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Spatial heterogeneity in two co-variable resources such as light and water availability is
common and can affect the growth of clonal plants. Several studies have tested effects
of spatial heterogeneity in the supply of a single resource on competitive interactions of
plants, but none has examined those of heterogeneous distribution of two co-variable
resources. In a greenhouse experiment, we grew one (without intraspecific competition)
or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under
a homogeneous environment and four heterogeneous environments differing in patch
arrangement (reciprocal and parallel patchiness of light and soil water) and patch
scale (large and small patches of light and water). Intraspecific competition significantly
decreased the growth of I. japonica, but at the whole container level there were no
significant interaction effects of competition by spatial heterogeneity or significant effect
of heterogeneity on competitive intensity. Irrespective of competition, the growth of
I. japonica in the high and the low water patches did not differ significantly in the
homogeneous treatments, but it was significantly larger in the high than in the low water
patches in the heterogeneous treatments with large patches. For the heterogeneous
treatments with small patches, the growth of I. japonica was significantly larger in the
high than in the low water patches in the presence of competition, but such an effect
was not significant in the absence of competition. Furthermore, patch arrangement
and patch scale significantly affected competitive intensity at the patch level. Therefore,
spatial heterogeneity in light and water supply can alter intraspecific competition at the
patch level and such effects depend on patch arrangement and patch scale.

Keywords: clonal growth, Iris japonica, intraspecific interactions, reciprocal patchiness, pararell patchiness,
patch scale

INTRODUCTION

Spatial heterogeneity in supplies of essential resources (light, water, and soil nutrients) commonly
occurs in nature, and different ramets of clonal plants interconnected by, e.g., rhizomes, stolons,
and horizontal growing roots are often located in contrasting levels of resource availability
(Hutchings and Wijesinghe, 1997; Hutchings and John, 2004; Liu et al., 2006, 2008; Bartels and
Chen, 2010). Clonal plants can exhibit foraging responses, i.e., placing more resource-absorbing
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organs (e.g., leaves, roots, or ramets) in high-quality patches
than in low-quality ones, to efficiently utilize heterogeneously
distributed resources of light and water (Hutchings and de Kroon,
1994; Hodge, 2004; Hutchings and John, 2004; de Kroon et al.,
2005; Guo et al., 2011; Peng et al., 2013). Furthermore, ramets
growing in high-quality patches can transport carbohydrates,
water and minimal nutrients to those in low-quality ones by
physiological integration via rhizomes, stolons, or roots (Alpert
and Stuefer, 1997; Price and Marshall, 1999; He et al., 2010,
2011). Such a cooperative system can buffer effects of spatial
heterogeneity (Roiloa et al., 2007) and enhance performance
of the whole plant (Roiloa and Retuerto, 2007; Hutchings
and Wijesinghe, 2008; Song et al., 2013; Zhang and Zhang,
2013; Dong et al., 2015). Spatial heterogeneity in resource
supply may also affect plant–plant interactions (Fransen et al.,
2001; Day et al., 2003; Moore and Franklin, 2012; Wang
et al., 2012; Li H.L. et al., 2014; Dong et al., 2015). For
instance, light heterogeneity increased intraspecific competition
in Duchesnea indica (Wang et al., 2012), and soil nutrient
heterogeneity increased intraspecific competition in Briza media
and interspecific competition between Festuca ovina and B.media
(Day et al., 2003). So far, however, studies testing effects of
resource heterogeneity on plant–plant interactions considered
spatial heterogeneity in the supply of only one single resource
(light or soil nutrients), and little study has examined effects of
spatial heterogeneity in two co-variable resources such as light
and soil water on intraspecific competition of plants.

In nature, light and soil water commonly co-vary (Alpert
and Mooney, 1996). In some habitats such as forest edges,
grasslands and shrublands, high light intensity in open patches
without vegetation is commonly accompanied with low soil water
availability due to high evaporation, and low light intensity
underneath dense vegetation is associated with high soil water
availability due to low evaporation (Alpert and Mooney, 1996;
Griffith, 2010; Li Q.Y. et al., 2014). In such environments with
reciprocal patchiness of light and soil water, neither patches alone
are ideal for plants growing in them (He et al., 2011; Zhang and
Zhang, 2013; Li Q.Y. et al., 2014). In some other habitats such as
wetlands or forest gaps opened by disturbance or mortality and
dunes with dense shrubs, high light intensity may be associated
with high soil water availability and low light intensity with low
soil water availability (Prati and Schmid, 2000; Dyer et al., 2010).
In such environments with parallel patchiness of light and soil
water, patches with high light and high soil water are ideal for
plants, whereas patches with low light and low water may not (He
et al., 2011; Zhang and Zhang, 2013). Previous studies have shown
that reciprocal and parallel patchiness may differently affect the
growth of clonal plants (Alpert and Mooney, 1996; Prati and
Schmid, 2000; Griffith, 2010; He et al., 2011; Zhang and Zhang,
2013; Li Q.Y. et al., 2014). However, no study has tested whether
such patch arrangement (i.e., reciprocal vs. parallel patchiness)
affects intraspecific competition of clonal plants. Furthermore,
responses of intraspecific competition to resource heterogeneity
may also vary with the scale of the patchiness, because foraging
ability and thus the growth of plants depends on patch scale of
heterogeneity (van der Waal et al., 2011; Wang et al., 2012; Peng
et al., 2013; Dong et al., 2015).

To test effects of patch arrangement (reciprocal vs. parallel
patchiness) and patch scale on intraspecific competition, we
conducted a greenhouse experiment with a rhizomatous,
clonal plant Iris japonica. We grew one (without intraspecific
competition) or nine isolated ramets (with competition) of
I. japonica under a homogeneous environment and four
heterogeneous environments differing in patch arrangement
(reciprocal vs. parallel patchiness of light and soil water)
and patch scale (large vs. small patches of light and water).
Specifically, we addressed the following questions: (1) Does
spatial heterogeneity in light and soil water affect intraspecific
competition of I. japonica? (2) Do reciprocal and parallel
patch arrangements have different effects on intraspecific
competition of I. japonica? (3) Does spatial scale of heterogeneity
matter?

MATERIALS AND METHODS

Plant Material
Iris japonica Thunb. (Iridaceae) is a perennial clonal herb and
widely distributed in forest understories, forest gaps, forest
edges, and moist grasslands in Asia (Wang et al., 2013; Li Q.Y.
et al., 2014). This species produce long slender rhizomes along
which rooted ramets are formed. In the field, most rhizomes
are distributed in the top soil of less than 5 cm deep. Inter-
ramet distance (spacer length) is 5–15 cm (Wang et al., 2013).
Rhizomes that connected ramets of the same genet can break due
to disturbance or senescence so that genets become fragmented in
the field. The blossoming time is from March to April, and viable
seeds are produced from May to June. Clonal growth is the main
means for the maintenance and spread of the populations (Wang
et al., 2013).

In early January 2014, more than 1000 ramets of I. japonica
were collected from five locations in an evergreen broad-leaved
forest on Shizi Mountain in Hubei Province, China (N 30◦28′-
30◦30′; E 114◦20′-114◦23′). Adjacent locations were at least
100 m apart so that ramets from different locations were likely
to belong to different genotypes. Plants from different locations
were mixed and propagated vegetatively in a greenhouse of
Huazhong Agricultural University in Hubei Province, China.
After 2 weeks of cultivation, we selected 424 similar-sized
ramets of I. japonica, each with a node, three leaves and
some roots. Of them, 24 ramets were randomly selected for
measuring initial dry mass (0.389 ± 0.039 g, mean ± SE),
and the other 400 were used for the experiment described
below.

Experimental Design
The experiment was a factorial design with two levels
of intraspecific competition (without and with intraspecific
competition) and five levels of heterogeneity (homogeneous,
reciprocal large patch, reciprocal small patch, parallel large patch,
and parallel small patch), making a total of 10 treatments
(Figure 1). In the treatments without competition, one ramet
of I. japonica was planted in the center of a plastic container
(50 cm long × 50 cm wide × 30 cm high) with sealed bottom,
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FIGURE 1 | Experimental design. The experiment had two competition treatments (without vs. with competition by growing one or nine ramets of Iris japonica in a
container) crossed with five heterogeneity treatments, i.e., (i) homogeneous (all patches received moderate light and moderate water), (ii) parallel large patch (the con-
tainer was divided into two large patches; one received high light and high water, and the other low light and low water), (iii) reciprocal large patch (the whole container
was divided into two large patches; one patch received high light and low water, and the other low light and high water), (iv) parallel small patch (the container was
divided into four small patches; two received high light and high water, and the other low light and low water) and (V) reciprocal small patch (the container was
divided into four small patches; two received high light and low water, and the other low light and high water). The light and water content received by the plants in
the heterogeneous treatments was the same as that in the homogeneous treatment.

and in the treatments with competition, nine ramets were
planted (Figure 1). In the reciprocal large-patch treatments,
each container was divided into two large patches (each
measuring 50 cm × 25 cm), one of which was subjected
to high light and low water and the other to low light
and high water. In the reciprocal small-patch treatments,
each container was divided into four small patches (each
measuring 25 cm × 25 cm), two of which were subjected
to high light and low water and the other two to low light
and high water. In the parallel large-patch treatments, each
container was divided into two large patches, one of which
was subjected to high light and high water and the other to
low light and low water. In the parallel small-patch treatments,
each container was divided into four small patches, two of
which were subjected to high light and high water and the
other two to low light and low water. In the homogeneous
treatments, each container was subjected to medium light
and medium water. There were eight replicates in each
treatment.

Each container was filled with a mix of sand and yellow–
brown soil (1:1 v/v) homogeneously mixed with 20 g slow release
fertilizer (Osmocote, N–P–K: 15–9–12, lasting for 5–6 months).
Ramets were transplated to the containers on 14 February 2014
and allowed to recover and establish by supplying with sufficient
water for 1 week. Then the soils were allowed to dry for 5 days
without adding any water. High light was 100% of natural light
in the greenhouse, without covering the patches with a shading
net; medium and low light were 55 and 10% of natural light
in the greenhouse, respectively, realized by covering the patches
with black, neutral shading nets of 55 and 10% transmittances.
During the experiment, we added 440 mL water to each container
every one to four days depending on the weather conditions and
thus how fast the soil dried. In the homogeneous treatments,

we spayed 440 mL water evenly to the soil in each container to
creat medium water availability. In the heterogeneous treatments
with large patches, we supplied 400 mL water to the large patch
of high water availability and 40 mL water to the large patch of
low water availability in each container. In the heterogeneous
treatments with small patches, we added 200 mL water to each
of the two small patches of high water availability and 20 mL to
each of the two small patches of low water availability in each
container.

The bottom of the container was sealed so that there was
no water leakage. We built physical barriers between patches
inside each container. The barriers were 25 cm high and sealed
to the containers (30 cm high) to prevent horizontal flow of
water in the soil more than 5 cm deep between patches. Because
in the top 5-cm-deep soil, there were no barriers the ramet in
the central position in the container could be planted in the
soil on the barrier (to be revised further). During watering, we
also sprayed water slowly and carefully into each patch to avoid
massive horizontal flow of water in the top soil of 5 cm deep.
Because rhizomes of I. japonica are distributed within the top, 5-
cm-deep soil (Wang et al., 2013), the physical barriers could not
prevent rhizomes to grow across patches. Soil water content was
monitored everyday in four replications during the experiment
by a Soil Moisture Meter (TZS-II, HEB Biotechnology Co., Xi’an,
China). Soil water content was about 32–37% in the high water
patches, 20–25% in the medium water patches and 8–13% in the
low water patches.

The experiment was conducted in the greenhouse at
Huazhong Agricultural University. During the experiment, the
mean temperature and mean relative humidity in the greenhouse
were 25.1◦C and 72.2%, respectively (measured by Amprobe
TR300, Amprobe, Everett, WA, USA). Light intensity in the
greenhouse was 85% of that outside. The experiment was started
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on 26 February 2014 and ended on 1 July 2014, lasting for
125 days.

Measurements
At the end of the experiment, parent (original) ramets and
offspring ramets were harvested separately. For the reciprocal
patch treatments, we harvested offspring ramet located in the
patches of high water and low light and patches of low water and
high light separately. Similarly, for the parallel patch treatments,
we harvested offspring ramets in the patches of high water and
high light and patches of low water and low light separately.
In each container, we pooled offspring ramets located in the
same type of patches into one sample. For the homogeneous
treatment, offspring ramets were harvested in a similar fashion,
i.e., offspring ramets located in the imagined high and low water
patches were harvested separately and those in the same type of
imaged patches were pooled into one sample. The plants were
then separated into leaves, stem, rhizomes, and roots, dried at
80◦C for 48 h and weighed. Biomass in a container (at the
container level) was the sum of biomass of the parent ramets,
offspring ramets located in the high water patches and offspring
ramets in the low water patches in that container. Similarly, we
obtained number of ramets and rhizome length at the container
level.

Data Analysis
The growth measures could not be compared directly because
number of initial ramets of I. japonica differed between the two
competition treatments (one vs. nine for the treatments without
vs. with competition). Thus, we calculated biomass, number of
ramets and rhizome length on the basis of per initial ramet in
each container and also in each type of the patches, and these data
were used for further analyses.

We used two-way ANOVAs to test effects of intraspecific
competition (with and without competition) and spatial
heterogeneity (homogeneous, reciprocal large and small
patch, and parallel large and small patch) on the growth of
I. japonica at the container level. If a significant effect of spatial
heterogeneity was detected, then Tukey HSD tests to conducted
to compare the means among the five heterogeneity treatments.
The aim of these analyses was to examine whether there was
an overall impact of spatial heterogeneity (homogeneous
treatment vs. heterogeneous treatments of different types), as
well as its interaction with intraspecific competition, so that
the homogeneous treatments could be included. We further
used three-way ANOVAs to examine effects of intraspecific
competition, patch arrangement (reciprocal vs. parallel) and
patch scale (small vs. large) on the growth at the container
level, and in these analyses the homogeneous treatments were
excluded. The aim of these analyses was to test the effect of
patch scale and patch arrangement (and their interactions with
competition), and the homogeneous treatments could not be
included because they did not belong to either of the two patch
sizes or patch arrangements. At the patch level, we employed
three-way ANOVAs with repeated measures to test effects of
intraspecific competition, spatial heterogeneity and patch type
(high vs. low water patches) within a container on the growth of

offspring ramets of I. japonica (Wang et al., 2012). If a significant
effect of spatial heterogeneity was detected, then Tukey HSD tests
to conducted to compare the means among the five treatments.
We further used four-way ANOVAs with repeated measures
to test effects of intraspecific competition, patch arrangement,
patch scale and patch type within a container on the growth of
offspring ramets at the patch level (Wang et al., 2012; Dong et al.,
2015), and in these analyses the homogeneous treatments were
excluded. Patch type within a container was used as a repeated
variable because the two types of patches in a container were not
independent (Potvin et al., 1990; Zar, 1999, p. 255).

To measure the intraspecific competitive intensity, we
calculated the log response ratio (LnRR) of biomass as
LnRR = ln(Bo/Bw), where Bo is mean biomass of a treatment
without competition across the eight replicates, and Bw is biomass
of the treatment with competition in each replicate. Values
of LnRR are symmetrical around zero (Hedges et al., 1999;
Armas et al., 2004). Positive values indicate competition, negative
values indicate facilitation and zero indicates neutral. At the
container level, we used one-way ANOVA to examine the effect
of spatial heterogeneity on LnRR. If a significant effect was
detected, we further used two-way ANOVA to test the effects
of patch arrangement and patch scale on LnRR. At the patch
level, we used two-way ANOVA to examine the effect of spatial
heterogeneity and patch type on LnRR. If a significant effect of
spatial heterogeneity was detected, we further used three-way
ANOVA to test the effects of patch arrangement, patch scale and
patch type on LnRR. Patch type was treated as a repeated variable.
All analyses were conducted using SPSS 13.0 (SPSS, Chicago, IL,
USA).

RESULTS

Effects of Spatial Heterogeneity and
Intraspecific Competition at the
Container Level
Spatial heterogeneity in light and water significantly
affected biomass and rhizome length of I. japonica at
the container level (Table 1). Irrespective of competition,
biomass and rhizome length were the highest in the
heterogeneous treatments with large patches, smallest
in the homogeneous treatments, and intermediate in the
heterogeneous treatments with small patches (Figures 2A,C;

TABLE 1 | ANOVAs for effects of spatial heterogeneity (homogeneous vs.
parallel large patch vs. reciprocal large patch vs. parallel small patch vs.
reciprocal small patch) and intraspecific competition (without vs. with
competition) on the growth of Iris japonica at the whole container level.

Effect df Biomass Number of ramets Rhizome
length

Heterogeneity (H) 4, 80 5.365∗∗ 1.277 2.812∗

Competition (C) 1, 80 55.727∗∗∗ 10.992∗∗ 31.977∗∗∗

H × C 4, 80 1.107 0.234 1.176

Significance levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05.
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FIGURE 2 | Biomass (A), number of ramets (B), and rhizome length (C) of I. Japonica at the whole container level under the ten treatments. Error bars
show +SE.

Appendices 1A,C; Tables 1 and 2). However, none of the
three growth measures differ significantly between parallel and
reciprocal patch arrangements (Figure 2; Appendices 1A–C;
Table 2).

Intraspecific competition significantly decreased biomass,
number of ramets and rhizome length of I. japonica at the
container level (Figure 2; Tables 1 and 2). However, there
were no significant interaction effects of competition by spatial
heterogeneity (Tables 1 and 2; Figure 2), and no significant effect
of spatial heterogeneity on the log response ratio of biomass
(LnRR; Figure 3A, F4,35 = 0.698, P = 0.599), suggesting that

TABLE 2 | ANOVAs for effects of patch arrangement (parallel vs.
reciprocal), patch scale (large vs. small) and intraspecific competition
(without vs. with competition) on the growth of I. japonica at the whole
container level.

Effect df Biomass Number of
ramets

Rhizome
length

Patch arrangement (Pa) 1, 64 1.373 0.894 0.032

Patch scale (Ps) 1, 64 8.927∗∗ 6.502∗ 4.253∗

Competition (C) 1, 64 45.823∗∗∗ 8.716∗∗ 28.749∗∗∗

Pa × Ps 1, 64 0.171 0.028 0.001

Pa × C 1, 64 0.822 0.024 0.857

Ps × C 1, 64 0.940 1.743 0.053

Pa × Ps × C 1, 64 0.260 0.002 0.688

Significance levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05.

spatial heterogeneity in light and water, irrespective of its patch
arrangement or scale, did not alter intraspecific competitive
intensity of I. japonica at the container scale.

Effects of Spatial Heterogeneity and
Intraspecific Competition at the Patch
Level
There were significant interaction effects of patch type × spatial
heterogeneity (Table 3), patch type × spatial heterogeneity ×
competition (Table 3), patch type× patch arrangement (Table 4),
patch type × patch arrangement × patch scale (Table 4), and
patch type × patch arrangement × competition (Table 4) on the
growth measures. Irrespective of competition, biomass, number
of ramets and rhizome length were significantly larger in the high
than in the low water patches in the heterogeneous treatments
with large patches, but was statistically the same in the high and
low water patches in the homogeneous treatments (Figure 4;
Tables 3 and 4). For the heterogeneous treatments with small
patches, the growth of I. japonica was not significantly affected
by patch type in the absence of competition, but significantly
larger in the high than in the low water patches in the presence
of competition (Figure 4; Appendices 1D–F; Tables 3 and 4).

There were significant interaction effects of patch type ×
spatial heterogeneity (F4,35 = 7.815, P < 0.001), patch
type × patch arrangement (F1,28 = 17.634, P < 0.001) and patch
type × patch scale (F1,28 = 6.705, P = 0.036) on LnRR at the
patch level (Figure 3B). LnRR was significantly larger in the low
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FIGURE 3 | Completive intensity as measured by log response ratio (LnRR) of biomass of I. japonica at the whole container level (A) and in the high
and low water patches at the patch level (B) in the five treatments. Error bars show +SE.

TABLE 3 | ANOVAs for effects of heterogeneity (homogeneous vs. parallel
large patch vs. reciprocal large patch vs. parallel small patch vs.
reciprocal small patch), intraspecific competition (without vs. with
competition) and patch type (high vs. low water patches) on the growth of
I. japonica at the patch level.

Effect df Biomass Number of
ramets

Rhizome
length

Heterogeneity (H) 4, 80 5.401∗∗∗ 1.812 6.716∗∗∗

Competition (C) 1, 80 0.001 1.900 0.011

Patch type (Pt) 1, 80 175.642∗∗∗ 1.658 0.445

H × C 4, 80 6.936∗∗∗ 0.182 1.683

H × Pt 4, 80 45.715∗∗∗ 2.557∗ 13.536∗∗∗

C × Pt 1, 80 63.164∗∗∗ 2.452 1.467

H × C × Pt 4, 80 10.875∗∗∗ 1.559 4.990∗∗

Significance levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05. Patch type was treated
as a repeated variable.

than in the high water patches in the heterogeneous treatments
with the parallel arrangement, but was statistically the same in the
high and low water patches in the homogeneous treatments and
the heterogeneous treatments with the reciprocal arrangement
(Figure 3B). LnRR was significantly larger in the low than in
the high water patches in the heterogeneous treatments with
small patches, but was not significantly affected by patch type
in the reciprocal arrangement with large patches (Figure 3B).
Compared to the homogeneous treatments and the reciprocal
arrangement treatments, the parallel arrangement treatments
greatly decreased LnRR in the high water patches, but increased
that in the low water patches (Figure 3B). These results suggest
that patch type, patch arrangement and patch scale can alter
intraspecific competitive intensity of I. japonica at the patch scale.

TABLE 4 | ANOVAs for effects of patch arrangement (parallel vs.
reciprocal), patch scale (large vs. small), intraspecific competition
(without vs. with competition) and patch type (high vs. low water patches)
on the growth of I. japonica at the patch level.

Effect df Biomass Number of
ramets

Rhizome
length

Patch arrangement (Pa) 1, 64 4.096∗ 2.220 0.516

Patch scale (Ps) 1, 64 11.594∗∗∗ 4.303∗ 3.879∗

Competition (C) 1, 64 4.517∗ 1.728 0.085

Patch type (Pt ) 1, 64 233.102∗∗∗ 1.104 3.745∗

Pa × Ps 1, 64 0.007 0.144 0.029

Pa × C 1, 64 3.230 0.021 3.359

Pa × Pt 1, 64 58.490∗∗ 6.249∗ 27.417∗∗∗

Ps × C 1, 64 0.001 0.001 1.411

Ps × Pt 1, 64 0.519 0.820 0.658

C × Pt 1, 64 40.372∗∗∗ 3.987∗ 2.368

Pa × Ps × C 1, 64 0.506 0.622 0.197

Pa × Ps × Pt 1, 64 11.486∗∗∗ 1.797 7.337∗∗

Pa × C × Pt 1, 64 36.669∗∗∗ 2.658 14.505∗∗∗

Ps × C × Pt 1, 64 0.558 0.379 0.009

Pa × Ps × C × Pt 1, 64 0.241 0.474 0.592

Significance levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05. Patch type was treated
as a repeated variable.

DISCUSSION

While many studies have tested effects of environmental
heterogeneity in the supply of a single resource (e.g., light or
soil nutrients) on intraspecific and/or interspecific interactions
of plants (Fransen et al., 2001; Day et al., 2003; Moore and
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FIGURE 4 | Biomass (A,D), number of ramets (B,E) and rhizome length of (C,F) I. japonica in the high and low water patches under the ten treatments.
Error bars show +SE.
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Franklin, 2012; Wang et al., 2012; Li H.L. et al., 2014; Dong et al.,
2015), none has examined those of heterogeneous distribution
of two co-variable resources. Our results clearly showed that
spatial heterogeneity in light and water availability could alter
intraspecific competition at the patch level and that such effects
depended on spatial patch arrangement and patch scale.

Spatial heterogeneity in light and water availability,
irrespective of its patch arrangement or patch scale, did
not significantly alter intraspecific competition intensity
of I. japonica at the container scale. Previous studies have
also showed that soil nutrient heterogeneity did not affect
intraspecific competition in Hydrocotyle vulgaris (Dong et al.,
2015), Alternanthera philoxeroides (Zhou et al., 2012) or F. ovina
(Day et al., 2003) at the container level. It has been suggested
that a significant effect of light and soil heterogeneity on
competition may be caused by the differences between plants in
their ability to concentrate ramets and/or roots where resource
levels are high (Fransen et al., 2001; Zhou et al., 2012). In this
study, I. japonica showed the relatively high and low ability to
concentrate ramets and rhizome mass in high and low water
patches, respectively. Consequently, a significant integrative
effect of resource heterogeneity of light and water on the
intraspecific interactions was not observed at the container
level.

In the heterogeneous treatment with parallel patchiness,
resource heterogeneity of light and water significantly decreased
intraspecific competition intensity of I. japonica in the high
water patches and increased that in the low water patches,
but such effects were absent in the heterogeneous treatments
with reciprocal patchiness. Thus, at the patch level, patchy
distribution of light and water could alter intraspecific
competition and patch arrangement mattered. Previous
studies indicated that preferential ramet and root placements
in resource-rich patches might greatly improve the efficiency
and amount of resource capture and further increase their local
growth (Roiloa and Retuerto, 2007; Wang et al., 2012). The
efficiency of resource capture by these ramets in resource-rich
patches can also benefit the growth of the whole plant by
resource translocation from connected ramets in competition-
free conditions (He et al., 2011; Zhou et al., 2012; Zhang
and Zhang, 2013). In the presence of competition, plants
prefer to concentrate more new ramets or new rhizomes
in the high water and high light patches to promote the
success of growth rather than in the low water and low
light patches. These may result from the fact that resources
were sufficient in high water and high light conditions and
insufficient in low water and low light conditions for the
competitive growth of I. japonica. Clonal integration might
reduce the intensity of competition between ramets in the
resource-rich patches by allowing internal transportation of
resources from the ramets in the resource-rich patches to the
connected ramets in the resource-poor patches, which can
also be beneficial to plant growth in resource-rich patches
(Novoplansky, 2009; Dong et al., 2015). In reciprocal patchiness,
I. japonica might develop division of labor of plants between
high water with low light and low water with high light
conditions, which shared the risk of intense competition

in both high and low water patches (Stuefer et al., 1996;
Wang et al., 2011). That might be also a strategy for selecting
advantageous patches and balancing the benefit between
resource-poor and resource-rich patches in competition
conditions.

Impacts of patchy distribution of two co-variable resources on
intraspecific competition intensity of I. japonica also depended
on patch scale. Patch scale had substantial effects on performance
of clonal plants (Wijesinghe and Hutchings, 1997, 1999), and
resource heterogeneity that affects plant performance at one
scale may not do so at other scales. For instance, Glechoma
hederacea clones growing in heterogeneous conditions with
large patches produced greater biomass than those growing
in heterogeneous conditions with small patches (Wijesinghe
and Hutchings, 1997, 1999). However, spatial heterogeneity
in light intensity increased intraspecific competition intensity
of D. indica at both large and small patch scales (Wang
et al., 2012). Impacts of patch scale on plant performance
and interaction may be related to inter-ramet distance and
also the size of root and shoot systems of ramets. If the
patch size is too small or too large, then there will be
no impact of heterogeneity (Zhou et al., 2012; Dong et al.,
2015). In our study, enough space with sufficient resources in
large patches with high water availability was benefit to the
competitive growth of I. japonica. However, in small patches
with high water availability, the rhizome growth and placement
of new ramets of I. japonica was restricted, and nearly all
space was overloaded. Thus the resource-rich patches might
not always maintain equal suitability and gradually decline
to the same level of suitability as the resource-poor patches.
Therefore, in our study, plants in heterogeneous treatments
with large patches produced more new ramets or new rhizome
in the high water than low water patches in competitive
conditions.

Our results also indicate that I. japonica exhibited foraging
responses in the heterogeneous environment of both reciprocal
and parallel patchiness, especially in competitive conditions.
The possible reason can be the existence of a negative
correlation between the space of plant growth and foraging
precision (Wijesinghe et al., 2001; Cahill et al., 2010). If
I. japonica grows alone, sufficient space may favor the fast
growth of plants and decrease its foraging precision, which
might lead to ignoring the heterogeneous resource distribution
in the parallel patchiness (Rajaniemi and Reynolds, 2004;
Mommer et al., 2012; Dong et al., 2015). In reciprocal
patchiness, I. japonica might develop division of labor of
plants between high water with low light and low water
with high light conditions, which promoted the high potential
benefits to enhance resource capture of clonal plants and
thereby to increase their performance in heterogeneous habitats
(Stuefer et al., 1996; Roiloa et al., 2007; Wang et al., 2011;
Zhang and Zhang, 2013). Meanwhile, in the presence of
intraspecific competition, limited space for the growth may
enable I. japonica to show a higher foraging precision in
response to resources (Cahill et al., 2010; Dong et al., 2015),
especially in parallel patchiness with extremely rich and poor
patches.
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CONCLUSIONS

We conclude that environmental heterogeneity in the supply
of two co-variable resources can affect intraspecific interactions
of plants at some circumstances. Our results also suggest
that competitive responses to spatial heterogeneity in resource
availability may necessarily be adaptive and depend on resource
combination and patch scale. Therefore, spatial heterogeneity
in light and water availability may be of great importance in
regulating population structure and dynamics of clonal plants
(Hutchings et al., 2003; He et al., 2011; Wang et al., 2012; Zhang
and Zhang, 2013).

AUTHOR CONTRIBUTIONS

Y-JW, X-PS, and F-HY designed the experiment. X-JW and X-FM
performed the experiment. Y-JW wrote the first draft of the
manuscript. Y-JW, F-LL, and F-HY did the statistical analysis.
Y-JW and F-HY contributed substantially to the revisions.

FUNDING

This research was supported by the National Natural Science
Foundation of China (No. 31270465, 31570413, 31000194).

ACKNOWLEDGMENT

We thank X.-H. Yong, J.-H. Liu, Z. Li, and B.-W. Yin for their
help during the course of the experiment.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2016.00753

DATA SHEET 1 | Biomass (A,D), number of ramets (B,E) and rhizome
length (C,F) of Iris japonica at the whole container level (i) and at the patch
level (ii) under the five heterogeneity treatments. Error bars show +SE.
Letters show the differences between the treatments (Tukey HSD tests, P = 0.05).

REFERENCES
Alpert, P., and Mooney, H. A. (1996). Resource heterogeneity generated by

shrubs and topography on coastal sand dunes. Vegetatio 122, 83–93. doi:
10.1007/BF00052818

Alpert, P., and Stuefer, J. F. (1997). “Division of labour in clonal plants,” in The
Ecology and Evolution of Clonal Plants, eds H. de Kroon and J. van Groenendael
(Leiden: Backbuys Press), 137–154.

Armas, C., Ordiales, R., and Pugnaire, F. I. (2004). Measuring plant interactions: a
new comparative index. Ecology 85, 2682–2686. doi: 10.1890/03-0650

Bartels, S. F., and Chen, H. Y. H. (2010). Is understory plant species diversity driven
by resource quantity or resource heterogeneity? Ecology 91, 1931–1938. doi:
10.1890/09-1376.1

Cahill, J. F. Jr., McNickle, G. G., Haag, J. J., Lamb, E. G., Nyanumba, S. M., and St
Clair, C. C. (2010). Plants integrate information about nutrients and neighbors.
Science 328:1657. doi: 10.1126/science.1189736

Day, K. J., John, E. A., and Hutchings, M. J. (2003). The effects of spatially
heterogeneous nutrient supply on yield, intensity of competition and root
placement patterns in Briza media and Festuca ovina. Funct. Ecol. 17, 454–463.
doi: 10.1046/j.1365-2435.2003.00758.x

de Kroon, H., Huber, H., Stuefer, J. F., and van Groenendael, J. M. (2005).
A modular concept of phenotypic plasticity in plants. New Phytol. 166, 73–82.
doi: 10.1111/j.1469-8137.2004.01310.x

Dong, B. C., Wang, J. Z., Liu, R. H., Zhang, M. X., Luo, F. L., and Yu, F. H. (2015).
Soil heterogeneity affects ramet placement of Hydrocotyle vulgaris. J. Plant Ecol.
8, 91–100. doi: 10.1093/jpe/rtu003

Dyer, A. R., Brown, C. S., Espeland, E. K., McKay, J. K., Meimberg, H.,
and Rice, K. J. (2010). The role of adaptive trans-generational plasticity in
biological invasions of plants. Evol. Appl. 3, 179–192. doi: 10.1111/j.1752-
4571.2010.00118.x

Fransen, B., de Kroon, H., and Berendse, F. (2001). Soil nutrient heterogeneity
alters competition between two perennial grass species. Ecology 82, 2534–2546.
doi: 10.1890/0012-9658(2001)082[2534:SNHACB]2.0.CO;2

Griffith, A. B. (2010). Positive effects of native shrubs on Bromus tectorum
demography. Ecology 91, 141–154. doi: 10.1890/08-1446.1

Guo, W., Song, Y. B., and Yu, F. H. (2011). Heterogeneous light supply affects
growth and biomass allocation of the understory fern Diplopterygium glaucum
at high patch contrast. PLoS ONE 6:e27998. doi: 10.1371/journal.pone.0027998

He, W. M., Alpert, P., Yu, F. H., Zhang, L. L., and Dong, M. (2011). Reciprocal
and coincident patchiness of multiple resources differentially affect benefits
of clonal integration in two perennial plants. J. Ecol. 99, 1202–1210. doi:
10.1111/j.1365-2745.2011.01848.x

He, W. M., Yu, F. H., and Zhang, L. L. (2010). Physiological integration impacts
nutrient use and stoichiometry in three clonal plants under heterogeneous
habitats. Ecol. Res. 25, 967–972. doi: 10.1007/s11284-010-0724-0

Hedges, L. V., Gurevitch, J., and Curtis, P. S. (1999). The meta-analysis of response
ratios in experimental ecology. Ecology 80, 1150–1156. doi: 10.1890/0012-
9658(1999)080[1150:TMAORR]2.0.CO;2

Hodge, A. (2004). The plastic plant: root responses to heterogeneous supplies of
nutrients. New Phytol. 162, 9–24. doi: 10.1111/j.1469-8137.2004.01015.x

Hutchings, M. J., and de Kroon, H. (1994). Foraging in plants: the role of
morphological plasticity in resource acquisition. Adv. Ecol. Res. 25, 159–238.
doi: 10.1016/S0065-2504(08)60215-9

Hutchings, M. J., and John, E. A. (2004). The effects of environmental
heterogeneity on root growth and root/shoot partitioning. Ann. Bot. 94, 1–8.
doi: 10.1093/aob/mch111

Hutchings, M. J., John, E. A., and Wijesinghe, D. K. (2003). Toward understanding
the consequences of soil heterogeneity for plant populations and communities.
Ecology 84, 2322–2334. doi: 10.1890/02-0290

Hutchings, M. J., and Wijesinghe, D. K. (1997). Patchy habitats, division of labour
and growth dividends in clonal plants. Trends Ecol. Evol. 12, 390–394. doi:
10.1016/S0169-5347(97)87382-X

Hutchings, M. J., and Wijesinghe, D. K. (2008). Performance of a clonal species
in patchy environments: effects of environmental context on yield at local
and whole-plant scales. Evol. Ecol. 22, 313–324. doi: 10.1007/s10682-007-
9178-4

Li, H. L., Wang, Y. Y., An, S. Q., Zhi, Y. B., Lei, G. C., and Zhang, M. X. (2014).
Sediment type affects competition between a native and an exotic species in
coastal China. Sci. Rep. 4:6748. doi: 10.1038/srep06748

Li, Q. Y., Tao, J. P., Zhong, Z. C., and Wang, Y. J. (2014). Growth performance,
sexual reproduction and clonal propagation of Iris japonica Thunb. natural
populations in contrast reciprocal habitats on Jinyun Mountain, China. Sains
Malays. 43, 161–168.

Liu, J., Dong, M., Miao, S. L., Li, Z. Y., Song, M. H., and Wang, R. Q. (2006).
Invasive plants in China: role of clonality and geographical origin. Biol.
Invasion. 8, 1461–1470. doi: 10.1007/s10530-005-5838-x

Liu, J., He, W. M., Zhang, S. M., Liu, F. H., Dong, M., and Wang, R. Q. (2008).
Effects of clonal integration on photosynthesis of the invasive clonal plant
Alternanthera philoxeroides. Photosynthetica 46, 299–302. doi: 10.1007/s11099-
008-0054-4

Mommer, L., van Ruijven, J., Jansen, C., van de Steeg, H. M., and
de Kroon, H. (2012). Interactive effects of nutrient heterogeneity and
competition: implications for root foraging theory? Funct. Ecol. 26, 66–73. doi:
10.1111/j.1365-2435.2011.01916.x

Frontiers in Plant Science | www.frontiersin.org 9 June 2016 | Volume 7 | Article 753

http://journal.frontiersin.org/article/10.3389/fpls.2016.00753
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00753 June 2, 2016 Time: 12:15 # 10

Wang et al. Environmental Patchiness Affects Intraspecific Competition

Moore, J. E., and Franklin, S. B. (2012). Water stress interacts with early arrival to
influence inter and intra-specific priority competition: a test using a greenhouse
study. J. Veg. Sci. 23, 647–656. doi: 10.1111/j.1654-1103.2012.01388.x

Novoplansky, A. (2009). Picking battles wisely: plant behaviour under competition.
Plant Cell Environ. 32, 726–741. doi: 10.1111/j.1365-3040.2009.01979.x

Peng, Y. K., Luo, F. L., Li, H. L., and Yu, F. H. (2013). Growth responses
of a rhizomatous herb Bolboschoenus planiculmis to scale and contrast
of soil nutrient heterogeneity. Chin. J. Plant Ecol. 37, 335–343. doi:
10.3724/SP.J.1258.2013.00033

Potvin, C., Lechowicz, M. J., and Tardif, S. (1990). The statistical analysis
of ecophysiological response curves obtained from experiments involving
repeated measures. Ecology 71, 1389–1400. doi: 10.2307/1938276

Prati, D., and Schmid, B. (2000). Genetic differentiation of life-history traits within
populations of the clonal plant Ranunculus reptans. Oikos 90, 442–456. doi:
10.1034/j.1600-0706.2000.900303.x

Price, E. A. C., and Marshall, C. (1999). Clonal plants and environmental
heterogeneity. Plant Ecol. 141, 3–7. doi: 10.1023/A:1009838300691

Rajaniemi, T. K., and Reynolds, H. L. (2004). Root foraging for patchy resources
in eight herbaceous plant species. Oecologia 141, 519–525. doi: 10.1007/s00442-
004-1666-4

Roiloa, S. R., Alpert, P., Tharayil, N., Hancock, G., and Bhowmik, P. (2007). Greater
capacity for division of labour in clones of Fragaria chiloensis from patchier
habitats. J. Ecol. 95, 397–405. doi: 10.1111/j.1365-2745.2007.01216.x

Roiloa, S. R., and Retuerto, R. (2007). Responses of the clonal Fragaria vesca to
microtopographic heterogeneity under different water and light conditions.
Environ. Exp. Bot. 61, 1–9. doi: 10.1016/j.envexpbot.2007.02.006

Song, Y. B., Yu, F. H., Keser, L. H., Dawson, W., Fischer, M., Dong, M., et al.
(2013). United we stand, divided we fall: a meta-analysis of experiments on
clonal integration and its relationship to invasiveness. Oecologia 171, 317–327.
doi: 10.1007/s00442-012-2430-9

Stuefer, J. F., de Kroon, H., and During, H. J. (1996). Exploitation of environmental
heterogeneity by spatial division of labour in a clonal plant. Funct. Ecol. 10,
328–334. doi: 10.2307/2390280

van der Waal, C., de Kroon, H., Heitkönig, I. M. A., Skidmore, A. K., van
Langevelde, F., de Boer, W. F., et al. (2011). Scale of nutrient patchiness mediates
resource partitioning between trees and grasses in a semi-arid savanna. J. Ecol.
99, 1124–1133. doi: 10.1111/j.1365-2745.2011.01832.x

Wang, P., Lei, J. P., Li, M. H., and Yu, F. H. (2012). Spatial heterogeneity in light
supply affects intraspecific competition of a stoloniferous clonal plant. PLoS
ONE 7:e39105. doi: 10.1371/journal.pone.0039105

Wang, Y. J., Shi, X. P., and Zhong, Z. C. (2013). The relative importance of sexual
reproduction and clonal propagation in rhizomatous herb Iris japonica Thunb.
from two habitats of Jinyun Mountain, Southwest China. Russ. J. Ecol. 44,
199–206. doi: 10.1134/S106741361303017X

Wang, Z., Li, Y., During, H. J., and Li, L. (2011). Do clonal plants
show greater division of labour morphologically and physiologically at
higher patch contrasts? PLoS ONE 6:e25401. doi: 10.1371/journal.pone.
0025401

Wijesinghe, D. K., and Hutchings, M. J. (1997). The effects of spatial scale
of environmental heterogeneity on the growth of a clonal plant: an
experimental study with Glechoma hederacea. J. Ecol. 85, 17–28. doi: 10.2307/
2960624

Wijesinghe, D. K., and Hutchings, M. J. (1999). The effects of environmental
heterogeneity on the performance of Glechoma hederacea: the interactions
between patch contrast and patch scale. J. Ecol. 87, 860–872. doi: 10.1046/j.1365-
2745.1999.00395.x

Wijesinghe, D. K., John, E. A., Beurskens, S., and Hutchings, M. J. (2001).
Root system size and precision in nutrient foraging: responses to spatial
pattern of nutrient supply in six herbaceous species. J. Ecol. 89, 972–983. doi:
10.1111/j.1365-2745.2001.00618.x

Zar, J. H. (1999). Biostatistical Analysis, 4th Edn. Upper Saddle River, NJ: Prentice-
Hall, Inc.

Zhang, Y., and Zhang, Q. (2013). Clonal integration of Fragaria orientalis in
reciprocal and coincident patchiness resources: cost-benefit analysis. PLoS ONE
8:e80623. doi: 10.1371/journal.pone.0080623

Zhou, J., Dong, B. C., Alpert, P., Li, H. L., Zhang, M. X., Lei, G. C., et al.
(2012). Effects of soil nutrient heterogeneity on intraspecific competition in the
invasive, clonal plant Alternanthera philoxeroides. Ann. Bot. 109, 813–818. doi:
10.1093/aob/mcr314

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Wang, Shi, Meng, Wu, Luo and Yu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 10 June 2016 | Volume 7 | Article 753

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant
	Introduction
	Materials And Methods
	Plant Material
	Experimental Design
	Measurements
	Data Analysis

	Results
	Effects of Spatial Heterogeneity and Intraspecific Competition at the Container Level
	Effects of Spatial Heterogeneity and Intraspecific Competition at the Patch Level

	Discussion
	Conclusions
	Author Contributions
	Funding
	Acknowledgment
	Supplementary Material
	References


