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The root nodule symbiosis (RNS) between legume plants and rhizobia is the most efficient

and productive source of nitrogen fixation, and has critical importance in agriculture

and mesology. Soybean (Glycine max), one of the most important legume crops in the

world, establishes a nitrogen-fixing symbiosis with different types of rhizobia, and the

efficiency of symbiotic nitrogen fixation in soybean greatly depends on the symbiotic

host-specificity. Although, it has been reported that rhizobia use surface polysaccharides,

secretion proteins of the type-three secretion systems and nod factors to modulate

host range, the host control of nodulation specificity remains poorly understood. In

this report, the soybean roots of two symbiotic systems (Bradyrhizobium japonicum

strain 113-2-soybean and Sinorhizobium fredii USDA205-soybean)with notable different

nodulation phenotypes and the control were studied at five different post-inoculation

time points (0.5, 7–24 h, 5, 16, and 21 day) by RNA-seq (Quantification). The results

of qPCR analysis of 11 randomly-selected genes agreed with transcriptional profile

data for 136 out of 165 (82.42%) data points and quality assessment showed that the

sequencing library is of quality and reliable. Three comparisons (control vs. 113-2, control

vs. USDA205 and USDA205 vs. 113-2) were made and the differentially expressed genes

(DEGs) between them were analyzed. The number of DEGs at 16 days post-inoculation

(dpi) was the highest in the three comparisons, and most of the DEGs in USDA205

vs. 113-2 were found at 16 dpi and 21 dpi. 44 go function terms in USDA205 vs.

113-2 were analyzed to evaluate the potential functions of the DEGs, and 10 important

KEGG pathway enrichment terms were analyzed in the three comparisons. Some

important genes induced in response to different strains (113-2 and USDA205) were

identified and analyzed, and these genes primarily encoded soybean resistance proteins,

NF-related proteins, nodulins and immunity defense proteins, as well as proteins involving

flavonoids/flavone/flavonol biosynthesis and plant-pathogen interaction. Besides, 189

candidate genes are largely expressed in roots and\or nodules. The DEGs uncovered

in this study provides molecular candidates for better understanding the mechanisms of
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symbiotic host-specificity and explaining the different symbiotic effects between soybean

roots inoculated with different strains (113-2 and USDA205).

Keywords: Soybean, symbiotic specificity, different nodulation phenotypes, RNA-seq, differential gene expression

responding

INTRODUCTION

The root nodule symbiosis (RNS) between legume plants and
rhizobia is the most efficient and productive source of nitrogen
fixation, and has critical importance in agriculture and mesology
(Biswas and Gresshoff, 2014). Rhizobium-legume symbiosis
is established under tight regulation to coordinate bacterial
infection steps with re-activation of root cortical cells. The
process is triggered by rhizobia-secreted specific lipo-chitin-
oligosaccharide signal molecules to host secreted flavonoids,
and accompanied by a series of signal transduction inside the
root cells (Oldroyd and Downie, 2004, 2008; Libault et al.,
2010; Hayashi et al., 2012b). Rhizobium-legume symbiosis is
highly host-specific, meaning that one rhizobium strain could
only establish a symbiotic system with a limited set of host
plants and vice versa (Hayashi et al., 2012a). Such a symbiotic
characteristic is very pronounced and has led to the definition of
different legume–rhizobia associations, which always associated
with distinct nodulation phenotype and/or symbiotic effects
(Jones et al., 2008; Hayashi et al., 2012a).

The symbiotic specificity is determined by exchanging species-
specific signals between a host plant and its symbiotic rhizobium
(Perret et al., 2000). It is well known that rhizobia utilizes
surface polysaccharides, secreted proteins/type III secretion
system (T3SS) and nod factor to modulate host range (Lerouge
et al., 1990; Schultze et al., 1992; Stacey, 1995; Bec-Ferte et al.,
1996; Deakin and Broughton, 2009; Yang et al., 2010; Okazaki
et al., 2013), while the mechanisms underlying the corresponding
recognition of these rhizobial signals and compatibility control
of the legume–rhizobia interaction in the host legume are not
well understood. To unravel such mechanisms, it is critical
to investigate the differences of nod factor signaling reception
and transduction in the host legume inoculated with different
rhizobia strains.

Soybean (Glycine max), one of the most important
legume crops in the world, normally establishes a nitrogen-
fixing symbiosis with different types of rhizobia, such
as Bradyrhizobium japonicum, Bradyrhizobium elkanii,
Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense,
E. fredii/Sinorhizobium fredii, Rhizobium tropici, R. oryzae and
Mesorhizobium tianshanense, and the efficiency of symbiotic
nitrogen fixation in soybean by application of inoculates greatly
depends on the symbiotic host-specificity (Yang et al., 2010;
Hayashi et al., 2012a). The various species of Rhizobium make
up two broad groups of fast- and slow-growing strains based

Abbreviations: RNS, (The root nodule symbiosis); T3SS, (the type III secretion

system); qPCR, (Quantitative real-time PCR); DEGs, (Differentially Expressed

Genes); FDR, (False Discovery Rate); HR, (Hypersensitive response); WEGO,

(Gene Ontology functional classification); RH, (relative humidity); CT, (cycle

threshold).

on their growth rate and other characteristics (Sadowsky and
Bohlool, 1986). The best studied rhizobium-soybean symbiotic
models are B. japonicum-soybean (Hennecke, 1990; Meakin
et al., 2006; Wei et al., 2008; Mesa et al., 2009; Quelas et al.,
2010; Tang et al., 2016) and S. fredii-soybean (Annapurna and
Krishnan, 2003; Krishnan et al., 2011; Margaret et al., 2011; Jiao
et al., 2016), while the differences of the molecular events of
nodulation in soybean inoculated with these two rhizobia strains
remain unclear.

In most cases, soybean genotypes restrict nodulation with
their specific strains (or sero-groups; Keyser and Cregan, 1987;
Cregan et al., 1989) and several dominant genes (Rj2, Rj3,
Rj4, and Rfg1) have been designated to control the host
specificity in the soybean–rhizobia symbiosis (Kanazin et al.,
1996; Yang et al., 2010). Besides, comparative analysis of
genome sequences of six legumes revealed a large number
of symbiotic genes in soybean (Zhu et al., 2013) and RNA-
Seq transcription data predicted several nodulation-related
gene regulatory networks (Zhu et al., 2013). However, these
results cannot explain why different symbiotic effects existed
among different soybean–rhizobia associations. To improve
our understanding of the host legume control of nodulation
specificity, we (1) investigated the molecular events of nodulation
in soybean roots inoculated with B. japonicum strain 113-2
or S. fredii strain USDA205, (2) identified a large number of
differentially expressed genes (DEGs), and (3) analyzed the DEGs
that are associated with the flavonoids biosynthesis pathway
and the plant-pathogen interaction pathway. Our results provide
fundamental clues to the mechanisms underlying the host-
specific manners of rhizobial signals reception and transduction
and shed new light on the host legume control of nodulation
specificity.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Seeds of Soybean Tian long No.1 (stored in our lab) were surface-
sterilized and germinated on moistened filter paper for 2–3 d at
28◦C in an incubator with 70% relative humidity (RH) and a 16-h
light/8-h dark photoperiod. They were then grown in pots filled
with sterilized vermiculite and perlite (1:1) supplemented with
half-strength B&Dmedium in a chamber with a 16/8 h day/night
cycle at 28◦C for 1–2 day before inoculation with rhizobium
strain113-2 (stored in our lab) and USDA205 (provided by
Huazhong Agricultural University in China). After inoculation,
plants were kept under the same growth conditions. Their growth
situations at 12, 30, and 42 days of post-inoculation (dpi) and
roots at 12 and 42 dpi were photographed. Chlorophyll contents
in the first trifoliolate leaf were measured by SPAD-502 Plus
Chlorophyll Meter. The mean values of nodule number and
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nodule dry weight were calculated using software SPSS Statistics
17.0.

Samples for RNA isolation were collected from soybean roots
(1) at 0.5 h; (2) 7 h/24 h; (3) 5 day; (4) 16 day and (5) 21 day
of post inoculation. The former three time points represent the
period that soybean root hairs recognize the rhizobium signals,
the period that soybean root hairs are infected by Rhizobium
(root hairs curling at 7 h of post inoculation (hpi) and cortical
cells dividing at 24 hpi) and the nodule primordia formation
period, respectively, and the latter two time points represent
two early nodule development periods. Samples collected at 7
and 24 hpi were mixed as one sample. Each collection was
performed with three biological replicates. RNAs isolated from
the three replicates were mixed at 1:1:1 ratio for subsequent
library construction and sequencing.

RNA Extraction and cDNA Library
Preparation
Total RNA was isolated using TRIzol reagent (Invitrogen, USA)
and stored in a -80◦C for downstream gene-expression analysis.
Potential genomic DNA were removed using RNeasy plant mini
kit (QIAGEN, Germany) and RNA quantity and quality were
measured using an Epoch Multi-Volume Spectrophotometer
system, NanoDrop and Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). All samples had A260/A280

and A260/A230 ratios of 2.13∼2.23, RIN value above 8.5 and
28S/18S above 1.6 except one.

To obtain a comprehensive range of transcripts, an equal
amount of total RNA from each sample was pooled for RNA-
Seq. mRNAs were enriched using oligo (dT) magnetic beads,
fragmented in fragmentation buffer to about 200 bp and reverse-
transcribed into single strand cDNA using random hexamer
primers. After RNaseH digestion, the cDNA were converted
into double strand cDNAs with DNA polymerase I and purified
using magnetic beads. After end repair and addition of single
nucleotide A (adenine) at 3′-end, cDNA were ligated to adaptors
and prepared as libraries. After qualification and quantification
using an Agilent 2100 Bioanaylzer and ABI Step One Plus Real-
Time PCR System, the libraries were subjected to sequencing on
Illumina HiSeqTM 2000.

Clean Reads Library Formation
Raw reads which include partial adaptor sequences and/or
low quality reads were generated from the original image data
from Illumina Hi SeqTM 2000 and filtered into high quality
(clean) reads after (1) trimming off the adaptor sequences; (2)
eliminating the reads with higher than 10% unknown bases and
reads with higher than 50% low quality bases (base with quality
value≤ 5). The clean reads were then mapped to reference genes
and genome (ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.
0/Gmax/annotation/Gmax_189_transcript.fa.gzandftp://ftp.jgi-
psf.org/pub/compgen/phytozome/v9.0/Gmax/assembly/Gmax_
189.fa.gz) using SOAP aligner/SOAP2 (Li et al., 2009) with
threshold that no more than two mismatches were permitted in
the alignment. The mapping results are shown in Supplemental
Table S2.

Function Annotation and Pathway Analysis
To understand function distribution of genes at macro-level,
gene ontology (GO) annotation of DEGs was performed using
software Blast2GO and used for GO functional classification of
DEGs using software WEGO.

Kyoto Encyclopedia of Genes and Genomes (KEGG) is the
major public pathway-related database, the significant differences
between different groups were calculated using the formula

P = 1−

m=1
∑

i=0

(

M
i

)

(

N−M
n−i

)

(

N
n

)

Where N is the number of all genes with KEGG annotation, n is
the number of DEGs in N,M is the number of all genes annotated
to specific pathways, and m is the number of DEGs in M. Besides
the list of the most meaningful pathways, the detailed pathway
information in KEGG database can be obtained by clicking the
hyperlinks on KEGG pathways. The gene identifiers mapped to
the pathway were used as the gene sets, and the lists of DEGs in
each of the comparisons were used as the test sets.

Quantitative Real-Time PCR (qPCR)
DEGs were further evaluated using qPCR. In brief, RNA samples
were treated with DNase I (Takara) and reverse-transcribed using
a Prime Script RT reagent Kit (Perfect Real Time) with gDNA
Eraser (Takara Bio, Inc) and oligo (dT) as the primer. cDNA
from the reverse transcription of approximately 1µg of RNA
was used as the template for qPCR using primer sets listed in
Supplemental Table S5 and cycling conditions of 30 s at 95◦C
followed by 40 cycles of 5 s at 95◦C, 15 s at 60◦C and 12 s at
72◦C and final 5 s at 72◦C. The polyubiquitin transcript was
used as the internal control. Sample cycle threshold (CT) values
were standardized for each template using the reference gene as
control, and the 2−11CT method was used to analyze the relative
changes in gene expression from the qPCR experiments. Three
replicate reactions per sample were used to ensure statistical
credibility.

RESULTS

Symbiotic Phenotypic Characterization of
Soybean Inoculated with Rhizobium
Strains113-2 or USDA205 at Roots
Soybean can establish nitrogen-fixing symbiosis with different
species of rhizobium strains (Hayashi et al., 2012a). The best
studied rhizobium-soybean symbiotic models are B. japonicum—
soybean and S. fredii—soybean (Israel et al., 1986; Annapurna
and Krishnan, 2003; Sanz-Saez et al., 2015). The symbiotic
phenotype was different between soybean Tian long No.1
inoculated with slow-growing rhizobium strains B. japonicum
113-2 and fast-growing rhizobium strains S. fredii USDA205
(Figure 1, Supplemental Table S1). At 12 dpi, the control
(CK, inoculated with media only) had slightly better growth
and higher chlorophyll content than the two symbionts
(Figures 1A,B, Supplemental Table S1), mainly because the
symbiotic process needed more energy from the host plant and
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FIGURE 1 | Symbiotic phenotypic features of B. japonicum 113-2-soybean and S. fredii USDA205-soybean symbionts. Slow-growing rhizobium strains B.

japonicum 113-2 was originated from southern China and fast- growing rhizobium strains S. fredii USDA205 was from USA. The soybean cultivar is Tian long No.1

(China). (A–E) The growth of plants without inoculation (12 and 30 day) and the two symbiosis (12, 30, and 42 day). (F–H) Nodulation phenotypes were examined at

12 and 42 day after inoculation with 113-2 or USDA205. (I,J) The expression levels of GmNIN-like genes (Glyma02g48080 and Glyma04g00210) in soybean roots at

five time points (0.5 h, 7–24 h, 5 day, 16 day, and 21 day) after inoculation with rhizobium strains113-2 or USDA205. Bars, 4 cm (A,B,D); 4.5 cm (C); 5.0 cm (E,F,G,H);

d, days; h, hours.

the nitrogen fixation function was weak during this period.
At 30 and 42 dpi (Figures 1C,D, Supplemental Table S1), the
control had no additional nitrogen supply, thus its growth and
chlorophyll synthesis was limited by insufficient nitrogen in
cotyledon. Comparison of the two symbionts showed that S. fredii
USDA205-soybean symbiont had much less nodule numbers per
root system (0 vs. 13) at 12 dpi (Figure 1F, Supplemental Table
S1), although they had similar growth and chlorophyll content
(Figures 1A,B, Supplemental Table S1). In addition, compared
with B. japonicum 113-2-soybean symbiont, S. fredii USDA205-
soybean symbiont had (1) obviously more yellow leaves and
less chlorophyll content at 30 dpi (Figures 1C,D, Supplemental
Table S1); (2) worse growth (Figure 1E), less chlorophyll content
(Supplemental Table S1), fewer nodule per root system (16.64
vs. 51.52, Figure 1G) and larger nodules (3-fold) (Figure 1H,
Supplemental Table S1) at 42 dpi, and (3) lower expression ofGm
NIN-like genes (Glyma02g48080 andGlyma04g00210), which are
required for nodulation (Borisov et al., 2003), in soybean roots
at almost all the tested time points (Figures 1I,J). These results

suggest that the soybean roots of these two symbiotic systems
have differential cellular responses.

RNA-Seq Quality Assessment and
Identification of DEGs
The above-mentioned different symbiotic phenotypes are
related to the symbiotic host-specificity and maybe mainly
due to the molecular events of nodulation (Marioni et al.,
2008). To investigate the causes of these different symbiotic
phenotypes, RNA-Seq was performed for soybean root samples
at five important time points: 0.5, 7–24 hpi, 5, 16, and 21
dpi. The statistic results of alignment (Supplemental Table
S2), randomness assessment (Supplemental Figure S1), the
proportion of clean reads among the total acquired reads
was more than 99.6%, and sequencing saturation analysis
(Supplemental Figure S2) indicated that the sequencing was
of good quality and contained sufficient information for gene
expression analysis.
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To judge the significance of differences of DEGs in
soybean roots inoculated with different rhizobium strains,
the false discovery rate (FDR) ≤ 0.001 and |log2 ratio|≤ 1
were used as criteria for the following three comparisons:
(1) comparison between soybean roots uninoculated vs.
inoculated with rhizobium strains113-2 at 0.5, 7–24 hpi, 5,
16, and 21 dpi (Group 1); (2) comparison between soybean
roots uninoculated vs. inoculated with rhizobium strain
USDA205 at 0.5, 7–24 h, 5, 16, and 21 day post inoculation
(Group 2); and (3) comparison between soybean roots
inoculated with rhizobium strain USDA205 vs. inoculated
with rhizobium strain 113-2 at 0.5, 7–24 h, 5, 16, and 21 day post
inoculation (Group 3). DEGs in these comparisons are shown in
Supplemental Table S3.

The numbers of up-regulated and down-regulated DEGs in
the three comparisons are shown in Figure 2A. The number of
DEG at 16 dpi was the highest in Group 1 (that was 3346) and
Group 2 (that was 1161), indicating the beginning of a series
of new processes. Most of the DEGs in Group 3 were found at
16 dpi and 21 dpi, indicating that most of the differential gene
expression responses in soybean roots to rhizobia strains 113-2
and USDA205 happened at 16 and 21 dpi. The numbers of DEGs
found at two or more time points in the three comparisons were
showed in Figure 2B. Twenty two gene sets were analyzed and
DEGs in 16dR∩21dR gene set was proportional to the highest
number, besides, there were no DEGs consistently found at five
time points (0.5hR∩7-24hR∩5dR∩ 16dR∩21dR) in the three
comparisons.

FIGURE 2 | Genes differentially expressed in soybean roots at five time points in the three Groups (CK vs. 113-2, CK vs. USDA205, and USDA205 vs.

113-2). (A) Genes differentially expressed in soybean roots at different time points were separated into two groups according to whether they were significantly

up-regulated or down-regulated. a, CK vs. 113-2 (Group 1); b, CK vs. USDA205 (Group 2); c, USDA205 vs. 113-2 (Group 3). (B) The numbers of differentially

expressed genes in 22 gene sets in the three groups. Five different post-inoculation time points (0.5 h, 7–24 h, 5 d, 16 d, and 21 d) are included and the division of

DEGs into different gene sets depends on which time points (two or more) the DEGs were identified. a, CK vs. 113-2 (Group 1); b, CK vs. USDA205 (Group 2); c,

USDA205 vs. 113-2 (Group 3).
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FIGURE 3 | Gene ontology-based functional annotation of DEGs in soybean roots at five post inoculation time points in USDA205 vs. 113-2 (Group 3).

The gene category frequencies and the number of genes in each term were shown in histograms. 44 go function terms were indicated and divided into three

categories—biological process (1–21), cellular components (22–34), and molecular function (35–44), and 26 go function terms(1, 3–6, 9–12, 15, 18, 20–22, 24, 27,

29–31, 33–37, 40, 44) were indicated at all the five tested time points.

Function Ontology and KEGG Pathway
Enrichment Analysis of DEGs
To evaluate the potential functions of the DEGs between the
two symbiotic systems, DEGs with > 2-fold expression change
in Group 3 were assigned to different GO categories such as
biological process, molecular function, and cellular location, and
44 functional GO terms were analyzed (Figure 3). For all the
five tested time points, the biological processes associated with
the DEGs mainly focused on metabolic process, cellular process,

response to stimulus and single-organism process. The cellular
components mainly included cell, cell part and organelle. The
mainmolecular functions of the DEGs were binding and catalytic
activity. Most of the DEGs involved in these 44 functional GO

terms were identified in USDA205-16dR vs. 113-2-16dR and

USDA205-21dR vs. 113-2-21dR, moreover, only two GO terms
(immune system process and extracellular matrix part) were not

found in USDA205-16dR vs. 113-2-16dR and three (cell killing,
positive regulation of biological process and cell junction) were
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FIGURE 4 | KEGG pathway enrichment analyses of DEGs for 10 KEGG pathways in the three groups. The x- and y-axes represent pathway categories and

the number of genes in each pathway, respectively. a, ABC transporters; b, Flavonoid biosynthesis; c, Flavone and flavonol biosynthesis; d, Biosynthesis of secondary

metabolites; e, Plant hormone signal transduction; f, Nitrogen metabolism; g, Plant-pathogen interaction; h, Metabolic pathways; i, Ubiquitin mediated proteolysis;

j, RNA transport.

not in USDA205-21dR vs. 113-2-21dR. Besides, 26 go function
terms were indicated at all the five tested time points and revealed
no high shift in the distribution (Figure 3).

KEGG is the major public pathway-related database.
Therefore, we analyzed 10 KEGG pathways (Figure 4). In
these pathways, the metabolic pathways were most prominent,
followed by biosynthesis of secondary metabolites. Other
two pathways: plant hormone signal transduction and plant-
pathogen interaction, were also main enrichment pathways in
the three groups. More DEGs at 7–24 hpi, 16 and 21 dpi in
Group1 were involved in these 10 KEGG pathways than those in
Group 2 (Figures 4B,D,E). By contrast, more DEGs at 0.5 and 5
dpi in Group 2 were involved in these 10 KEGG pathways than
those in Group 1 (Figures 4A,C). Moreover, most of DEGs in
Group 3 involved in these 10 KEGG pathways were identified at
16 and 21 dpi (Figures 4D,E).

DEGs Associated with the
Flavonoids/Flavone/Flavonol Biosynthesis
Pathway and the Plant-Pathogen
Interaction Pathway
In order to evaluate whether the recognition of different rhizobia
to host legume is related to the secreted flavonoids, we analyzed
the DEGs associated with the flavonoids biosynthesis pathway
and flavone and flavonol biosynthesis pathway in Group 1 and

Group 2 at 0.5 hpi in more detail (Table 1). The results showed
that changes in expression levels of 28 DEGs were significantly

different between the two groups (Table 1), more DEGs and

higher change folds were found in Group 2 than Group
1, indicating that the flavonoids/flavone/flavonol biosynthesis
pathways are more sensitive to the surface substance produced
by USDA205.
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TABLE 1 | The DEGs associated with flavonoids biosynthesis pathway in

soybean at 0.5h of post inoculation based on log2 ratio.

Gene code Group 1 Group 2

Glyma01g29930 2.58

Glyma01g42350 1.6

Glyma02g05470 −3.48

Glyma02g42180 1.8

Glyma02g42470 1.8

Glyma03g07680 2.6 3.4

Glyma04g04270 1

Glyma05g36210 1.48

Glyma06g43970 2

Glyma07g18280 4

Glyma08g19290 −1.2

Glyma08g42440 −2.2 −3.4

Glyma08g42450 −1.9

Glyma10g16790 −1.2

Glyma11g05680 −1.5

Glyma13g37810 −1.4

Glyma14g04800 −1.1

Glyma14g06710 1.2

Glyma15g38670 −1.4

Glyma16g03760 −1.4

Glyma18g12180 −1.4

Glyma18g12210 −1.1

Glyma18g12280 −2.2

Glyma18g40186 −2.2

Glyma18g49240 −1.3 −2.1

Glyma19g03760 −2.5 −4.3

Glyma19g03770 −2.3 −3.5

Glyma19g37116 −1

In the absence of Nod factor signal, legume plants terminate
the infection process perhaps via a defense response (Jones
et al., 2008). To explore the differential cell defense responses
between soybean roots inoculated with rhizobium strains 113-2
and USDA205, the plant–pathogen interaction KEGG pathway
was analyzed in more detail in Group 3 (Figure 5, Table 2).
Among the DEGs annotated to this pathway, 7 were identified
at 0.5 hpi, of which 4 were down-regulated; 6 were identified
at 7–24 hpi, all of which were up-regulated; 10 were identified
at 5 dpi, of which only 1 was down-regulated; 8 were identified at
16 dpi, of which 4 were down-regulated, and 10 were identified
at 21 dpi, of which 6 were down-regulated (Figure 5), and the
detailed expression information of 55 important DEGs associated
with this pathway in Group 3 was shown in Table 2. These
results indicated differential defense responses in soybean roots is
related to the process of soybean responding to rhizobium strains
113-2 and USDA205.

Analysis of DEGs Encoding Resistance
Proteins in Soybean Roots Inoculated with
Rhizobium Strains 113-2 or USDA205
The genetic loci of soybean, namely Rj (s) or rj (s), have been
identified responsive to the nodule formation (Hayashi et al.,

2012a), and several of these genes (e.g., Rj2, Rj4, and Rfg1) are
found involving in restrict nodulation with specific rhizobial
strains (Yang et al., 2010). To investigate whether resistance (R)
proteins are involved in control of the nodulation phenotypes in
soybean inoculated with rhizobium strains 113-2 or USDA205,
DEGs encoding R proteins in soybean roots were analyzed in
more detail (Figure 6). Figure 6A shows the numbers of DEGs
encoding R proteins in each set. A total of 24 such genes were only
found in one group (7, 7, and 10 in Groups 1–3, respectively), 22
genes were found in two groups (5 in Group 1 and 2; 4 in Group
2 and 3; 13 in Group 1 and 3) and 3 genes (Glyma05g17470,
Glyma12g01420, and Glyma19g35270) were found in all three
groups. Figure 6B shows the number of R genes differentially
expressed at the five different time points in soybean roots in
the three groups. It can be seen that more R genes were found
in Group 1 than in Group 2 at each time point, especially at 16
dpi and not all differentially expressed R genes in Group 1 and/or
Group 2 are also found in Group 3 (Figures 6A,B), indicating
that they participate in nodulation but not in restriction of
specific rhizobial strains. Besides, some differentially expressed
R genes in Group 3 were not found in Group 1 and Group 2,
indicating that these R genes may be associated with T3SS of
rhizobium and/or defense responses in soybean roots.

Analysis of Selected Nodulation Factor
(NF)-Related Genes and Nodulin Genes in
Soybean Roots Inoculated with Different
Rhizobium Strains 113-2 and/or USDA205
Twenty-five DEGs responsible for broad NF signal pathway and
nodulation were identified in three groups by searching for
homologs of M. truncatula and L. japonicus NF-related genes
in soybean genome sequence database (Table 3; Kevei et al.,
2007; Mbengue et al., 2010; Schmutz et al., 2010; Kim et al.,
2013). Because same proteins may be encoded by one or more
DEGs, only 14 NF-related genes are listed (Table 3), and the
identified orthologs in these three legumes were named according
to the given nomenclature in cloning studies inM. truncatula, L.
japonicus and soybean.

Nodulins are legume genes whose expression is induced by
rhizobium bacteria upon nodulation (Denance et al., 2014).
Twenty-nine nodulin genes have been analyzed inM. truncatula
andmost of them play key roles in nodulation (Gamas et al., 1996;
Denance et al., 2014). In this study, 25 soybean nodulin genes
were identified as DEGs in soybean roots (Table 4). Among them,
only three were not differentially expressed in soybean roots
inoculated with rhizobia strains 113-2 and USDA205 (Table 4),
and the detailed expression information of these nodulin genes
at all the tested time points in the three groups was shown in
Supplemental Table S4. However, their functions have not been
well understood.

Verification of RNA-Seq Results by qPCR
and Expression Analysis of 189 Candidate
Genes in Roots and/or Nodules
To verify the RNA-Seq results, the expression stability of five
reference genes (ELF1b, Qact, G6PD, Fbox and Ubiquitin) was
evaluated (Supplemental Figure S3), of which, Ubiquitin, ELF1b

Frontiers in Plant Science | www.frontiersin.org 8 May 2016 | Volume 7 | Article 721

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Yuan et al. Differential Symbiotic Responding

FIGURE 5 | Differentially expressed genes associated with the plant–pathogen interaction pathways in soybean roots at five time points after

inoculation with USDA205 or 113-2. DEGs in Group 3 (USDA205 vs. 113-2, comparison between soybean roots inoculated with rhizobium strain USDA205 vs.

inoculated with rhizobium strain 113-2 at 0.5 h, 7–24 h, 5 d, 16 d, and 21 d post inoculation), associated to the KEGG plant–pathogen interaction pathway in the

KEGG database. Up-regulated genes are boxed in red, down-regulated genes are boxed in green. The red arrows point out the up-regulation of DEGs, the green

arrows point out the down-regulation of DEGs.

and Qact were most stable in all samples, while GmG6PD
and Fbox were consistently unstable (Supplemental Figure S3).
Thus, Ubiquitin was selected as reference gene for quantitative
real-time PCR (qPCR) experiment. A total of 11 DEGs were
randomly selected based on the transcriptional profile analysis
and measured by qPCR. The results were in agreement with
the transcriptional profile data for 136 out of 165 (82.42%) data
points (Figure 7). Although, the fold-changes were not exactly
identical, both methods yielded identical expression trends for
most data points. The sequences of the specific primers used for
qPCR are given in Supplemental Table S5.

To confirm the candidate genes whether or not play roles
in nodulation, the expressions of 189 candidate genes (78
from Tables 1–3, others are protein kinases and/or transcription
factors) in roots and/or nodules were analyzed according to two
databases (Phytozome v10.3 and Soybase) (Supplemental Table

S6). The results showed that only two genes (Glyma04g06470
and Glyma18g42610) nearly have no expression in roots and\ or
nodules, indicating that most of these candidate genes might be
indeed regulated or have a role in nodulation.

DISCUSSIONS

In this study, RNA-Seq was utilized to investigate the causes
of different symbiotic phenotypes in soybean roots inoculated
with different rhizobium strains B. japonicum 113-2 and S.
fredii USDA205. RNA-Seq is an effective method that produces
quantitative data related to transcripts with greater sensitivity,
higher repeatability, and wider dynamic range (Jiang et al., 2014)
than conventional methods. This method has also been shown
to have relatively little variation between technical replicates
to identify DEGs (Marioni et al., 2008). Consistent with the
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TABLE 2 | The DEGs associated with the plant–pathogen interaction

pathway in group3 (USDA205 vs. 113-2) based on the log2 ratio.

Gene Gene code in 0.5hR 7-24hR 5dR 16dR 21dR

soybean

CERK1 Glyma11g06740 1.1

Glyma13g39880 1.3

Glyma17g36630 −1.6

MYC2 Glyma06g09670 2

Glyma08g21130 1

Glyma12g33751 1.4

CALM Glyma19g41730 1.4

Glyma05g07720 1.7 −1.4

EFR Glyma09g35011 −6.2

Glyma05g25360 −1.1

Glyma08g08360 1.5 −1.5

Glyma04g40080 −1

Glyma09g35090 1.2

Glyma06g25110 1.2

WRKY25 Glyma05g25770 −1.7

Glyma03g05220 −1.6

Glyma01g31921 −1

Glyma15g00570 −1

Glyma18g16170 3.3

WRKY29/22 Glyma05g37390 −1.4

Glyma05g36970 −1.3

Glyma09g06980 −1.3

Glyma08g02580 −1.3

Glyma13g00380 −1.2

Glyma17g06450 −1.2

Glyma04g41701 −1

Glyma19g44380 1.4 −1.3

Glyma16g02960 1.1

Glyma09g24080 −1.4

Glyma03g00460 1.9 −1.3

Glyma03g41750 −1.6

FLS2 Glyma16g27260 1.8

BAK1 Glyma17g07440 3.7

Glyma16g32600 4.2

Glyma09g27600 4

RPM1 Glyma09g34381 1

MEKK1P Glyma14g08801 1 1

Glyma19g42340 −1.1

Glyma01g39380 2.1

CDPK Glyma10g30940 1.2

Glyma11g34000 1.1

PR1 Glyma15g06830 3.2

Glyma13g32510 2.9

Glyma15g06780 1.1 −1.9

Glyma13g32560 −3.4

Glyma15g06770 −2.9

Glyma13g01250 −2.8

Glyma15g06790 −2.3

RPS2 Glyma01g31550 1.2

Glyma05g17470 1.2 1.2

(Continued)

TABLE 2 | Continued

Gene Gene code in 0.5hR 7-24hR 5dR 16dR 21dR

soybean

RPS5 Glyma01g05710 5.9

CNGF Glyma17g12740 1.1

Glyma08g24960 1.1

RBOH Glyma05g00420 −1.2

COI-1 Glyma18g03420 −1

FIGURE 6 | DEGs encoding resistance (R) proteins in soybean roots

inoculated with rhizobium strains 113-2 or USDA205. (A) Venn diagram

showing the numbers of DEGs encoding resistance (R) genes in soybean roots

in the three groups (CK vs. 113-2, CK vs. USDA205 and USDA205 vs. 113-2).

(B) Numbers of R genes in soybean roots at five different post inoculation time

points in the three groups.

previous reports, our qPCR results agree with the transcriptional
profile data for 136 out of 165(82.42%) data points (Figure 7),
and 189 candidate genes are largely expressed in roots and\ or
nodules (Supplemental Table S6), suggesting our RNA-Seq data
are reliable.
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TABLE 3 | List of 14 NF-related genes in soybean roots inoculated with rhizobium strains 113-2 or USDA205.

Gene name M. truncatula L. japonicus Glycine max Group 3 Group 2 Group 1

MtERN1 Medtr7g102550 Lj1.CM0104.2670.r2.m Glyma16g04410 Glyma16g04410

Medtr6g031080 Glyma19g29000 Glyma19g29000

MtFLOT2 Medtr3g137870 Glyma06g06930 Glyma06g06930 Glyma06g06930 Glyma06g06930

Medtr1g099720

MtIPD3 Medtr5g027010 Lj2.CM0803.150.r2.m Glyma01g35255 Glyma01g35255

Glyma09g34695 Glyma09g34695

MtLIN Medtr1g112060 Lj5.CM0909.400.r2.m Glyma10g33851 Glyma10g33851

MtLYR3 Medtr5g019000 Lj2.CM0323.420.r2.d Glyma02g06700 Glyma02g06700

MtNFP Medtr5g018990 Lj2.CM0323.400.r2.d Glyma11g06740 Glyma11g06740 Glyma11g06740

Medtr8g093910

MtNIN Medtr5g106690 Lj2.CM0102.250.r2.m Glyma06g00240 Glyma06g00240

Glyma04g00210 Glyma04g00210 Glyma04g00210 Glyma04g00210

Glyma02g48080 Glyma02g48080 Glyma02g48080 Glyma02g48080

MtNSP1 Medtr8g025000 Lj3.CM0416.1260.r2.d Glyma16g01020 Glyma16g01020 Glyma16g01020

Medtr5g015580 Glyma05g22460 Glyma05g22460 Glyma05g22460

Medtr8g101580

MtNSP2 Medtr3g097800 Lj1.CM1976.90.r2.m Glyma04g43090 Glyma04g43090

Medtr5g065380 Glyma13g02840 Glyma13g02840 Glyma13g02840

MtNup133 Medtr5g097260 Lj2.CM0191.150.nc Glyma14g01130

Glyma02g47560 Glyma02g47560 Glyma02g47560

MtPUB1 Medtr5g083030 Glyma02g43190 Glyma02g43190

MtHMGR1 Medtr5g026500 Glyma11g09330 Glyma11g09330 Glyma11g09330

GmN56 Medtr1g146810 Lj5.CM0492.390.r2.m Glyma19g29880 Glyma19g29880 Glyma19g29880

Lj1.CM0001.650.r2.m Glyma20g38950 Glyma13g12484 Glyma20g38950

Lj1.CM0001.690.r2.m Glyma13g12484 Glyma13g12484

Lj1.CM0001.710.r2.m

GmENOD93 Medtr8g119590 Glyma05g08400 Glyma05g08400 Glyma05g08400 Glyma05g08400

Glyma06g24760 Glyma17g12610 Glyma17g12610 Glyma17g12610

Glyma17g12610 Glyma06g24760 Glyma06g24760

The efficiency of symbiotic nitrogen fixation in soybean by
application of inoculants greatly depends on the symbiotic host-
specificity. To identify the genes that can control the host
specificity and elucidate the molecular mechanisms for the host-
restriction of nodulation, we focused on DEGs in response
to different rhizobium strains (B. japonicum strain 113-2 and
S. fredii strain USDA205) in soybean roots, and identified a
large number of DEGs from RNA-Seq data. Our results for
the first time identified DEGs that could be involved in the
molecular events of nodulation in soybean roots inoculated
with different strains. Among these DEGs, many are associated
with the flavonoids biosynthesis pathway and the plant-pathogen
interaction pathway.

DEGs Involved in Nod Factor and EPS
Signals Transduction in Soybean Root
Cells
In the legume–rhizobium symbiosis, rhizobium ex-o-poly-
saccharides (EPS), which act as nod factors, are also essential for
bacterial infection (Jones et al., 2008). An EPS receptor (EPR3)
identified in L. japonicus could selectively bind to compatible

EPS to control rhizobium infection in bacterial competition
studies (Kawaharada et al., 2015). The symbiotic specificity is
thus regulated by a two-stage mechanism involving sequential
receptor-mediated recognition and transduction of nod factors
and EPS signals.

In connection with the soybean genome-based information
and the information obtained from the model legumes, the
nodulation signaling transduction pathway of soybean is clear
and the NF-related genes are shown in Supplemental Table S7. In
this report, the NF-related genes were not differentially expressed
after 113-2 and/or USDA205 inoculation, except six in Group
1 and five in Group 2 (Table 3), suggesting that these genes
were not changed at the five time points. Interestingly, GmNIN-
Like genes were differentially expressed in the three groups.
The results indicate that this gene was induced by nod factors
and responded differently to different nod factors, which partly
explains the differences in nodulation and/or nitrogen-fixation
time and nodule numbers per root system between soybean
roots inoculated with 113-2 and with USDA205 (Figure 1,
Supplemental Table S1).

EPS signals are shared by pathogenic and symbiotic bacteria
and play important roles in the legume–rhizobium symbiosis.
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TABLE 4 | Twenty-five differentially expressed nodulin genes identified in

soybean roots by RNA-Seq.

Gene name Gene ID in soybean Group 1 Group 2 Group 3

Early

nodulin-like

protein 1

Glyma06g42110 +

Glyma12g32270 + +

Glyma12g34100 +

Glyma13g38150 +

Early

nodulin-like

protein 2

Glyma12g13130 + +

Nodulin-16 Glyma02g43320 + + +

Glyma02g43330 + +

Nodulin-20 Glyma13g40400 + + +

Nodulin-21 Glyma05g25010 + + +

Glyma08g08120 + +

Nodulin-22 Glyma15g05010 + + +

Nodulin-24 Glyma02g43341 + + +

Nodulin-26 Glyma08g12650 + + +

Glyma13g40820 + + +

Nodulin-36 Glyma01g03470 + + +

Nodulin-44 Glyma15g41445 + +

Nodulin-50 Glyma10g34280 + + +

Nodulin-51 Glyma20g02921 + + +

Nodulin-61 Glyma10g06810 + + +

Early nodulin-70 Glyma18g02230 + + +

Early nodulin-93 Glyma05g08400 + + +

Glyma06g24760 + +

Other nodulins Glyma02g04180 + + +

Glyma06g06930 + + +

Glyma17g08110 + + +

“+” Indicates that the gene were different expressed in the group.

However, their signal recognition and transduction mechanisms
in soybean are not well explored (D’haeze and Holsters, 2004;
Staehelin et al., 2006; Jones et al., 2008). In this report,
we analyzed DEGs associated with flavonoids/flavone/flavonol
biosynthesis pathway (Table 1) and plant-pathogen interaction
pathway (Figure 5), with the hope that these DEGsmight provide
fundamental clues to the mechanisms underlying EPS signal
recognition and transduction. The physiological activities of
rhizobia are usually related to their EPS components, which
change among different E. fredii/S. fredii and B. japonicum
strains (Hotter and Scott, 1991). Thus, different EPS receptors
may exist in legume for responses to different rhizobium
strains.

DEGs Involved in the
Flavonoids/Flavone/Flavonol Biosynthesis
and Plant Immunity Defense
Isoflavonoids, a subclass of much more common flavonoids, are
the signals released by the soybean to attract rhizobium (Rolfe,

1988). They are secreted in host-specific manner, but formed by
the same flavonoids biosynthetic pathway (Deavours and Dixon,
2005; Barnes, 2010), which is associated with flavone and flavonol
biosynthesis pathway. The analyses of DEGs associated with
the flavonoids/flavone/flavonol biosynthesis pathway indicated
that the biosynthesis and secretion of isoflavonoids may
be related to the recognition of different Rhizobia to host
legume.

Rhizobia can adopt pathogenic systems to modulate the host
range in a genotype-specific manner (Okazaki et al., 2013). For
example, T3SS, which is known as an introducer of virulence
factors from plant pathogens (Hueck, 1998), can be induced by
legume-derived flavonoids, affecting symbiosis with host legumes
(Okazaki et al., 2013). In this report, we analyzed the DEGs
involved in the plant–pathogen interaction KEGG pathway in
Group 3 (Figure 5, Table 2) and found that Ca2+ signal, MAPK
cascade, hypersensitive response (HR) and defense related gene
induction are associated with the molecular events of nodulation
in soybean roots. These data uncovered some important genes in
the tightly regulated soybean nodulation process that coordinates
nod factors signal transduction with the host soybean immunity
defense. However, the mechanism of this co-regulation remains
to be determined.

R Genes Differential Expression in
Soybean Roots Inoculated with 113-2 or
USDA205
Rhizobia can act as plant pathogens to infect legumes and cause a
series of host immune responses (Okazaki et al., 2013), along with
changes in expression of resistance (R) proteins inside soybean
roots. Plant resistance (R) genes can specifically recognize the
corresponding pathogen effectors or their associated protein(s)
to activate plant immune responses at the site of infection (Liu
et al., 2007), including a series of defense signaling cascades and
pathogenesis-related (PR) gene expression (Durrant and Dong,
2004). In this report, 49 DEGs encoding broad resistance (R)
proteins and six R-response genes were identified in soybean
roots (Figure 6, Supplemental Table S3). The relationships
among these six R-response genes and 49 R genes will help us to
understand the immunity defenses mechanism in soybean roots.
Their interactions will be determined by in vitro and in vivo
assays.

In summary, to explain the different nodulation phenotypes,
we analyzed the differential gene expression responses in
uninoculated soybean roots and in soybean roots inoculated
with 113-2 or USDA205 using RNA-seq, and found that DEGs
associated with the flavonoids biosynthesis pathway and plant-
pathogen interaction pathway could be used to understand
the receptor-mediated recognition and transduction of nod
factor and EPS signals. The DEGs uncovered in this study
and their analyses shed new light on the host legume control
of nodulation specificity, and provided a molecular basis for
further investigations of the mechanisms underlying the host-
specific manners of nod factor and EPS signals reception and
transduction.
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FIGURE 7 | Comparison of expression rates determined by RNA-Seq and qPCR on 11 genes in soybean roots. All qPCR reactions were repeated three

times and the data are presented as the mean ± SD. (A), Glyma02g48080; (B), Glyma04g00210; (C), Glyma04g35880; (D), Glyma14g27015; (E), Glyma11g09060;

(F), Glyma02g43341; (G), Glyma15g02510; (H), Glyma16g06950; (I), Glyma09g03160; (J), Glyma11g35710; (K), Glyma11g35334.
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