et al., 2009), rice (Kuo and Kao, 2003),
soybean (Cakmak and Horst, 1991), and tobacco (Yamamoto
et al., 2002) leading to membrane lipid peroxidation (LP) and
consequently, to highly toxic lipid peroxy radicals (Yin et al.,
2010). Cell membranes are major targets of Al toxicity in many
Al-sensitive species. Al binds to phospholipids and proteins of the
plasma membrane altering membrane permeability, fluidity and
electrochemical potential. Also, Al interacts with cation channels
indirectly suppressing H+-ATPase activity (Zhang and Taylor,
1991; Matsumoto, 2000; Horst et al., 2010). In maize, rather
than LP, Al stress resulted in protein oxidation (Boscolo et al.,
2003). Therefore, Al-induced inhibition of root growth may be
related to oxidative stress and changes in cell wall biomechanical
properties (Yamamoto et al., 2003). To cope with additional ROS-
generating mechanisms, plants developed an efficient enzymatic
and non-enzymatic antioxidant defense system which controls
the cascades of oxidation and protects plant cells from oxidative
damage by scavenging ROS (Sharma et al., 2012). Superoxide
dismutase (SOD) is a key antioxidant enzyme considered to
be the first line of defense against oxidative stress, since it
catalyzes the dismutation of superoxide anion (O2

•−) into
H2O2 and oxygen (O2). H2O2 is then reduced to water (H2O)
by CAT, APX, GPX, and other POX (Sharma et al., 2012).
Ascorbate, carotenoids, flavonoids, gluthatione, phenols, proline,
and tocopherols represent the non-enzymatic metabolites of the
antioxidant defense system (Sharma et al., 2012). Ascorbate,
gluthatione, and proline are powerful antioxidants since they
can directly scavenge reactive oxygen species (ROS) like singlet
oxygen (1O2) and hydroxyl radicals (HO•−; Foyer and Noctor,
2011; Xu et al., 2012). Ascorbate and gluthatione also serve
as electron donors for key enzymes such as APX and GPX
and are involved in several physiological mechanisms like cell
division and expansion (Noctor et al., 2012). Besides APX, other
enzymes involved in the ascorbate–glutathione cycle (ASC-GLU,
MDHAR, DHAR, GR) also play an important role in oxidative
stress management (Sharma et al., 2012).

However, until now it remains unclear how Al affects cellular
redox homeostasis of rye seedlings after short-term exposure and
what molecular mechanisms differ between tolerant and sensitive
genotypes. In this work analyses were performed that unravel the
physiological and biochemical basis of Al toxicity and tolerance
in rye genotypes with emphasis on the antioxidant metabolism.
The results allow us to understand how rye genotypes are capable
of modulating their metabolic and physiological responses in
order to cope with Al stress in early development stages. We also
observed that metabolic modifications are organ specific within
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each genotype, and how it reflected on different morphological
characteristics.

MATERIALS AND METHODS

Rye Lines and Experimental Setup
Seeds of two rye genotypes, an Al-tolerant cultivar, Beira
(Portuguese Regional Cultivar), and an Al-sensitive, RioDeva
(Spanish inbreed line), were kindly provided by University
of Trás-os-Montes e Alto Douro (UTAD/Vila Real/Portugal).
Surface-sterilized seeds [sodium hypochlorite 5% (w/v), 10 min]
were rinsed in sterile deionized water and germinated in the
dark at 25◦C in Petri dishes. Seedlings were hydroponically
cultured in a modified Hoagland’s solution containing: CaCl2
22.20 g L−1, KNO3 32.86 g L−1, MgCl2.6H2O 25.41 g L−1,
(NH4)2SO4 0.66 g L−1, NH4NO3 1.60 g L−1 and maintained
at 25◦C under a 16/8 h photoperiod with a photosynthetically
active radiation (PAR) of 60 µmol m−2 s−1. After 48 h roots
and leaves were collected (0 h; 0 mg L−1) and the remaining
seedlings were transferred to a new nutritive solution with the
same mineral composition described above, supplemented with
5 mg L−1 of Al3+ in the form of AlCl3.6H2O. Samples of roots
and leaves were collected 24 and 48 h after exposure to the Al
treatment. Again, the remaining seedlings were transferred to
a new nutritive solution without Al (recovery treatment) and
samples were collected 48 h later (96 h; 0 mg L−1). Biomass
production of rye seedlings was determined as fresh weight for
each experimental condition. Root length was determined after
the recovery period. The nutrient solution was continuously
aerated and the pH was maintained at 4.0 throughout the
assays. All samples were immediately frozen in liquid nitrogen
and grinded to a fine powder and finally stored at −80◦C for
biochemical analyzes. Negative controls of selected parameters
were performed in a second group of plants grown on the same
conditions stated before, but without Al in order to differentiate
between Al toxicity effects and development effects.

Al Tolerance Screening Tests
The Al tolerance screening test was performed by a modified-
pulse method (Aniol and Gustafson, 1984). After the recovery
treatment, seedlings were washed 3 min with running distilled
water and stained with 0.1% (w/v) Eriochrome cyanine R for
10 min. This dye forms a stable bluish complex with Al. Excess
dye was washed from rye roots and seedlings were transferred to
Al- free nutrient solution for 48 h. Al tolerance was measured as
root regrowth of seedlings.

Oxidative Stress Parameters
Lipid peroxidation was determined according to Murshed et al.
(2008). Briefly, 100 mg of frozen tissue were homogenized
(MagNALyser, Roche, Vilvoorde, Belgium; 1 min, 7000 rpm)
in 1 mL of 80% (v/v) ethanol. After centrifugation (12, 000 g,
15 min) 0.5 mL of the supernatant was added to 1 mL of 0.5%
(w/v) TBA in 20% (w/v) TCA. The samples were incubated
at 95◦C for 30 min, and the reaction stopped by placing the
reaction tubes in an ice bath (10 min) followed by a centrifugation

for 2 min at 10, 000 g. Absorbance was measured at 450, 532,
and 600 nm in a microplate reader. TBARS equivalents were
calculated by the following formula: [6.45 x (Abs532-Abs600) -
0.56 x Abs450] and expressed as nmol MDA g−1 FW. EL was
measured according to the method of Lutts et al. (1996). Seedlings
were washed several times with deionized water and, after drying,
tissue samples were immersed in 10 mL of deionized water
and incubated at 25◦C in a rotary shaker (100 rpm). Electrical
conductivity of the bathing solution (T1) was recorded after
24 h. Samples were immediately autoclaved at 120◦C for 20 min
and a last conductivity reading (T2) was obtained when the
solutions reached 25◦C. EL was expressed following the formula:
[I (%)= [1-(1-T1-T2) / (1-(C1-C2))] x 100], where C corresponds
to the control situations and T to the treated samples. An Amplex
Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes,
Eugene, OR, USA) was used to measure H2O2 production.

Scavenging Activity of Hydrogen
Peroxide (H2O2)
Scavenging activity of H2O2 was determined according to
Ngonda (2013). Samples were washed with distilled water and
dried at 55◦C during 48 h. After, leaf and root tissues (500 mg)
were grinded into a fine powder and mixed with 2 mL of
95% (v/v) MeOH. The residue was re-extracted under the same
conditions until the supernatant became achromatic. Excess
MeOH was removed from extracts in a rotary evaporator at
40◦C. Dry extracts were stored at −20◦C until further analysis.
Briefly, a solution of H2O2 was prepared in phosphate buffer
(pH 7.4). Plant extracts (100 µg/mL) were added to 0.6 mL
of H2O2 solution and the final volume of 3 mL was made
by adding the phosphate buffer (pH 7.4). The absorbance of
the reaction mixture was measured at 230 nm against a blank
solution. The percentage of H2O2 scavenging by the rye extracts
were calculated as:

% Scavenged [H2O2] = [(A0 − A1)/A0] × 100

Where, A0 - Absorbance of control;
A1 - Absorbance of extracts.

Non-enzymatic Antioxidants
Ascorbate and glutathione levels were determined by HPLC
analyses (Potters et al., 2004). Samples were extracted in 1 mL of
ice-cold 6% (w/v) meta-phosphoric acid and after centrifugation
(16, 000 g, 4◦C, 10 min) antioxidants were separated on a
reverse-phase column (100 mm × 4.6 mm Polaris C18-A, 3 µm
particle size; 40◦C, Varian, CA, USA) with an isocratic flow
rate of 1 mL min−1 of the elution buffer: 2 mM KCl, pH 2.5
adjusted with O-phosphoric acid. Antioxidants were quantified
using an electrochemical detector and the purity and identity of
the peaks were confirmed using an in-line DAD (SPD-M10AVP,
Shimadzu). Total antioxidant concentration was determined after
reduction of samples with 0.04 M DTT, for 10 min in obscurity
and the redox status was calculated as the ratio of the reduced
form to the total antioxidant concentration. Tocopherols (α, β, γ,
δ) were determined by HPLC analysis according to AbdElgawad
et al. (2015). Tocopherols were extracted with hexane using the
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MagNALyser (Roche, Vilvoorde, Belgium; 1 min, 7000 rpm).
The dried extract (CentriVap concentrator, Labconco, KS, USA)
was resuspended in hexane, and tocopherols were separated
and quantified by HPLC (Shimadzu, ‘s-Hertogenbosch, The
Netherlands; normal phase conditions, Particil Pac 5 µm column
material, length 250 mm, i.d. 4.6 mm). Dimethyl tocol (DMT)
was used as internal standard (5 ppm). Data were analyzed with
Shimadzu Class VP 6.14 software. The TAC of plant extracts
was determined by a modified ferric ion reducing antioxidant
power (FRAP) assay (Benzie and Szeto, 1999). Antioxidants were
extracted by grinding 100 mg of frozen plant tissue in 1 mL of
80% (v/v) ethanol. After centrifugation (3, 000 g, 4◦C, 15 min)
the FRAP reagent (0.3 M acetate buffer, pH 3.6, 0.01 mM TPTZ in
0.04 mM HCl, 0.02 M FeCl3.6H2O) was mixed with the extracts
and measured at 600 nm, using Trolox as a standard.

Enzyme Assays
Lipoxygenase (EC 1.13.11.12) was extracted in 50 mM sodium
phosphate buffer (pH 7.0) containing 1 mM EDTA, 0.1 mM
PMSF, 2% (w/v) PVP, 1% glycerol and 0.1% Tween 20.
After centrifugation (15, 000 g, 4◦C, 20 min), 2.9 mL of
the assay solution (1 mM linoleic acid in 0.1 M sodium
acetate buffer) was added to 0.1 mL of the plant extract
and absorbance was measured at 240 nm. LOX activity was
calculated using the extinction coefficient of conjugated dienes
(ε340 = 25 mM−1 cm−1; Ramakrishna and Rao, 2012).

Catalase (EC 1.11.1.6) and GPX (EC 1.11.1.7) were extracted
in a 50 mM potassium phosphate (pH 7.0) containing 0.4 mM
EDTA, 0.2 mM PMSF, 2% (w/v) insoluble PVPP and 1 mM
ascorbic acid. Other antioxidant enzymes such, APX (EC
1.11.1.11), MDHAR (EC 1.6.5.4), DHAR (EC 1.8.5.1), GR (EC
1.8.1.7), and POX (EC 1.11.1.7) were extracted in 50 mM
MES/KOH buffer (pH 6.0), containing 2 mM CaCl2, 40 mM
KCl, and 1 mM ascorbic acid. CAT activity was determined
spectrophotometrically at 240 nm by monitoring the rate of
H2O2 decomposition at pH 7.0 (Aebi, 1984). APX, MDHAR,
DHAR, and GR activities were determined according to Murshed
et al. (2008). GPX activity was calculated by measuring the
decrease in NADPH absorbance at 340 nm (Drotar et al., 1985).
Peroxidase activity was determined by the oxidation of pyrogallol
(ε340 = 2.47 mM−1 cm−1; Kumar and Khan, 1982). The soluble
protein content was obtained (Lowry et al., 1951) and activity
measurements were scaled down for semi-high throughput
measurement using a micro-plate reader (Synergy Mx, Biotech
Instruments, Inc., Winooski, VT, USA).

Amino Acids Measurements
Ethanolic extracts of rye seedlings were used to assay free
amino acids (FAAs) levels using a Waters Acquity UPLC-
tqd system (Milford, MA, USA) equipped with a BEH amide
2.1 × 50 column according to Sinha et al. (2013) with the minor
modification previously described by AbdElgawad et al. (2015).

Oxalate Quantification
Plant samples (100 mg FW) were homogenized in phosphoric
acid (0.1%; containing 0.003% butylated hydroxyanisole) using a
MagNALyser. The extract was centrifuged at 14, 000 g for 30 min

at 4◦C. The supernatants were passed through Millipore micro
filters (0.2 µM pore size). Oxalate was detected by HPLC using
a SUPELCOGEL C-610H column (300 mm × 7.8 mm, Supelco,
Sigma, St. Louis, MO, USA) coupled to UV detection system set at
210 nm (LaChrom L-7455 diode array, LaChrom, Tokyo, Japan).
The mobile phase was a 0.1% phosphoric acid at a flow rate of
0.45 mL min−1. Organic acids were quantified using a calibration
curve obtained with the corresponding standards.

Statistical Analysis
Results were expressed as mean ± SD (standard deviation) and
analyzed by two-way ANOVA using IBM SPSS Statistica 23
software package (SPSS R© Inc., Chicago, IL, USA) for windows,
with organs and concentrations used as fixed variables. Data
were tested for normal distribution and homogeneity and
normalized when necessary. The significance level of 0.05 was
used for rejection of the null hypothesis. In cases of significant
interactions between factors, one-way ANOVA analysis was
performed for each factor, and Tukey’s multiple range tests were
used for determining significant differences among means. All
experiments were carried out in quadruplicate (n = 4), except
for biomass determination, where n= 30, and root length, where
n= 100.

RESULTS

Plant Growth Response
Significant differences in growth have been observed between
rye genotypes, with higher biomass in Beira seedlings for both
leaves and roots (Figures 1A,B). In RioDeva leaves no significant
increase in fresh weight was observed between the beginning
(24 h; 5 mg L−1) and end of the Al treatment (48 h; 5 mg L−1).
During recovery period, leaf biomass increased by 44 and
80% in Beira and RioDeva seedlings, respectively, compared to
seedlings exposed 48 h to Al treatment (Figure 1A). Despite
RioDeva roots presented the same response as leaves, Al did
not significantly affected root development in Beira seedlings
(Figure 1B). Biomass of RioDeva roots also increased by 25%
during recovery period (96 h, 0 mg L−1). Measurements carried
after the recovery period demonstrated that RioDeva root length
was 45% inferior to the tolerant genotype (Figure 1C). Leaves,
as well as roots, of Beira and RioDeva seedlings grown in the
absence of Al exhibited similar biomass at different time points.
This indicates that Al, rather than developmental processes, is
responsible for the observed decline in biomass, especially in the
sensitive RioDeva genotype (Supplementary Figure S1).

Al Screening Tolerance
Al tolerance varies among rye genotypes and is often based
on root regrowth after short periods of Al exposure. After the
recovery treatment all the seedlings of Beira presented root
regrowth, while roots of the Al-sensitive seedlings did not
presented any regrowth (Figures 2A,C,D). It was also noticed
that 56% of root regrowth in Beira seedlings was equal or superior
to 16 mm (Figure 2B). Optical microscopic observations of roots
(data not shown) demonstrated that after the recovery period,
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FIGURE 1 | Biometric analysis: fresh weight in leaves (A) and roots (B) of rye Al-tolerant (Beira) and Al-sensitive (RioDeva) genotypes and
measurement of root length (C) after the recovery period (96 h; 0 ppm). Different uppercase letters represent significant differences between times in Beira,
while lowercase letters represent significant differences between times in RioDeva. Values represent mean ± SD (n = 30). Asterisk represents significant differences
between genotypes in root length. Values represent mean ± SD (n = 100).

Beira seedlings accumulated Al in large amounts in lateral root
primordia (LRP) and in the hair roots (HRs). Al accumulation in
RioDeva genotype was observed in all cells of root tips and in the
vascular tissues. HR and LRP were less abundant in this cultivar
and did not present any signals of Al accumulation.

Oxidative Stress – MDA Content,
Electrolyte Leakage, LOX Activity, and
H2O2 Content
Oxidative membrane damage was more severe in the sensitive
genotype under all experimental conditions. The highest values
of MDA were found in leaves of the sensitive RioDeva genotype
48 h after exposure to Al, increasing 78% when compared to
control seedlings. In the recovery period (96 h; 0 mg L−1),

MDA content decreased significantly almost reaching the values
quantified in the control situation (0 h, 0 mg L−1; Figure 3A).
Roots of RioDeva seedlings presented a similar behavior to
those found in leaves, while no fluctuations in MDA levels
were found in roots of Beira seedlings (Figure 3D). Changes
in EL and LOX activity followed the same tendencies as MDA
accumulation, except in roots of both genotypes at the end of
Al treatment (48 h; 5 mg L−1) and in the recovery period
(96 h; 0 mg L−1; Figures 3B,C,E–G). H2O2 levels were higher
in leaves of both genotypes when compared to roots; however,
both organs of the Al-sensitive genotype, presented the highest
concentration of this ROS (Figures 3D,H). Late exposure of rye
seedlings to Al (48 h, 5 mg L−1) resulted in a 1.5- and 2.2-
fold increase in H2O2 content in leaves of Beira and RioDeva
genotypes, respectively. A significant decrease was also noticed
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FIGURE 2 | Root regrowth based on Eriochrome cyanine R coloration method for Al toxicity assay. Mean lengths of root regrowth presented as percentage
(%) in both genotypes (A), with Al-tolerant genotype divided in three different classes (1–5 mm, 6–15 mm and ≥ 16 mm; B). Al accumulation in roots of RioDeva (C)
and Beira (D) cultivars observed under a stereomicroscope. Scale bars in panels equal 1 mm. Blue arrows represent lateral roots with Al accumulation (n = 100).

in the recovery period (Figure 3D). Changes in H2O2 levels in
roots followed the same tendency as leaves for both genotypes
(Figure 3H). Seedlings grown in the absence of Al showed that
differences in the oxidative parameters were majorly due to the
effect of Al treatment, in both organs of the rye Al-tolerant and
Al-sensitive genotypes (Supplementary Figure S2).

ROS Homeostasis – H2O2 Scavenging
Activity
Compared to the sensitive genotype, H2O2 scavenging activity
in leaves was higher in Beira genotype; decreasing 12% after
early exposure to Al. In RioDeva leaves H2O2 scavenging activity
decreased 11 and 33% after 24 and 48 h after Al treatment
(Figure 4A). In roots, H2O2 scavenging activity was higher in
Beira seedlings, decreasing 31% after 48 h of Al exposure. For
the same period, H2O2 scavenging activity in RioDeva roots
decreased 42% (Figure 4B).

Cellular Redox Homeostasis – Enzymatic
and Non-enzymatic Response
Hydrogen peroxide levels are controlled by the activity of
several enzymes (Figures 5A–H). Enzymatic activity analysis
showed that APX was compromised in leaves and roots of
both genotypes in response to Al stress (48 h; 5 mg L−1;
Figures 5A,E). Catalytic activity of APX seems to be differentially
regulated in both genotypes through an organ-specific manner,
while CAT, GPX, and POX activities seem to be regulated
in a genotype-specific manner. For both organs, CAT activity
was higher in Beira genotype, while GPX and POX activities
were strongly induced in RioDeva seedlings (Figures 5B–H).
Changes in the ASC-GLU metabolism were both regulated
by a genotype- and organ-specific manner (Figures 6A–N).
ASC levels were higher in leaves of Beira seedlings, increasing
23% at the beginning of the stress (24 h; 5 mg L−1). No
significant variations were found in ASC content of RioDeva
leaves (Figure 6A). In roots, ASC levels were remarkably
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FIGURE 3 | Oxidative stress parameters of rye Al-tolerant (Beira) and Al-sensitive (RioDeva) genotypes. Lipid peroxidation (MDA) content (A,E), EL (B,F),
LOX activity (C,G) and H2O2 levels (D,H) in leaves and roots of rye seedlings, respectively. Different uppercase letters represent significant differences between times
in Beira, while lowercase letters represent significant differences between times in RioDeva. Values represent mean ± SD (n = 4).
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FIGURE 4 | Hydrogen peroxide scavenging activity of the methanolic extracts of rye Al-tolerant (Beira) and Al-sensitive (RioDeva) genotypes. Panels
represent, H2O2 scavenging activity (A,B) the in leaves and roots, respectively. Different uppercase letters represent significant differences between times in Beira,
while lowercase letters represent significant differences between times in RioDeva. Values represent mean ± SD (n = 4).

higher in RioDeva seedlings with no significant variations
throughout the treatment. A positive correlation was mainly
found between ASC content and ASC redox status, in leaves
and roots of both genotypes (Figures 6B,I). MDHAR activity
was remarkably higher in both organs of RioDeva seedlings
and Al stress significantly increased the catalytic activity of this
enzyme, around 12 and 85%, in leaves and roots, respectively
(Figures 6C,J). DHAR activity was extraordinarily higher in
both organs of Beira genotype, decreasing 30 and 12%, in leaves
and roots, respectively, at the recovery period (Figures 6D,K).
RioDeva leaves presented increased GR activity when compared
to Beira and Al treatment resulted in a 29% decrease of GR
activity in leaves of Beira seedlings (48 h; 5 mg L−1; Figures 6E,L).
After initial exposure to Al (24 h; 5 mg L−1), GSH levels in
leaves were very similar in both genotypes, decreasing until
the end of the treatment (Figure 6F). The same behavior was
observed in roots; however, in this organ GSH levels were higher
in Beira genotype (Figure 6M). GSH levels and the GSH redox
status were not related in leaves and roots of both genotypes
(Figures 6G,N). Tocopherols content and TAC were higher in
both organs of Beira genotype (Figures 9A–D). Response of
ROS scavenging enzymes and non-enzymatic metabolites in the
Al-tolerant and Al-sensitive genotypes, grown in the absence
of Al generally demonstrated that Al phytotoxicity rather than
development processes were responsible for changes in the
antioxidant metabolism (Supplementary Figures S3, S4, and S7).

Amino Acid Analyses
Compared to roots, glutamate levels were generally higher in
leaves of both genotypes, presenting similar values throughout
the assay, except in the control, where leaves of the tolerant
genotype presented about fivefold less content of this amino acid
(Supplementary Tables S1 and S2). In Beira leaves, Glu levels

increased after the initial exposure to Al until the end of recovery
period. RioDeva leaves manifested similar behavior; however,
Glu levels increased 48 h after Al exposure (Supplementary
Table S1). Roots of Beira seedlings presented higher values of
Glu, which increased by 40% at the end of Al treatment and
remained constant through the recovery period. Al exposure
triggered an increase in Glu content in RioDeva roots at the
beginning of treatment, which decreased to similar values found
in the control (Supplementary Table S2). Unlike Glu, Cys, and
Gly levels were higher in roots of both cultivars (Supplementary
Tables S1 and S2). Comparing with the respective controls, Cys
levels were fivefold higher in leaves of Beira at the end of the Al
treatment, while RioDeva leaves presented an 83% decrease in
this amino acid (Supplementary Table S1). Meanwhile in roots,
excepting the control situation, Cys levels were higher in Beira
seedlings, increasing sevenfold at early Al exposure, with values
remaining constant until the recovery period. Cys content did
not suffer significant variations in RioDeva roots (Supplementary
Table S2). Gly levels increased 18% in leaves of Beira seedlings
24 h after Al treatment; however, late exposure of seedlings to
this HM resulted in 39% decrease in Gly content that lasted
until the end of the experiment (Supplementary Table S1). Early
exposure of RioDeva seedlings to Al resulted in 66% decrease
of Gly content in leaves. For the same genotype and organ Gly
content also dropped 82% at the recovery period. As for roots,
Beira and RioDeva seedlings exhibited an increase in Gly levels
throughout the experiment (Supplementary Table S2). Serine
levels increased 61% in Beira leaves 24 h after Al exposure.
Afterward, the concentration of this amino acid decrease until
the end of the experiment. Regarding roots, Beira seedlings did
not display any significant variations until the recovery period
where Ser levels increased 100%, when compared to control. Al
treatment resulted in a decrease of Ser levels in RioDeva leaves,
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FIGURE 5 | Response of ROS scavenging enzymes in rye Al-tolerant (Beira) and Al-sensitive (RioDeva). Panels represent APX activity (A,E), catalase
activity (B,F), GPX activity (C,G) and POX activity (D,H), in leaves and roots of rye seedlings, respectively. Different uppercase letters represent significant differences
between times in Beira, while lowercase letters represent significant differences between times in RioDeva. Values represent mean ± SD (n = 4).
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FIGURE 6 | Response of the ascorbate–glutathione defense in rye Al-tolerant (Beira) and Al-sensitive (RioDeva) genotype. Reduced ascorbate levels
(A,H), ascorbate redox status (ASC/tASC; B,I), MDHAR activity (C,J), DHAR activity (D,K), GR activity (E,L), reduced glutathione levels (F,M), glutathione redox
status (GSH/tGSH; G,N), in leaves and roots of rye seedlings, respectively. Different uppercase letters represent significant differences between times in Beira, while
lowercase letters represent significant differences between times in RioDeva. Values represent mean ± SD (n = 4).
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FIGURE 7 | Response of photorespiration in rye Al-tolerant (Beira) and
Al-sensitive (RioDeva) genotypes. Panel represent, the ratio of glycine and
serine in leaves. Different uppercase letters represent significant differences
between times in Beira, while lowercase letters represent significant
differences between times in RioDeva. Values represent mean ± SD (n = 4).

having the opposite effect on roots (Supplementary Tables S1
and S2).

Estimating Photorespiration Activity –
Gly/Ser Ratio
The Gly/Ser ratio, used to estimate the level of photorespiration,
decreased by 24 and 45% in leaves of Beira and RioDeva
seedlings, respectively (Figure 7). In leaves of both genotypes
Ser/Gly ratio values returned to basal levels in the recovery
period. Except for the control situation, roots of Beira seedlings
presented higher Gly/Ser ratio, which increased by 66%, 24 h
after Al exposure until the end of the experiment (Figure 7).
The Gly/Ser ratio was similar in seedlings grown in the
absence of Al emphasizing the negative effects of this metal in
both rye genotypes under short term exposure (Supplementary
Figure S5).

Oxalate Levels
After 48 h of exposure to Al, oxalate levels were 1.8- and 3-
fold higher in leaves and roots of Beira seedlings, respectively
(Figures 8A,B). No significant fluctuations were found in oxalate
levels of RioDeva seedlings (Figure 8A). Regarding RioDeva
roots, this OA increased 47% in late Al exposure, and returned
to similar values found in control seedlings after the recovery
period (Figure 8B). Seedlings grown in the absence of Al showed
differences in the oxalate levels, suggesting that Al effects in the
synthesis of this OA maybe potential masked by developmental
effects (Supplementary Figure S6).

DISCUSSION

Beyond affecting global climate, acid rain changes soil chemistry
leading to a major accumulation of the highly phytotoxic Al3+
ion that compromises crop growth and yield (Poschenrieder
et al., 2008; Reis et al., 2012). Measurements of Al concentration
in soil solution is extremely complex and influenced by many
factors. Nonetheless, Al concentrations between 2 and 5 mg L−1

are often found in soil solution. So, in order to simulate field
conditions closely as possible, we submitted rye seedlings to
a realistic 5 mg L−1 concentration of Al3+, which is already
toxic to sensitive plant species (Blamey et al., 2015). To uncover
the mechanisms underlying rye oxidative metabolism after Al
exposure we analyzed its impact on productivity, physiology and
biochemical pathways.

Effects of Al Toxicity on Seedling Growth
and Development
Al treatment affected biomass production in roots and leaves
of RioDeva seedlings. Also, after the recovery period total root
length was significantly reduced in this genotype. Together,
these results are in agreement with the data obtained in the
aluminum tolerance screening assay corroborating the previous
classification of RioDeva cultivar as an Al-sensitive genotype
(Gallego and Benito, 1997). Unlike RioDeva, Beira genotype
seemed to overcome Al toxicity under short-term exposure, since
biomass increased throughout the treatment. Considering that
all the seedlings tested to Al tolerance presented root regrowth,
Beira genotype was for the first time classified as Al-tolerant.
Cell division and expansion are well-known processes inherent
to plant growth and development. Recent studies performed in
maize, confirmed that Al-induced inhibition of root growth can
be due to a reduction in cell division, shortly after Al exposure
(Doncheva et al., 2005). However, it is mostly believed that Al
restrains cell elongation during the initial stages of root growth
inhibition (Matsumoto, 2000; Horst et al., 2010). Al influences
directly cell growth by binding itself to pectin molecules and
DNA as well as indirectly by manipulating biochemical pathways
that influence cell division and expansion. Our results predict
that expansion of already divided cells plays a central role in root
elongation of rye seedlings, although more detailed research is
required to support this hypothesis. Cell growth is directly or
indirectly affected by ascorbate and its oxidation products (MDA;
DHA), as well by the enzymatic activity of peroxidases like APX
(Davey et al., 2000).

In roots of Beira seedlings, higher APX activity contributes
to reduce the availability of H2O2, preventing lignification of
cell walls, resulting in looser cell walls (Yamamoto et al., 2003).
DHA levels were higher in this genotype (data not shown)
stimulating cell expansion since this radical prevents cross linking
of structural proteins with hemicelluloses and polygalacturonases
(Smirnoff, 1996). Additionality, some of the oxalate quantified in
roots of Beira, may have been incorporated in calcium oxalate
crystals, increasing cell wall plasticity (Smirnoff, 1996). ASC
is related to cell division in plants. Reports showed that ASC
controls transition from G1 to S phase, enhancing cell division
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FIGURE 8 | Oxalate content in rye Al-tolerant and Al-sensitive genotypes. Panels represent organic acid levels (A,B) in leaves and roots, respectively.
Different uppercase letters represent significant differences between times in Beira, while lowercase letters represent significant differences between times in
RioDeva. Values represent mean ± SD (n = 4).

and therefore root growth (Kerk and Feldman, 1995; Potters
et al., 2000). Our results, also suggest the involvement of ASC
in cell cycle progression in rye roots. Through the Eriochrome
cyanine R staining test we observed that Al accumulated in the
root apex of RioDeva roots caused irreversible damage to the
root apical meristematic and cap cells, making impossible any
kind of root regrowth after the recovery period. Also, due to this
higher accumulation in roots of RioDeva genotype, Al can bind
itself to the pectin matrix resulting in cell wall strengthening.
These results are consistent with other reports of Al-induced
root growth inhibition (Van et al., 1994; Tabuchi and Matsumoto,
2001; Ma et al., 2004; Eticha et al., 2005; Yang et al., 2008).

Al and Cell Redox Homeostasis
Heavy metals (HMs) induce oxidative stress either by triggering
H2O2 and ROS formation or by decreasing enzymatic and non-
enzymatic antioxidants (Sharma et al., 2012). LP is considered
a biomarker of metal-induced oxidative stress and lipid peroxy
radicals are formed either through enzymatic processes (LOX)
and/or by non-enzymatic (ROS) oxidation of membrane lipids,
resulting in the major accumulation of MDA (Foyer and
Noctor, 2005; Sharma et al., 2012). Lipid oxidation of biological
membranes can lead to leakage of cellular components and
therefore, EL assays are also commonly used to estimate
membrane stability under stressful situations. LP, detected
through MDA content, increased in both organs of RioDeva
seedlings after Al exposure. Giannakoula et al. (2008) found
similar results in maize, since Al treatment enhanced oxidation
of membrane lipids in the sensitive line, while the tolerant one
did not exhibited significant variations on MDA levels. Also, rice,
triticale and wheat increased MDA contents after Al exposure

emphasizing LP as a signal of Al toxicity in cereals (Hossain et al.,
2005; Sharma and Dubey, 2007; Liu et al., 2008).

Changes in EL and LOX activity were found to be positively
correlated with MDA accumulation in both organs of Beira and
RioDeva genotypes, suggesting that LOX contributed in a large-
scale to the formation of lipid peroxy radicals. Some reports
showed that Al can change membrane lipid architecture leading
to modifications in membrane permeability. It is also known
that changes in membrane permeability are dependent of the
plant tolerance to Al (Levine et al., 1994; Stab and Horst, 1995;
Kochian and Jones, 1997; Willekens, 1997). Our results suggest
that biological membranes are one of the targets of oxidative
stress in rye under Al short-term exposure. As described, RioDeva
seedlings accumulated more Al in its root apex than Beira’s,
and this could be the major cause for the enhanced LP and
EL observed in this genotype. A close relationship between LP
and inhibition of the root elongation rate was already observed
in soybean (Cakmak and Horst, 1991). Since Al is a non-
redox metal, it cannot catalyze redox reactions inherent to
the LP process. Therefore, it has been demonstrated that Al-
induced rigidity of membranes facilitates the initiation of LP
by the binding of iron (Fe2+) to membrane lipids (Oteiza,
1994; Ikegawa et al., 2000). Moreover, Al exposure can activate
LOXs in plant root cells (Wang and Yang, 2005), which can
explain the enhanced LP observed in RioDeva roots. Al exposure
results in the impairment of antioxidant systems resulting in
ROS accumulation, such as H2O2, which can culminate in the
oxidation of membrane lipids (Yamamoto et al., 2002; Achary
et al., 2008; Ma et al., 2012; Xu et al., 2012). These data
support our results since H2O2 levels were higher in roots
of RioDeva when compared to the tolerant genotype. Both
genotypes presented higher H2O2 accumulation in leaves when
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FIGURE 9 | Non-enzymatic antioxidant responses of rye Al-tolerant (Beira) and Al-sensitive (RioDeva) genotypes. Panels represent, total tocopherols
(A,C) and TAC (B,D) the in leaves and roots, respectively. Different uppercase letters represent significant differences between times in Beira, while lowercase letters
represent significant differences between times in RioDeva. Values represent mean ± SD (n = 4).

compared to roots, which it is not surprising since due to
photosynthesis electron transfer reactions are constantly leading
to ROS formation (Sharma et al., 2012). After Al being removed
in the recovery period, H2O2 levels decreased significantly in
leaves and roots of both genotypes. This strongly suggests that
H2O2 production results from direct exposure of rye seedlings
to Al under short-term exposure. Undoubtedly, our results
showed that the reduced H2O2 scavenging activity in both
organs of RioDeva seedlings favored H2O2 accumulation leading
to an imbalance on the redox homeostasis resulting in the
establishment of oxidative stress in this genotype.

In order to protect themselves against oxidative damage,
plants developed a powerful and complex antioxidant network
comprising of both enzymatic and non-enzymatic constituents
(Mittler, 2002; Foyer and Noctor, 2005; Gill and Tuteja, 2010).
SOD, catalase, and APX represent the major ROS-scavenging
enzymes controlling the basal levels of anion superoxide radicals
(O2
•−) and H2O2 (Bowler et al., 1992; Sharma et al., 2012). H2O2

is produced by plants under normal, non-stressful conditions,
through several metabolic processes playing a key role as
a signaling molecule in several physiological processes and
resistance tolerance (Quan et al., 2008). Enzymatic assays in
roots of both genotypes showed that APX does not seems to
play a central role in H2O2 scavenging of rye seedlings after
Al exposure, because despite of its higher activity in RioDeva
roots, no significant fluctuations were observed in its catalytic
activity that could explain the significant changes in the H2O2
levels observed in this organ and genotype. This hypothesis was
reinforced by the APX activity observed in leaves. Our results
also demonstrated that late Al exposure (48 mg L−1) decreased
APX activity in both organs of Beira genotype. Here, Beira
seedlings can compensate APX loss with an increase in CAT
activity. Since CAT has a very fast turnover rate, but a much
lower affinity for H2O2 than APX it is generally accepted that
this enzyme is involved in removal of H2O2 overproduced during
oxidative stress, while APX is responsible for the fine modulation
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of H2O2 involved in signalization pathways (Bowler et al., 1992;
Willekens, 1997; Mittler, 2002). Du et al. (2010) observed that
in roots of soybean APX activity increased proportionality with
Al concentration and treatment duration. Al-tolerant wheat
genotype also presented higher APX activity after short time
exposure (Xu et al., 2012) and rice increased APX activity
under long term exposure (Sharma and Dubey, 2007). The
same behavior was posteriorly found in rice plants 3 weeks
after Al exposure (Silva et al., 2013). Al tolerance mechanisms
are different between plant species, organs and tissues, which
constitutes a perfectly reasonable explanation for the variation
observed between the studies mentioned above (Boscolo et al.,
2003).

Opposite to CAT, GPX, and POX played major roles in
the first line of H2O2 detoxification in both leaves and roots
of RioDeva seedlings. Under short term exposure, Al is also
responsible for increased GPX and POX activities in other
cereals such barley, wheat and rice (Meriga et al., 2004;
Šimonovičová et al., 2004; Hossain et al., 2005). Our data
demonstrate that peroxidases act as alternative and much
more efficient enzymes in H2O2 detoxification then CAT
in the RioDeva genotype. Also, duration of Al treatment
seems to influence the response of mechanisms involved in
plant protection against oxidative stress. Photorespiration is
recently considered an imperative process in abiotic stress
responses, since it can modulate the levels of ROS and
H2O2 production (Voss et al., 2013). The glycine:serine ratio,
used to estimate photorespiration activity (Kebeish et al.,
2007) was lower in the RioDeva genotype, predicting a lower
H2O2 production in its leaves, which does not reflect our
H2O2 quantifications. This situation is easily understandable
by the fact that H2O2 is produced not only in peroxisomes
during photorespiration, but also in chloroplasts, cytoplasm and
mitochondrias through electron transport chain reactions. H2O2
is also produced in plasma membranes by NADPH oxidase
activity and in the extracellular matrix, by pH-dependent cell wall
peroxidases, germins, germin-like oxlate oxidases, and amine
oxidases (Slesak et al., 2007). Reduced membrane damage in
Beira roots could also be due to the accumulation of the
lipophilic tocopherols which are membrane-bound antioxidants.
In leaves, tocopherol levels were higher in the RioDeva seedlings,
suggesting that this genotype tried to overcome Al toxicity in
leaves. Consistent with this results an increased antioxidant
capacity in leaves and roots of the tolerant Beira genotype was
observed.

Can MDHAR and DHAR Activities Be the
Key of Differential Al Tolerance in Rye
Genotypes?
In plants, the ASC-GSH is crucial for the control of ROS levels
and cellular redox homeostasis (Dubey, 2011). APX activity was
higher in RioDeva roots as well as the ascorbate levels. Ascorbate
is a potent antioxidant present in the apoplast of cells, protecting
then from H2O2 and ROS generated during oxidative stress (Yin
et al., 2010). Al accumulation was higher in roots of RioDeva
seedlings, and since 30–90% of the total Al uptake by roots

is found mainly in the apoplast of peripheral cell roots (Liu
et al., 2008), it was noticed that this sensitive genotype tries to
overcome Al toxicity under short term exposure by increasing
total ascorbate content, in an effort to adapt to the stress situation.
MDHAR specific activity was much higher than DHAR after Al
exposure, suggesting that in this genotype, the MDHA radicals
produced by APX in H2O2 reduction to water, were immediately
transferred back into ASC via enzymatic (MDHAR) or non-
enzymatic (spontaneous disproportion) processes. Reinforce this
hypothesis; we observed that GR increased through the Al
treatment, providing reduced gluthatione which served as an
electron donor to the DHAR to reduced dehydroascorbate back
into ASC, because even when a fast disproportion of the MDHA
radical occurs some DHA is always produced.

Together these results suggest that the Al-sensitive RioDeva
genotype tries to counteract the negative effects of Al toxicity in
roots by increasing the ASC content, although without success
because oxidative stress biomarkers and biomass were deeply
affected by Al exposure. Beira roots seemed to cope with Al
toxicity by another more effective strategy. In this genotype,
despite of its higher catalytic activity when compared to MDHAR,
DHAR enzyme did not exhibit significant variations after the Al
treatment. This fact, combined with the poor ASC regeneration
and lower GR activity, suggests that DHA generated through APX
activity is being converted into oxalate and tartarate, lowering
Al concentration in root tissues by the formation of stable and
non-toxic Al-oxalate conjugates that are posteriorly translocated
into the vacuoles. Supporting this hypothesis is the enhanced
accumulation of oxalate in roots of this Al-tolerant genotype after
Al exposure. Our results are in accordance with other reports
obtained in maize (Klug et al., 2011) and buckwheat (Zhu et al.,
2015 and references).

Regarding leaves the same behavior was observed with the
exception that in this organ Beira genotype is also investing in
the ASC regeneration, thus providing an extra protection for the
photosynthetic apparatus against the Al toxicity. Another fact is
that Al affected not only the GR activity in leaves and roots of both
genotypes, but also the biosynthetic pathway of the amino acids
that constitute GSH. We observed that serine levels were close to
those of glycine, reinforcing the fact that GSH main coexist in two
different tripeptides in rye (Rauser, 1999).

CONCLUSION

We observed that rye Al tolerance under short term exposure
is dependent on the genotype and plant organs, and that the
response of the antioxidant system comprises changes in proline
and ascorbate levels, its oxidation products and its regenerating
enzymes, being key points for the survival of rye seedlings in early
development stages in Al contaminated soils.
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