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Reliable information on soil status and crop health is crucial for detecting and mitigating
disasters like pollution or minimizing impact from soil-borne diseases. While infestation
with an aggressive soil pathogen can be detected via reflected light spectra, it is
unknown to what extent hyperspectral reflectance could be used to detect overall
changes in soil biodiversity. We tested the hypotheses that spectra can be used to
(1) separate plants growing with microbial communities from different farms; (2) to
separate plants growing in different microbial communities due to different land use;
and (3) separate plants according to microbial species loss. We measured hyperspectral
reflectance patterns of winter wheat plants growing in sterilized soils inoculated with
microbial suspensions under controlled conditions. Microbial communities varied due
to geographical distance, land use and microbial species loss caused by serial dilution.
After 3 months of growth in the presence of microbes from the two different farms plant
hyperspectral reflectance patterns differed significantly from each other, while within
farms the effects of land use via microbes on plant reflectance spectra were weak.
Species loss via dilution on the other hand affected a number of spectral indices for
some of the soils. Spectral reflectance can be indicative of differences in microbial
communities, with the Renormalized Difference Vegetation Index the most common
responding index. Also, a positive correlation was found between the Normalized
Difference Vegetation Index and the bacterial species richness, which suggests that
plants perform better with higher microbial diversity. There is considerable variation
between the soil origins and currently it is not possible yet to make sufficient reliable
predictions about the soil microbial community based on the spectral reflectance. We
conclude that measuring plant hyperspectral reflectance has potential for detecting
changes in microbial communities yet due to its sensitivity high replication is necessary
and a strict sampling design to exclude other ‘noise’ factors.
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INTRODUCTION

World food production relies heavily on soils, which are
suffering from (human-induced) threats like loss of biodiversity
due to intensified agriculture (Tsiafouli et al., 2015). Reliable
information on soil status can be crucial for detecting and
minimizing impact on crops from soil diseases. Remote sensing
is a potentially powerful non-destructive method for obtaining
information on crop health; reflected light spectra can be
used as early warning for fungal diseases in olives (Mahlein
et al., 2012; Calderon et al., 2013) and infestations of bark
beetles in forest (Lausch et al., 2013). Therefore the technique
has proven useful for detecting certain pests and diseases
attacking aboveground plant parts, and arguably this can be
adopted for a wider variety of targets including afflictions of
the belowground part (Carvalho et al., 2012). While it might be
relatively easy to detect infestation with an aggressive pathogen,
it is unknown to what extent hyperspectral reflectance could
be used to detect more subtle changes in a complex soil
community. The belowground microbial community associated
with plant roots is highly diverse and hyperspectral reflectance
could be one of the new tools to identify how plants
respond to shifts in soil community composition (Powell
et al., 2013). It has also been suggested that remote sensing
of vegetation could be used to study the spatial distribution
and dynamics of soil microbial communities (Hamada et al.,
2014).

Intensive agriculture is one important factor responsible for
reduced biodiversity in soils (Tsiafouli et al., 2015). Changes
in soil biota are important to monitor and detect early, since
loss of soil biodiversity translates into loss of ecosystem services
(de Vries et al., 2013). Early detection of belowground species
loss could be used to adapt current soil management in order
to prevent further loss of soil biodiversity and ecosystem
functioning. While loss of larger organisms like earthworms
might be relatively easy to observe, loss of microbes, such
as bacteria will require specialized methods, which can be
cultivation-based or molecular approaches. Here we want to
explore the potential of hyperspectral reflectance of plants as an
alternative to detect bacterial species loss from soil.

Bacterial communities show high spatial variation at
continental scale, and this variation is partly related to ecosystem
type and pH (Fierer and Jackson, 2006). Regional variation
in soil type, pH and climate is expected to result in different
microbial communities, while within a region management
like plowing and fertilization may further modify microbial
communities (Zhalnina et al., 2013). At small scales variation in
microbial communities is still expected due to soil heterogeneity
and dispersal limitations of microorganisms (Yergeau et al.,
2010; Martiny et al., 2011). It remains an open question whether
microbial species loss can be detected against this background
of variation in microbial soil communities across spatial
scales.

Hyperspectral reflectance has been used to assess the extremes
of the soil biota spectrum represented by presence or absence of
soil biota (Carvalho et al., 2012). On basis of their hyperspectral
reflectance patterns plants that were growing in sterilized soils

could be discriminated from plants growing in sterilized soils
inoculated with live soil with 50–60% correctness (Carvalho
et al., 2012). Live soil contains a variety of organisms, large
ones like earthworms, ants, and larvae and microbial ones
like protozoa, bacteria, and fungi. Some of those organisms
will affect plant chemical composition, either by mutualistic
effects such as providing nutrients, producing growth hormones,
suppressing diseases (Hol et al., 2014) or by pathogenic
interactions, which damage plant tissue and could trigger the
plants’ defense system (Termorshuizen, 2014). Variation in the
plant’s chemical composition can be detected by high-resolution
spectroscopy (Asner and Martin, 2008; Ramoelo et al., 2012;
Carvalho et al., 2013a,b; Kokaly and Skidmore, 2015). At the
field scale it has been found that the addition of nitrogen
significantly affected spectral parameters, while addition of
endophytic bacteria did not affect the spectra of winter wheat
plants (Adami et al., 2010). In the present study we focus
on the microbial organisms (<45 µm) in soil, and test to
what extent hyperspectral reflectance of winter wheat plants
will be influenced by differences in soil microbial community
composition.

We examined how changes in microbial community
composition will alter hyperspectral reflectance of plants. We
used winter wheat grown in a greenhouse experiment established
to assess effects of microbial species loss on plant productivity
(Hol et al., 2015a). Winter wheat (Triticum aestivum L.) was
selected as it is a common crop of global importance, and because
it has been used in remote sensing studies on effects of addition
of nitrogen and endophytic bacteria (Adami et al., 2010), or
pests and diseases (Yuan et al., 2014). We wanted to test if the
method of hyperspectral reflectance from a single leaf is sensitive
enough to detect changes in microbial community composition,
provided everything else is standardized.

Growing plants in sterilized soil with microbial inocula
allowed us to focus on the effect of variations in microbial
communities. Exclusion of larger soil organisms, a uniform
sterilized background soil for all treatments, and environmental
controlled conditions created suitable test scenarios. Additional
to the samples’ variation caused by geographical distance and
land use, we super-imposed species loss by using dilution-to-
extinction in the microbial inocula. Serial dilution of inoculum
will reduce less abundant species while dominant species
remain present in all treatments and thus could be considered
as a relatively subtle change in species composition while
species richness declines. This method has been used before to
successfully manipulate microbial community composition and
determine effects on soil processes such as decomposition and
plant growth promotion (Griffiths et al., 2001; Wertz et al., 2006,
2007; Hol et al., 2010, 2015a,b; Baumann et al., 2013; Tardy et al.,
2014).

Our main question was: can hyperspectral reflectance of
plants be used to detect differences in microbial community
composition? We tested the hypotheses that spectra can be
used to (1) separate plants growing with microbial communities
from different farms; (2) to separate plants growing in different
microbial communities due to different land use; and (3) separate
plants according to microbial species loss.
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MATERIALS AND METHODS

Greenhouse Experiment
The experiment was established in 2009 and the setup is described
in detail in Hol et al. (2015a). Briefly, soil was collected from
two Swedish farms, sampling 3 fields per farm and collecting
two samples per field, separated by at least 30 m. This resulted
in 12 soil origins (2 farms × 3 land use types × 2 replicates
per field). The farms were separated by 25 km distance. Within
a farm the maximum distance between fields with different
land use was 3 km. The three land use types per farm were
grassland (G), and intensive monoculture (I) and an extensive
crop rotation (R). Field soil properties have been reported
before (de Vries et al., 2013, Supplementary Material). Soil
from those fields was sterilized (25 kGy) and inoculated with
diluted microbial suspensions according to Hol et al. (2010,
2015a). Briefly, the suspension was obtained by mixing soil with
water in a blender, followed by centrifugation to remove soil
particles. The suspension was filtered over 45 µm to exclude meso
and macrofauna. For each of the 12 soil origins three dilution
treatments were created (10−2, 10−4, and 10−6). Essentially,
the highest inoculum level was 5 kg sterile soil inoculated
with a microbial suspension obtained from 25 g of field soil.
After addition of the suspension to the sterilized soils, the bags
were shaken to mix the suspension; this mixing was repeated
biweekly. The inoculated soils were incubated in the dark at room
temperature for 8 months in order to allow the microorganisms
to fully colonize the soil. After the incubation period 24 pots per
treatment were filled with soil and those soils were sown with
T. aestivum L. cv. Carenius seeds. The pots were arranged in 24
blocks (fully randomized block design) in order to account for
spatial effects in the greenhouse.

The plants were grown for 8 weeks, allowing plant-dependent
microbes to also fully colonize the soil. At the end of this first
growing period 50 g fresh weight soil from each pot was stored
at 4◦C to be used in the second growing phase. All remaining
soil was pooled, homogenized and sterilized by gamma radiation
(25 kGy) to establish a uniform background soil. Sterilization by
gamma radiation at the applied dose should be effective in killing
most microorganisms (McNamara et al., 2003) and may enhance
availability of nitrogen and phosphate (Troelstra et al., 2001).
Nevertheless, all our treatments were started from sterilized soil,
so that nutrient release and potential radio-resistant organisms
should be similar among dilution treatments and thus not
can explain differences between treatments. Note that the
experimental soils are not comparable to the field situation; our
aim was to test whether differences in microbial communities
can be detected by means of hyperspectral reflectance from
plants. The stored soil from the first growing phase was used
as 20% inoculum: all pots contained 200 g sterilized soil fully
mixed with 50 g living soil as inoculum. Pots were sown with
seeds from T. aestivum L. cv. Carenius. Growing conditions
were 60% relative humidity; 16 h L, 8 h D, 21◦C/16◦C, and
additional illumination by 400 W growing bulbs (Philips SONT-T
Agro, Philips, Eindhoven, Netherlands). Light intensity at plant
level was 225 µmol PAR. In September a spontaneous aphid

infestation of Rhopalosiphum padi L. occurred and all plants
became infested. Six weeks after germination the leaf spectra were
measured, as described in the next paragraph. After a growing
period of 9 weeks in total, shoot biomass of plants was harvested
by clipping at the soil surface and drying at 70◦C until constant
weight. For a subset of samples (n = 112) the percentage of
nitrogen in the leaves was measured to test its correlation with
the spectral indices. Nitrogen was measured in two milligrams of
the dried, ground leaf material, by combustion with an elemental
autoanalyzer Flash EA 1112 NC analyzer (Interscience, Breda,
Netherlands). The bacterial community in a subset of the pots
(n = 36; 2 origins × 3 dilutions × 6 blocks) was assessed by
multiplex pyrosequencing in order to verify the effectiveness of
the dilution treatment in reducing bacterial diversity. Dilution
will most likely also have affected other microbes, such as archaea,
fungi and protozoa. We therefore refer to effects of dilution as
effects of microbial species loss and use the bacterial analysis to
validate that dilution causes species loss. We selected pots from
two soil origins which showed contrasting reactions in shoot
biomass to dilution in the first phase of the experiment (Hol
et al., 2015a). Directly after harvesting the shoot biomass, 2 g
soil was collected from each pot at ∼5 cm depth and stored
at −20◦C until extraction. DNA was extracted from 0.25 g of
with the Mobio Powersoil DNA extraction kit and amplified with
the primer set 515F-806R (Lauber et al., 2009). Samples were
sequenced on a Roche 454 automated sequencer and GS FLX
system using titanium chemistry (454 Life Sciences, Branford, CT,
USA) (Macrogen Inc. Company, South Korea). Dataprocessing
was done as described in Hol et al. (2015a). As estimate for
bacterial diversity the expected species richness was calculated for
a sample size of 1440 reads with the vegan package in R (R Core
Team, 2015).

Leaf Spectral Measurements and
Processing
To collect the spectral reflectance data in the visible and
infrared region of the electromagnetic radiation (350–500) a
plant probe with leaf-clip attached to an ASD Fieldspec three
fieldspectrometer (ASD inc., Boulder CO, USA, henceforth ASD
fieldspec) was used. The resolution of the ASD fieldspec 3 is of
3 nm in the 350 – 1000 nm, and 10 nm between 1000 and 2500 nm
wavelengths. The light bulb used in the probe was heat sensitive
halogen of color and temperature 2901 ± 10% K. The radius
of the spectral measurement was of 10 mm. We measured the
spectral reflectance patterns of the first fully developed leaf of
6-week-old winter wheat plants with the black panel face of the
probe as background. The calibration was done with the white
reference face of the leaf-clip. As the winter wheat leaves were
narrower than the plant probe standard radius the measured leaf
was always fixed in the central area in the vertical position. All
measurements were offset corrected and the noisy region between
350 and 400 nm eliminated using the software ViewSpec Pro
5.6.10 (ASD inc. Boulder, USA).

Hyperspectral indices (referred to as spectral indices
throughout the paper) were calculated in order to evaluate
the differences in plants due to chlorophyll content (NDVI),
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nitrogen (NRI), plant physiognomy (EVI), water limitation or
water-stress (WI, DSWI), nutrient and photosynthesis stress (PS,
REP), photosynthetic shift (ARI), and plant senescing (PSRI)
among others (Table 1).

Data-analysis
Linear discriminant analysis (LDA) was applied into the full
spectral range to find discriminant functions that best explain
the relationship between the variables we have and the groups
that we are interested in (i.e., farm, intensity, or dilution).
The discrimination of intensity and dilution treatments was
performed within each farm to disentangle it from the farm
effect. The LDA functions were built using 70% of the samples
as a training-cross-validation dataset, while 30% was reserved
as testing/predicting set. To avoid spectral collinearity LDA was
performed using Principal Component Analyses (PCA) scores.
We selected the first 20 PCs and Mahalanobis distance as the
distance measure for group discrimination. To reduce the impact
of different group sizes the prior probabilities were considered
(Naes et al., 2002; Quinn and Keough, 2002). The testing set
allows us to evaluate the LDA success to correctly classify

unknown samples. The better the functions are the better the
classification of unknown samples into the groups defined. This
procedure was done in Unscrambler X 10.1 and SPSS 20.0 for
Windows.

We tested the effect of microbial origin (farm and land use)
on spectral indices by doing ANOVAs on the averaged values
per field. For each field the measurements were averaged across
blocks and dilution treatments to remove pseudoreplication,
resulting in six datapoints per farm. Since testing multiple indices
would enhance the chance of Type I errors, we used false
discovery rate control via the sharpened Benjamini Hochberg
procedure (Verhoeven et al., 2005). Additionally, we tested
whether there was a significant effect of dilution on a selection of
indices for each of the 12 soil origins separately (Table 1). Linear
mixed effect models (LMEs) were used with block as random
factor: model1 ← lme(index∼dilution, random = ∼1| block,
method = “ML”). Residuals did not always meet assumptions
of normality. In order to avoid false positives due to this lack
of normality, all tests resulting in P < 0.05 were repeated with
non-parametric tests. In those tests blocks were always included
to account for spatial variation in the greenhouse. The Prentice

TABLE 1 | Overview of the indices used in the manuscript to assess the effect of microbial communities on reflectance.

Code Definition Formula Description References

NRI Nitrogen reflection
index

(R570–R670)/
(R570+R670)

Relates to nitrogen
content

Filella et al., 1995

NDVI Normalized
difference
vegetation
index (NDVI)

(R800–R670)/
(R800+R670)

Chlorophyll content Tucker, 1979

RDVI Re-normalized
difference
vegetation index

(R805–R710)/
√

(R805+R657)
Sensitive to
chlorophyll and
nitrogen

Ramoelo et al.,
2012

EVI Enhanced
vegetation index
(EVI)

2.5∗(R800–R670)/
(R800+(6∗R670) –
(7.5∗R475)+1)

Plant physiognomy Huete et al., 1997

REP Red-edge position R700+40∗(((R670+

R780)/2–
R700)/(R740–R700))

Nutrient or general
plant stress

Clevers et al., 2002

mREP Modified red-edge
position

(R750–R705)/
(R750+R705 –
2∗R445)

Nutrient or general
plant stress

Sims and Gamon,
2002

PRIa Photosynthetic
radiation index

(R531–R570)/
(R531+R570)

Pigment stress
especially
Xantophylls due to
band 531nm

Gamon et al., 1992

WI Water index (R900/R970) Water content Apan et al., 2004

DSWI Disease-water
stress index

(R800/R1660) Related water
content changes
due to plant
diseases

Hamzeh et al.,
2013

PSa Plant stress index (R695/R420) Plant stress Carter, 1994

ARI Anthocyanin
reflectance index

(1/R550) – (1/R700) Pigment stress
especially
Anthocyanin

Gitelson et al.,
2001

PSRI Plant senescence
reflectance index

(R680–R500)/R750 Plant senescence
indicator due to
photosynthesis shift

Merzlyak et al.,
1999

Shown are the abbreviated codes, their names, formulas, descriptions and references.
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test was used, which is a generalized Friedman rank sum test. For
paired comparisons between two treatments Wilcoxon’s signed
rank test was used. Correlations between shoot biomass and
spectral indices, or between bacterial species richness and spectral
indices were statistically tested with Spearman rank correlations.
The analyses were done in R 3.0.3 (R Core Team, 2015) using the
‘nlme’ package (Pinheiro et al., 2015) and Prentice tests with the
‘muStat’ package (Wittkowski and Song, 2012). All data presented
here are available via Dryad (Hol et al., 2016).

RESULTS

Spectra Related to Farms
Hyperspectral reflectance clearly differed between plants growing
in sterilized soils and plants growing in sterilized soil inoculated
with microorganisms from two farms (Figure 1). Most spectral
indices (NDVIc, RDVI, REP, mREP, PRIa, WI, DSWI, PSa) were
significantly different between microbial inocula from the two
farms. The lowest values were found in Farm 1, independent
of land use (Figure 2). The farm LDA using the training set
showed that the two discriminant functions explained 70.6 and
19.9% of the variance, respectively. The combination of the
two LDA functions could significantly discriminate between the
farms (Table 2A, P < 0.001). Despite the significant difference
in spectral indices between plants growing with microorganisms
from the two farms, no significant overall differences in shoot
biomass could be detected (data not shown). The spectra appear
to reflect qualitative rather than quantitative differences. Our
indicator of plant quality, percentage of nitrogen in the leaf,
correlated weakly with NRI (ρ -0.227, P < 0.05, Spearman rank
correlation test).

Spectra Related to Different Land Use
Within each farm soil samples were collected from 3 different
types of land use to serve as inocula in the greenhouse
experiment. Analyzed for both farms together this did not yield
any significant difference in spectral reflectance, and therefore
there is no evidence of a general effect of land use on spectra.
The LDA for intensity of land use within farm showed that
all three functions together were significantly explaining the
variation in the underlying dimensions [Tables 2B,C; P(Farm 1
land use) = 0.003, P(Farm 2 land use) = 0.016)]. The first LDA
function explained approximately 60% of the variance while the
second 20% of the variance and the third >12% of the variance.

Detecting Microbial Species Loss
For about half the 12 soil origins a significant difference in
spectral reflectance between dilution treatments was found,
with spectral indices being more responding than individual
wavelengths (Table 3). The attempted classification of the
dilution groups revealed that only the LDA within farm 1 was
statistically significant (P = 0.001) with 65% of the variance
explained by the first function while the second explained 19.6%
and the third 15% of the variance. Independent of the training
LDA analyzed, the function plot (data not shown) showed the first
discriminant function always separated control (not inoculated)

FIGURE 1 | Hyperspectral reflectance of Triticum aestivum L. plants
growing in soils inoculated with microorganisms from two different
farms. The blue bar at the bottom indicates where there were no significant
differences between control soil and both the inoculated soils. Wilcoxon test,
P < 0.05, n = 24.

FIGURE 2 | RDVI of Triticum aestivum L. plants growing in the
presence of the microorganisms from two farms with three land use
types. ANOVA Farm F = 23.08, df1,8 P = 0.001; Field F = 2.23, df2,8

P = 0.17.

samples from the other groups. The second function alone failed
to differentiate groups (P > 0.05), revealing that disentangling
the other treatment groups is difficult due to dimension overlap.
This is supported by the outcome of the confusion matrix where
the training set showed high classification of true positives but
the test confusion matrices showed that correct classification
of unknown samples was low (Tables 2B,C). The loadings
inspection showed that the visible spectral region and red-edge
slope were the regions that most contributed to the groups
separation.

The subset of data for which information was available on
bacterial community composition showed a positive relation
between spectral reflectance and bacterial species richness.
A range of wavelengths (725–1382 nm and 1518–1853 nm)
correlated with species richness of bacteria in soil, resulting
in significant positive correlations between bacterial species
richness and the normalized difference vegetation index (NDVI)
and the enhanced vegetation index (EVI) (Table 4). The
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effect of bacterial species richness on spectral indices was still
significant in a model where first soil origin and dilution
were fitted as factors. The samples in the sequencing dataset

originated from two different fields from the same farm, and also
when the correlations were calculated separately per field they
showed the same positive correlation between species richness

TABLE 2 | Linear discriminant analyses confusion matrices for training/cross-validation and test of unknown samples.

(A) Farms 1 2 C

Training 1 174 70 4

2 97 222 13

Control 0 0 14

Test 1 39 35 3

2 52 62 8

C 0 0 0

(B) Farm 1

Intensity Int Grass Rot C Dilution 3 2 1 C

Training Int 53 7 3 1 3 52 5 13 4

Grass 16 73 19 8 2 12 72 14 2

Rot 17 17 66 4 1 22 18 63 7

Control 0 0 0 19 Control 0 0 0 19

Test Int 5 7 7 3 3 4 5 9 0

Grass 16 13 13 2 2 15 11 10 6

Rot 7 12 9 5 1 10 14 11 3

Control 1 1 0 0 Control 0 0 1 1

(C) Farm 2

Intensity Int Grass Rot C Dilution 3 2 1 C

Training Int 81 32 25 12 3 53 18 9 7

Grass 8 57 13 3 2 8 50 5 2

Rot 7 10 58 4 1 33 32 83 8

Control 0 0 0 13 Control 0 0 0 15

Test Int 23 14 24 4 3 14 8 12 1

Grass 7 11 8 4 2 3 4 6 1

Rot 2 7 1 1 1 1 20 15 7

Control 1 0 0 1 Control 0 1 0 0

(A) LDA between samples grown in inoculated soil of the 2 farms and control (sterilized soil); (B) LDA for intensities or dilution treatments within farm 1 and (C) LDA
for intensities or dilution treatments within farm 2. With exception of farm2 dilution treatments all LDA were significant considering the maximum number of discriminant
functions (P < 0.02). Rows represent the predicted group and columns the actual group. The bold numbers along the diagonal represent the number of correctly classified
samples.

TABLE 3 | Wavelengths and indices which showed significant differences according to dilution treatment.

Farm Land Use wavelengths (nm) 1∗ 2 3 4 5 6 7 8 9 10 11 12

509–651

1 grassA 691–708

grassB

intmonoA

intmonoB

croprotA

croprotB

2 grassA 690–702

grassB 506–667

intmonoA 739–1316

intmonoB

croprotA

croprotB

Numbers in column names refer to spectral indices as listed in Table 1. 1:NRI, 2:NDVI, 3:RDVI, 4:EVI, 5:REP, 6:mREP, 7:PRIa, 8:WI, 9:DSWI, 10: PSA, 11:ARI, 12:PSRI.
Shown are all wavelengths and indices for which P < 0.05 for both the Linear Mixed Effect model (LME) and the non-parametric Prentice test.

Frontiers in Plant Science | www.frontiersin.org 6 June 2016 | Volume 7 | Article 759

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00759 June 8, 2016 Time: 15:25 # 7

Carvalho et al. Soil Microbes Change Hyperspectral Patterns

TABLE 4 | Bacterial species richness correlates positively with certain hyperspectral indices.

Both fields Intensive Grassland

ρ P ρ P ρ P

NRI 0.243 0.212 0.454 0.092 0.143 0.643

NDVI 0.588 0.001 0.571 0.029 0.615 0.029

RDVI 0.354 0.066 0.364 0.182 0.225 0.459

EVI 0.507 0.006 0.536 0.042 0.385 0.196

REP 0.043 0.829 0.004 0.995 −0.038 0.906

mREP −0.041 0.838 −0.068 0.812 −0.038 0.906

PRIa 0.248 0.203 −0.146 0.602 0.505 0.081

WI −0.079 0.687 −0.054 0.853 −0.016 0.964

DSWI 0.042 0.833 −0.186 0.507 0.071 0.821

PSa 0.131 0.505 0.339 0.216 0.104 0.737

ARI 0.195 0.318 0.457 0.089 0.011 0.978

PSRI −0.055 0.780 0.004 0.995 −0.022 0.949

Spearman rank correlations n = 15 for intensive monoculture, n = 13 for grassland, both from farm 2. Calculation of indices is described in Table 1. Bold numbers
indicate significant p-values after false discovery rate control via the sharpened Benjamini Hochberg procedure.

FIGURE 3 | Normalized difference vegetation index (NDVI) values of
winter wheat plants growing in soils with different bacterial
composition as a consequence of soil dilution treatments. Bacterial
diversity is measured as the number of different operational taxonomic units
(otus) per 1440 reads. Spearman rank correlation coefficients (ρ) and p-values
(P) are shown for an intensive (I) and grassland (G) soil from farm 2. See
Table 4 for correlations between bacterial species richness and other spectral
indices.

of bacteria in soil and indices as the combined datasets (Table 4;
Figure 3). For the intensive field NDVI and EVI had comparable
significant correlations with bacterial species richness, while for
the grassland soil NDVI showed higher dependence (ρ) than EVI
on bacterial species richness.

For both soils, when analyzing all 24 replicates, i.e., six blocks
with bacterial species richness data and 18 blocks for which no
such data are available, the mean NDVI on average declined with
dilution (Figure 4). However, the effect of bacterial species loss
via dilution is only marginally significant (P = 0.05) when both
soils are analyzed together and not any more when the soils are
analyzed separately. Four other indices changed significantly with
dilution for the grassland soil (Table 5). Nitrogen content of the
leaves was low (0.66 ± 0.014%) and not significantly affected by
any of the treatments.

FIGURE 4 | Normalized difference vegetation index values of winter
wheat plants growing in soils with different bacterial diversities as a
consequence of soil dilution treatments.

The next step in exploring the generality of the relation
between bacterial species richness and spectral indices was to
determine whether treatments that used inoculum from the
same fields, the within-field replicates, show similar patterns
of change in spectral indices with dilution. For the intensive
soil the correlation is repeatable: the NDVI of intensive A
showed a significant decline with dilution (Table 5). However, for
grassland B the NDVI did not decline but tended to increase with
dilution. Three indices (mREP, REP, ARI) changed significantly
with dilution treatment for both grassland soils, but in opposite
directions (Table 5). This shows that spectral reflectance can
be indicative of differences in microbial communities, with the
RDVI the most common responding index (Table 5).

DISCUSSION

The results were in support of the hypothesis that plants growing
with microorganisms from different farms differ in spectral

Frontiers in Plant Science | www.frontiersin.org 7 June 2016 | Volume 7 | Article 759

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00759 June 8, 2016 Time: 15:25 # 8

Carvalho et al. Soil Microbes Change Hyperspectral Patterns

TABLE 5 | Effect of soil dilution treatment on spectral indices for grassland and intensive monoculture soils from farm 2.

Intensive Grassland

A B A B

t P t P T P t P

NRI −1.248 0.219 −0.508 0.614 1.293 0.204 −2.272 0.028

NDVI −3.891 <0.001 −1.336 0.189 −1.507 0.140 2.209 0.032

RDVI −2.266 0.023 −0.593 0.557 −1.965 0.057 3.776 <0.001

EVI −2.902 0.006 0.084 0.933 −0.565 0.575 0.451 0.654

REP −1.429 0.161 0.688 0.495 −2.395 0.022 3.840 <0.001

mREP −1.233 0.225 −0.525 0.602 −2.402 0.021 3.693 <0.001

PRIa −1.826 0.075 −0.181 0.857 −1.907 0.064 2.752 0.009

WI −1.514 0.138 0.409 0.684 −1.832 0.075 0.172 0.865

DSWI −2.14 0.038 0.475 0.638 −1.192 0.247 0.715 0.478

PSa 0.333 0.741 0.222 0.825 1.826 0.076 −3.159 0.003

ARI 0.805 0.425 1.363 0.181 2.486 0.018 −3.657 <0.001

PSRI −0.900 0.373 −0.171 0.865 −2.151 0.038 3.690 <0.001

Degrees of freedom are 40 resp 39 for intensive A resp B and 44 resp. 37 for grassland A resp B. A and B are replicate samples taken within the same field, separated
by at least 30 m. Values in bold were significantly different between dilution treatments with both the linear mixed model and the non-parametric Prentice test.

reflectance. Given the geographical distance between the farms
different microbial communities were expected (Bates et al.,
2013), with consequences for plant physiological status and thus
hyperspectral reflectance. The soils from the farms may have
differed also in several abiotic parameters (Hol et al., 2015a),
however, these did not play a direct role here since the experiment
was done with uniform sterilized soils, inoculated with field-
collected microorganisms. While nutritional effects cannot be
completely excluded, it seems an unlikely explanation given the
fact that the differences in nutrients between farms was much
smaller than the differences in nutrients between land use. Nearly
all spectral indices differed between the two farms, with farm 2
presenting the qualitative higher scores. The area that is different
is the red-edge and cell-structure influenced region of the spectra
(Kumar et al., 2001). This region has been acknowledged as
relevant to analyze plant stress, plant forage quality, nitrogen,
and cell structure (Filella et al., 1995; Kumar et al., 2001; Ayala-
Silva and Beyl, 2005; Ramoelo et al., 2012). The suggestion that
the microorganisms from farm 2 would be qualitative better
for plant growth did not translate into larger shoot biomass.
Although high chlorophyll concentration may result in high
radiation absorption, it does not necessarily relate to high
photosynthetic rates and thus higher biomass. The discrepancy
has been attributed to intraspecific differences in photosynthetic
efficiency (Leopold and Kriedemann, 1975; Kumar et al., 2001).
The apparent higher quality of plants growing in soil from farm 2
does match to some extent with the observation in the first phase
of the experiment, where plants grew better on arable soils from
farm 2 (Hol et al., 2015a).

Our second hypothesis, regarding different land use, was
barely supported. Only on one of the farms difference in land
use translated into different spectra indices. This is surprising,
given the substantial effects that land use can have on soil
biota (de Vries et al., 2013; Tsiafouli et al., 2015). The effects
of land use on soil biota are heavily confounded with effects

on soil abiotic conditions, a factor which was eliminated here
because of the inoculation in sterilized soil approach. In general,
more pathogens would be expected in soils under intensive crop
rotation (Kremen and Miles, 2012), with effects on plant chemical
composition, but in the present study we found no effect of
land use on plant biomass, and observed no disease symptoms
on the leaves. We cannot exclude non-symptomatic soil-borne
diseases, only it that case we would have expected to find more
differences in spectral indices. Plant-associated microorganisms
could be underrepresented in this experiment following from the
inoculation into sterilized soil together with the long incubation
period without plants.

Finally, the last hypothesis regarding the detection of species
loss via hyperspectral reflectance was partially supported. For half
of the 12 soil origins a difference in one or more spectral indices
was found between dilution treatments despite lack of significant
differences in plant biomass. This shows that spectral reflectance
is much more sensitive to microbial species loss than shoot
biomass. It also shows that the loss of microorganisms does not
consistently lower or improve plant chemical composition. Since
dilution may result in loss of both pathogens and mutualists,
depending on their relative abundance, it is not surprising that
soil with different microbial communities may vary in the effect
of microbial species loss on plant chemical composition. Indeed,
the first phase of this experiment also showed how plant biomass
could increase, decrease or not change in response to microbial
species loss (Hol et al., 2015a).

For a subset of the dilution treatments a more detailed
observation of the bacterial species richness could be linked
with hyperspectral reflectance. Since higher NDVI values have
been associated with higher photosynthesis activity and nutrient
availability/presence (Filella and Penuelas, 1994; Ayala-Silva and
Beyl, 2005; Mahlein et al., 2012), these results could be seen as a
positive association between bacterial diversity and plant quality.
We can only speculate about the mechanism behind this positive
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association. Microorganisms in general can help the plant with
nutrient uptake, induce production of secondary metabolites,
produce hormones that affect plant growth (Hol et al., 2014),
all of those could change hyperspectral reflectance patterns (e.g.,
Kumar et al., 2001; Ayala-Silva and Beyl, 2005; Ferwerda et al.,
2005; Font et al., 2005; Carvalho et al., 2013a). Soil biodiversity
might benefit plants directly via changes in nutrient availability,
or indirectly by offering protection against pathogens. Diverse
bacterial communities are more resistant to invasions (Mallon
et al., 2015) and also produce more antifungal volatiles (Hol
et al., 2015b). Weidner et al. (2015) showed how diverse bacterial
communities had higher enzyme activity, increased nitrogen
mineralization and increased plant growth. Since we did not find
any significant differences in leaf nitrogen concentrations or total
shoot biomass production, a more qualitative mechanism such as
changed secondary metabolites seem plausible. Most soil origins
showed little effect of dilution on spectra and thus this positive
relation between diversity and function is not universal. Although
the effectiveness of the dilution treatments on diversity was tested
by DNA sequencing for only 2 of the 12 soil origins, it is highly
likely that dilution resulted in species loss, as was found in the
two soil origins tested here and in several other studies (Wertz
et al., 2006, 2007; Yan et al., 2015). Therefore, certainly no overall
conclusions about microbial diversity in relation to plant quality
(based on NDVI) can be drawn. Interestingly, the plants with the
higher quality were either the non-inoculated control soils, or the
high-diversity soils. This suggests a non-linear relation between
diversity and function.

For application purposes it is useful to know that spectra
can reflect changes in soil diversity, but there is high variation
in the measurements. While the means of several spectral
indices are significantly different between farms, or dilution
treatments, there is too much variation in the indices for correct
classification of the plants with their respective treatments.
The plants’ physiology and hyperspectral reflectance are clearly
sensitive to exposure to different soil microbial community
compositions, yet at the same time also sensitive to several
other factors. In the greenhouse this may have been a spatial
effect such as light or temperature, or the different soil
batches used for the blocks. These factors were not our
primary focus; the crux is that the design should allow testing
the main treatments of interest, as we did for microbial
composition by using a highly replicated randomized block
design. Our results show that hyperspectral reflectance can
be very informative due to its sensitive and non-destructive
nature, yet it requires a very strict experimental design with
high replication and good options to filter the necessary
information. This is feasible under greenhouse conditions, such
as in horticulture, and in ecological experiments under controlled
conditions.

Ecologists could benefit hugely from a fast, non-destructive
method which provides reliable information for decisions such
as continuation of an experiment, or chemical analysis of plant
material. However, the current method might be too sensitive
to be of value for testing microbial community composition
effects outdoors. Even inoculation of winter wheat with growth-
promoting bacteria did not affect spectra in the field (Adami

et al., 2010), probably overshadowed by variation caused by
abiotic conditions and larger organisms. It should be noted
that our experiment was carried out under nutrient-poor
conditions where microbial effects on plant growth might be
more apparent than under high fertility conditions such as
those occurring on many agricultural fields in industrialized
countries. While the application of hyperspectral reflectance
to detect microbial shifts might have more potential in
nutrient-poor agricultural systems and in natural ecosystems,
our proof of concept might give rise to further studies in
order to test feasibility under nutrient-rich conditions as well.
Using plants to monitor soil microbial communities could be
the first step to understand, manage and protect microbial
ecosystems (Bodelier, 2011). Collaboration between ecologists
and remote sensing scientists improves the likelihood of a
future where microbial diversity will be one of the metrics
used for biodiversity monitoring from space (Skidmore et al.,
2015).
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